Time and frequency domain analyses of fluid force fluctuations in a normal triangular tube array in forced vibrations

•Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are disc...

Full description

Saved in:
Bibliographic Details
Published inAnnals of nuclear energy Vol. 145; p. 107526
Main Authors Chen, Yonggui, Ling, Zhangwei, Bao, Shiyi, Tang, Di, Luo, Lijia
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2020
Subjects
Online AccessGet full text
ISSN0306-4549
1873-2100
DOI10.1016/j.anucene.2020.107526

Cover

Abstract •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are discussed. Vibrations of tube bundles in heat exchange equipment, such as nuclear steam generators and tube-and-shell type heat exchangers, are often caused by unsteady fluid forces. The study of flow-induced vibration excitation forces on tubes is necessary for understanding the fluid-elastic instability phenomenon. In this paper, a forced vibration method is introduced to investigate unsteady motion-dependent fluid forces in a normal triangular tube array with the pitch ratio of 1.32 that is subjected to water crossflow. Fluid force behaviors of a single flexible central tube and its lift response spectra are investigated in various forced vibration modes. In a seven-tube kernel unit, coupling effects of surrounding tubes on the central tube are also discussed. Results show that the lift force on a flexible vibrating tube mainly depends on the vibration amplitude of tube itself in the lift direction, and is less affected by the degree of freedom, the rotation direction and the main vibration direction of tube vibration. The frequency spectrum of lift responses is dominated by two main frequencies: the vortex alternating frequency and the tube natural frequency. Surrounding flexible tubes increase higher order harmonics of the periodic lift force fluctuations of the central tube. Compared with rear-column tubes, vibrations of the front-column tubes have more significant effects on lift force responses of the tube kernel, which facts causes strong coupling to promote the fluid-elastic instability of tubes.
AbstractList •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are discussed. Vibrations of tube bundles in heat exchange equipment, such as nuclear steam generators and tube-and-shell type heat exchangers, are often caused by unsteady fluid forces. The study of flow-induced vibration excitation forces on tubes is necessary for understanding the fluid-elastic instability phenomenon. In this paper, a forced vibration method is introduced to investigate unsteady motion-dependent fluid forces in a normal triangular tube array with the pitch ratio of 1.32 that is subjected to water crossflow. Fluid force behaviors of a single flexible central tube and its lift response spectra are investigated in various forced vibration modes. In a seven-tube kernel unit, coupling effects of surrounding tubes on the central tube are also discussed. Results show that the lift force on a flexible vibrating tube mainly depends on the vibration amplitude of tube itself in the lift direction, and is less affected by the degree of freedom, the rotation direction and the main vibration direction of tube vibration. The frequency spectrum of lift responses is dominated by two main frequencies: the vortex alternating frequency and the tube natural frequency. Surrounding flexible tubes increase higher order harmonics of the periodic lift force fluctuations of the central tube. Compared with rear-column tubes, vibrations of the front-column tubes have more significant effects on lift force responses of the tube kernel, which facts causes strong coupling to promote the fluid-elastic instability of tubes.
ArticleNumber 107526
Author Chen, Yonggui
Ling, Zhangwei
Tang, Di
Bao, Shiyi
Luo, Lijia
Author_xml – sequence: 1
  givenname: Yonggui
  surname: Chen
  fullname: Chen, Yonggui
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 2
  givenname: Zhangwei
  surname: Ling
  fullname: Ling, Zhangwei
  organization: Zhejiang Academy of Special Equipment Science, Hangzhou 310020, China
– sequence: 3
  givenname: Shiyi
  surname: Bao
  fullname: Bao, Shiyi
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 4
  givenname: Di
  orcidid: 0000-0003-4770-4788
  surname: Tang
  fullname: Tang, Di
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China
– sequence: 5
  givenname: Lijia
  orcidid: 0000-0002-6040-6147
  surname: Luo
  fullname: Luo, Lijia
  email: lijialuo@zjut.edu.cn
  organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China
BookMark eNqFkMtqwzAQRUVJoUnaTyjoB5yObPlFF6WEviDQTfZirEdRsOVWkgP--9pJVt10NWK45zI6K7JwvdOE3DPYMGDFw2GDbpDa6U0K6bwr87S4IktWlVmSMoAFWUIGRcJzXt-QVQgHAJZWnC_JsLedpugUNV7_DNrJkaq-Q-umJbZj0IH2hpp2sFOk91LPbxkHjLZ3gc456nrfYUujt-i-hhY9jUMztXqP45w4cYoebePP2C25NtgGfXeZa7J_fdlv35Pd59vH9nmXyAzqmEioWQ1QcVMrhLJkOa9AmjKrkacGuS6NwVLVKmtUkTWpMRlWMs8ZpE3BVLYm-blW-j4Er4349rZDPwoGYlYnDuKiTszqxFndxD3-4aSNp8ujR9v-Sz-daT397Gi1F0HaSaxW1msZhertPw2_266SXQ
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2023_108230
crossref_primary_10_1016_j_oceaneng_2024_116999
crossref_primary_10_1016_j_ijmecsci_2024_109414
crossref_primary_10_1016_j_oceaneng_2020_108114
crossref_primary_10_1108_HFF_03_2024_0237
crossref_primary_10_1016_j_engstruct_2025_119658
crossref_primary_10_1016_j_anucene_2021_108564
Cites_doi 10.12989/was.2016.23.2.157
10.1115/PVP2015-45091
10.1006/jfls.1997.0140
10.1016/j.jfluidstructs.2016.04.006
10.1115/FEDSM-ICNMM2010-30528
10.1115/1.4004562
10.1017/S0022112096007495
10.1115/1.4002112
10.1016/j.jfluidstructs.2017.11.009
10.1016/j.nucengdes.2012.04.024
10.1016/j.jfluidstructs.2005.03.010
10.1016/0022-460X(84)90512-1
10.1016/j.jfluidstructs.2014.04.013
10.1115/1.2138064
10.1115/1.3269095
10.1016/0167-6105(84)90024-2
10.1016/j.expthermflusci.2004.06.004
10.1016/0022-460X(78)90506-0
10.1115/1.3264196
10.1115/PVP2017-65898
10.1016/j.anucene.2018.10.008
10.1115/1.2388996
10.1243/09576509JPE700
10.1016/j.nucengdes.2011.05.028
10.1115/1.4006854
10.1016/j.jfluidstructs.2009.07.006
10.1115/1.4032817
10.1016/S0022-460X(86)80114-6
10.1006/jfls.2002.0468
10.1016/j.jfluidstructs.2014.02.004
10.1115/1.2929604
10.1016/j.jfluidstructs.2015.06.005
10.1115/1.4023427
10.1115/1.3269066
10.1016/j.jfluidstructs.2017.01.020
10.1016/j.jfluidstructs.2017.10.014
10.1006/jfls.2001.0411
10.1016/S0022-460X(81)80005-3
10.1115/1.4002181
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.anucene.2020.107526
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-2100
ExternalDocumentID 10_1016_j_anucene_2020_107526
S0306454920302243
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KCYFY
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSJ
SSR
SSZ
T5K
~G-
.GJ
53G
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c309t-c09190084f9da07715480cf739a42fa4e7ffa7d9d3bd63b2ff3a8c55102b61d3
IEDL.DBID .~1
ISSN 0306-4549
IngestDate Thu Apr 24 22:52:10 EDT 2025
Thu Oct 09 00:17:40 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flow-induced vibration
Fluid-elastic instability
Crossflow
Fluid forces
Forced vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-c09190084f9da07715480cf739a42fa4e7ffa7d9d3bd63b2ff3a8c55102b61d3
ORCID 0000-0002-6040-6147
0000-0003-4770-4788
ParticipantIDs crossref_primary_10_1016_j_anucene_2020_107526
crossref_citationtrail_10_1016_j_anucene_2020_107526
elsevier_sciencedirect_doi_10_1016_j_anucene_2020_107526
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationTitle Annals of nuclear energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Pettigrew, Mureithi (b0090) 2007; 129
Connors (b0045) 1970; 41
Chen (b0220) 1983; 105
Sawadogo, Mureithi (b0135) 2014; 49
Ting, Wang, Price, Paidoussis (b0085) 1998; 12
Tang, Bao, Xu, Luo, Lv, Yu, Cui (b0210) 2019; 124
Mureithi, Zhang, Ruel, Pettigrew (b0225) 2005; 21
Hassan, Gerber, Omar (b0040) 2010; 132
Granger, Paidoussis (b0190) 1996; 320
Hassan, Rogers, Gerber (b0030) 2011; 241
Lever, Weaver (b0180) 1982; 104
Weaver, Grover (b0155) 1978; 59
Li, Mureithi (b0105) 2017; 70
Tanaka, Takahara (b0050) 1981; 77
Tanaka, Tanaka, Shimizu, Takahara (b0150) 2002; 16
de Pedro, Parrondo, Meskell, Oro (b0125) 2016; 64
Hassan, Mohany (b0020) 2013; 135
Chen (b0215) 1983; 105
Khalifa, A., 2012. Fluid-elastic instability in heat exchanger tube arrays (Doctoral dissertation).
Paidoussis, Mavriplis, Price (b0185) 1984; 107
Hassan, Weaver, Dokainish (b0025) 2002; 16
Chen, Zhu, Jendrzejczyk (b0080) 1994; 116
Violette, Pettigrew, Mureithi (b0205) 2006; 128
Ricciardi, Pettigrew, Mureithi (b0100) 2011; 133
Price, Paidoussis (b0055) 1984; 97
Sawadogo, Mureithi (b0140) 2014; 49
Khalifa, Weaver, Ziada (b0120) 2013; 135
Sadek, Mohany, Hassan (b0035) 2018; 79
Parrondo, de Pedro, Fernández-Oro, Blanco-Marigorta (b0130) 2018; 76
Elhelaly Jr, A., 2016. Approach Flow Direction Effects on the Dynamics of a Loosely Supported Tube Array (Doctoral dissertation).
De Paula, Endres, Möller (b0165) 2012; 249
Nakamura, T., Hagiwara, S., Yamada, J., Usuki, K., 2015. Investigation of in-Flow fluid-elastic instability of square tube arrays subjected to air crossflow. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers.
Khalvatti, Mureithi, Pettigrew (b0200) 2010; 132
Southern California Edison, 2012. San Onofre Nuclear Generating Station Unit 2 Return to Service Report. NRC Web site, 1-54.
Meskell (b0195) 2009; 223
Lin, Yu (b0145) 2005; 29
Jafari, Dehkordi (b0160) 2013; 135
Senez, H., Mureithi, N.W., Pettigrew, M.J., 2010. Vibration excitation forces in a rotated triangular tube bundle subjected to two-phase crossflow. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers.
Lever, Weaver (b0060) 1986; 107
Price, Paidoussis (b0075) 1984; 17
Chen, S.S., 1985. Flow-induced vibration of circular cylindrical structures (No. ANL-85-51). Argonne National Lab. (ANL), Argonne, IL (United States).
Hassan, Mohany (b0070) 2016; 23
El Bouzidi, Hassan (b0110) 2015; 57
Hassan, Weaver (b0175) 2016; 138
Mahon, Meskell (b0065) 2009; 25
Tanaka (10.1016/j.anucene.2020.107526_b0150) 2002; 16
10.1016/j.anucene.2020.107526_b0170
Chen (10.1016/j.anucene.2020.107526_b0215) 1983; 105
Sawadogo (10.1016/j.anucene.2020.107526_b0140) 2014; 49
10.1016/j.anucene.2020.107526_b0095
El Bouzidi (10.1016/j.anucene.2020.107526_b0110) 2015; 57
10.1016/j.anucene.2020.107526_b0010
10.1016/j.anucene.2020.107526_b0115
10.1016/j.anucene.2020.107526_b0015
Sadek (10.1016/j.anucene.2020.107526_b0035) 2018; 79
Tang (10.1016/j.anucene.2020.107526_b0210) 2019; 124
Hassan (10.1016/j.anucene.2020.107526_b0070) 2016; 23
Chen (10.1016/j.anucene.2020.107526_b0080) 1994; 116
de Pedro (10.1016/j.anucene.2020.107526_b0125) 2016; 64
Khalifa (10.1016/j.anucene.2020.107526_b0120) 2013; 135
Mahon (10.1016/j.anucene.2020.107526_b0065) 2009; 25
Parrondo (10.1016/j.anucene.2020.107526_b0130) 2018; 76
Jafari (10.1016/j.anucene.2020.107526_b0160) 2013; 135
Hassan (10.1016/j.anucene.2020.107526_b0020) 2013; 135
Ting (10.1016/j.anucene.2020.107526_b0085) 1998; 12
Ricciardi (10.1016/j.anucene.2020.107526_b0100) 2011; 133
Lever (10.1016/j.anucene.2020.107526_b0180) 1982; 104
Meskell (10.1016/j.anucene.2020.107526_b0195) 2009; 223
Zhang (10.1016/j.anucene.2020.107526_b0090) 2007; 129
Price (10.1016/j.anucene.2020.107526_b0055) 1984; 97
Hassan (10.1016/j.anucene.2020.107526_b0030) 2011; 241
Khalvatti (10.1016/j.anucene.2020.107526_b0200) 2010; 132
Sawadogo (10.1016/j.anucene.2020.107526_b0135) 2014; 49
Hassan (10.1016/j.anucene.2020.107526_b0025) 2002; 16
Lever (10.1016/j.anucene.2020.107526_b0060) 1986; 107
Li (10.1016/j.anucene.2020.107526_b0105) 2017; 70
De Paula (10.1016/j.anucene.2020.107526_b0165) 2012; 249
10.1016/j.anucene.2020.107526_b0005
Hassan (10.1016/j.anucene.2020.107526_b0040) 2010; 132
Chen (10.1016/j.anucene.2020.107526_b0220) 1983; 105
Price (10.1016/j.anucene.2020.107526_b0075) 1984; 17
Granger (10.1016/j.anucene.2020.107526_b0190) 1996; 320
Lin (10.1016/j.anucene.2020.107526_b0145) 2005; 29
Violette (10.1016/j.anucene.2020.107526_b0205) 2006; 128
Paidoussis (10.1016/j.anucene.2020.107526_b0185) 1984; 107
Tanaka (10.1016/j.anucene.2020.107526_b0050) 1981; 77
Hassan (10.1016/j.anucene.2020.107526_b0175) 2016; 138
Connors (10.1016/j.anucene.2020.107526_b0045) 1970; 41
Mureithi (10.1016/j.anucene.2020.107526_b0225) 2005; 21
Weaver (10.1016/j.anucene.2020.107526_b0155) 1978; 59
References_xml – reference: Khalifa, A., 2012. Fluid-elastic instability in heat exchanger tube arrays (Doctoral dissertation).
– reference: Southern California Edison, 2012. San Onofre Nuclear Generating Station Unit 2 Return to Service Report. NRC Web site, 1-54.
– volume: 16
  start-page: 93
  year: 2002
  end-page: 112
  ident: b0150
  article-title: Fluid-elastic analysis of tube bundle vibration in cross-flow
  publication-title: J. Fluid. Struct.
– volume: 17
  start-page: 329
  year: 1984
  end-page: 347
  ident: b0075
  article-title: The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: Senez, H., Mureithi, N.W., Pettigrew, M.J., 2010. Vibration excitation forces in a rotated triangular tube bundle subjected to two-phase crossflow. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers.
– volume: 64
  start-page: 67
  year: 2016
  end-page: 86
  ident: b0125
  article-title: CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or Fluid-elastic instability
  publication-title: J. Fluid. Struct.
– volume: 29
  start-page: 523
  year: 2005
  end-page: 536
  ident: b0145
  article-title: An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays
  publication-title: Exp. Therm. Fluid Sci.
– volume: 107
  start-page: 500
  year: 1984
  end-page: 506
  ident: b0185
  article-title: A potential-flow theory for the dynamics of cylinder arrays in cross-flow
  publication-title: J. Fluid Mech.
– volume: 132
  year: 2010
  ident: b0040
  article-title: Numerical estimation of Fluid-elastic instability in tube arrays
  publication-title: J. Press. Vess-Technol. ASME
– volume: 104
  start-page: 147
  year: 1982
  end-page: 158
  ident: b0180
  article-title: A theoretical model for fluidelastic instability in heat exchanger tube bundles
  publication-title: J. Press. Vess-Technol. ASME
– volume: 320
  start-page: 163
  year: 1996
  end-page: 184
  ident: b0190
  article-title: An improvement to the quasi-steady model with application to cross-flow-induced vibration of tube arrays
  publication-title: J. Fluid Mech.
– volume: 76
  start-page: 411
  year: 2018
  end-page: 430
  ident: b0130
  article-title: A CFD study on the fluctuating flow field across a parallel triangular array with one tube oscillating transversely
  publication-title: J. Fluid. Struct.
– volume: 128
  start-page: 148
  year: 2006
  end-page: 159
  ident: b0205
  article-title: Fluid-elastic instability of an array of tubes preferentially flexible in the flow direction subjected to two-phase crossflow
  publication-title: J. Press. Vess-Technol. ASME
– reference: Elhelaly Jr, A., 2016. Approach Flow Direction Effects on the Dynamics of a Loosely Supported Tube Array (Doctoral dissertation).
– volume: 79
  start-page: 171
  year: 2018
  end-page: 186
  ident: b0035
  article-title: Numerical investigation of the crossflow Fluid-elastic forces of two-phase flow in tube bundle
  publication-title: J. Fluid. Struct.
– volume: 12
  start-page: 259
  year: 1998
  end-page: 294
  ident: b0085
  article-title: An experimental study on the Fluid-elastic forces for two staggered circular cylinders in cross-flow
  publication-title: J. Fluid. Struct.
– volume: 97
  start-page: 615
  year: 1984
  end-page: 640
  ident: b0055
  article-title: An improved mathematical model for the stability of cylinder rows subject to cross-flow
  publication-title: J. Sound Vib.
– volume: 21
  start-page: 75
  year: 2005
  end-page: 87
  ident: b0225
  article-title: Fluid-elastic instability tests on an array of tubes preferentially flexible in the flow direction
  publication-title: J. Fluid. Struct.
– volume: 249
  start-page: 379
  year: 2012
  end-page: 387
  ident: b0165
  article-title: Bistable features of the turbulent flow in tube banks of triangular arrangement
  publication-title: Nucl. Eng. Des.
– volume: 57
  start-page: 264
  year: 2015
  end-page: 276
  ident: b0110
  article-title: An investigation of time lag causing Fluid-elastic instability in tube arrays
  publication-title: J. Fluid. Struct.
– volume: 241
  start-page: 2666
  year: 2011
  end-page: 2673
  ident: b0030
  article-title: Damping-controlled Fluid-elastic instability forces in multi-span tubes with loose supports
  publication-title: Nucl. Eng. Des.
– volume: 25
  start-page: 1348
  year: 2009
  end-page: 1368
  ident: b0065
  article-title: Surface pressure distribution survey in normal triangular tube arrays
  publication-title: J. Fluid. Struct.
– volume: 107
  start-page: 375
  year: 1986
  end-page: 392
  ident: b0060
  article-title: On the stability of heat exchanger tube bundles, part I: Modified theoretical model
  publication-title: J. Sound Vib.
– reference: Nakamura, T., Hagiwara, S., Yamada, J., Usuki, K., 2015. Investigation of in-Flow fluid-elastic instability of square tube arrays subjected to air crossflow. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers.
– volume: 105
  start-page: 253
  year: 1983
  end-page: 260
  ident: b0220
  article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow—part 2: Numerical results and discussions
  publication-title: J. Vib, Acoust, Stress, Reliab. Des.
– volume: 105
  start-page: 51
  year: 1983
  end-page: 58
  ident: b0215
  article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow. Part 1
  publication-title: Theory. J. Vib, Acoust, Stress, Reliab. Des.
– volume: 41
  start-page: 93
  year: 1970
  end-page: 107
  ident: b0045
  article-title: Fluid elastic vibrations of tube arrays excited by cross-flow
  publication-title: Proc. asme Winter Annual Meet.
– volume: 138
  year: 2016
  ident: b0175
  article-title: Modeling of streamwise and transverse Fluid-elastic instability in tube arrays
  publication-title: J. Press. Vess-Technol. ASME
– volume: 135
  year: 2013
  ident: b0020
  article-title: Fluid-elastic instability modeling of loosely supported multispan u-tubes in nuclear steam generators
  publication-title: J. Press. Vess-Technol. ASME
– volume: 124
  start-page: 198
  year: 2019
  end-page: 210
  ident: b0210
  article-title: On the number of tubes required to study oscillating vortices and frequency spectrums of tube arrays in crossflow
  publication-title: Ann. Nucl. Energy.
– volume: 133
  year: 2011
  ident: b0100
  article-title: Fluid-elastic Instability in a Normal Triangular Tube Bundle Subjected to Air-Water Cross-Flow
  publication-title: J. Press. Vess-Technol. ASME
– volume: 49
  start-page: 1
  year: 2014
  end-page: 15
  ident: b0135
  article-title: Fluid-elastic instability study in a rotated triangular tube array subject to two-phase cross-flow. Part I: Fluid force measurements and time delay extraction
  publication-title: J. Fluid. Struct.
– volume: 16
  start-page: 1145
  year: 2002
  end-page: 1176
  ident: b0025
  article-title: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports
  publication-title: J. Fluid. Struct.
– volume: 116
  start-page: 370
  year: 1994
  end-page: 383
  ident: b0080
  article-title: Fluid damping and fluid stiffness of a tube row in crossflow
  publication-title: J. Press. Vess-Technol. ASME
– volume: 135
  year: 2013
  ident: b0120
  article-title: An experimental study of flow-induced vibration and the associated flow perturbations in a parallel triangular tube array
  publication-title: J. Press. Vess-Technol. ASME
– reference: Chen, S.S., 1985. Flow-induced vibration of circular cylindrical structures (No. ANL-85-51). Argonne National Lab. (ANL), Argonne, IL (United States).
– volume: 49
  start-page: 16
  year: 2014
  end-page: 28
  ident: b0140
  article-title: Fluid-elastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results
  publication-title: J. Fluid. Struct.
– volume: 23
  start-page: 157
  year: 2016
  end-page: 169
  ident: b0070
  article-title: Simulations of Fluid-elastic forces and fretting wear in U-bend tube bundles of steam generators: effect of tube-support conditions
  publication-title: Wind Struct.
– volume: 70
  start-page: 346
  year: 2017
  end-page: 359
  ident: b0105
  article-title: Development of a time delay formulation for Fluid-elastic instability model
  publication-title: J. Fluid. Struct.
– volume: 129
  start-page: 21
  year: 2007
  end-page: 27
  ident: b0090
  article-title: Vibration excitation force measurements in a rotated triangular tube bundle subjected to two-phase crossflow
  publication-title: J. Press. Vess-Technol. ASME
– volume: 135
  year: 2013
  ident: b0160
  article-title: Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders
  publication-title: J. Fluids Eng.-Trans. ASME
– volume: 59
  start-page: 277
  year: 1978
  end-page: 294
  ident: b0155
  article-title: Cross-flow induced vibrations in a tube bank—turbulent buffeting and fluid elastic instability
  publication-title: J. Sound Vib.
– volume: 77
  start-page: 19
  year: 1981
  end-page: 37
  ident: b0050
  article-title: Fluid elastic vibration of tube array in cross flow
  publication-title: J. Sound Vib.
– volume: 223
  start-page: 361
  year: 2009
  end-page: 368
  ident: b0195
  article-title: A new model for damping controlled fluidelastic instability in heat exchanger tube arrays
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy.
– volume: 132
  year: 2010
  ident: b0200
  article-title: Effect of preferential flexibility direction on Fluid-elastic instability of a rotated triangular tube bundle
  publication-title: J. Press. Vess-Technol. ASME
– volume: 23
  start-page: 157
  issue: 2
  year: 2016
  ident: 10.1016/j.anucene.2020.107526_b0070
  article-title: Simulations of Fluid-elastic forces and fretting wear in U-bend tube bundles of steam generators: effect of tube-support conditions
  publication-title: Wind Struct.
  doi: 10.12989/was.2016.23.2.157
– ident: 10.1016/j.anucene.2020.107526_b0015
  doi: 10.1115/PVP2015-45091
– volume: 12
  start-page: 259
  issue: 3
  year: 1998
  ident: 10.1016/j.anucene.2020.107526_b0085
  article-title: An experimental study on the Fluid-elastic forces for two staggered circular cylinders in cross-flow
  publication-title: J. Fluid. Struct.
  doi: 10.1006/jfls.1997.0140
– volume: 64
  start-page: 67
  year: 2016
  ident: 10.1016/j.anucene.2020.107526_b0125
  article-title: CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or Fluid-elastic instability
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2016.04.006
– ident: 10.1016/j.anucene.2020.107526_b0095
  doi: 10.1115/FEDSM-ICNMM2010-30528
– volume: 133
  issue: 6
  year: 2011
  ident: 10.1016/j.anucene.2020.107526_b0100
  article-title: Fluid-elastic Instability in a Normal Triangular Tube Bundle Subjected to Air-Water Cross-Flow
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4004562
– volume: 320
  start-page: 163
  issue: 320
  year: 1996
  ident: 10.1016/j.anucene.2020.107526_b0190
  article-title: An improvement to the quasi-steady model with application to cross-flow-induced vibration of tube arrays
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096007495
– volume: 132
  issue: 4
  year: 2010
  ident: 10.1016/j.anucene.2020.107526_b0040
  article-title: Numerical estimation of Fluid-elastic instability in tube arrays
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4002112
– volume: 41
  start-page: 93
  year: 1970
  ident: 10.1016/j.anucene.2020.107526_b0045
  article-title: Fluid elastic vibrations of tube arrays excited by cross-flow
  publication-title: Proc. asme Winter Annual Meet.
– volume: 79
  start-page: 171
  year: 2018
  ident: 10.1016/j.anucene.2020.107526_b0035
  article-title: Numerical investigation of the crossflow Fluid-elastic forces of two-phase flow in tube bundle
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2017.11.009
– volume: 249
  start-page: 379
  year: 2012
  ident: 10.1016/j.anucene.2020.107526_b0165
  article-title: Bistable features of the turbulent flow in tube banks of triangular arrangement
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2012.04.024
– volume: 21
  start-page: 75
  issue: 1
  year: 2005
  ident: 10.1016/j.anucene.2020.107526_b0225
  article-title: Fluid-elastic instability tests on an array of tubes preferentially flexible in the flow direction
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2005.03.010
– volume: 97
  start-page: 615
  issue: 4
  year: 1984
  ident: 10.1016/j.anucene.2020.107526_b0055
  article-title: An improved mathematical model for the stability of cylinder rows subject to cross-flow
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(84)90512-1
– volume: 135
  issue: 3
  year: 2013
  ident: 10.1016/j.anucene.2020.107526_b0160
  article-title: Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders
  publication-title: J. Fluids Eng.-Trans. ASME
– volume: 49
  start-page: 16
  year: 2014
  ident: 10.1016/j.anucene.2020.107526_b0140
  article-title: Fluid-elastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2014.04.013
– volume: 128
  start-page: 148
  issue: 1
  year: 2006
  ident: 10.1016/j.anucene.2020.107526_b0205
  article-title: Fluid-elastic instability of an array of tubes preferentially flexible in the flow direction subjected to two-phase crossflow
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.2138064
– volume: 105
  start-page: 253
  issue: 2
  year: 1983
  ident: 10.1016/j.anucene.2020.107526_b0220
  article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow—part 2: Numerical results and discussions
  publication-title: J. Vib, Acoust, Stress, Reliab. Des.
  doi: 10.1115/1.3269095
– volume: 17
  start-page: 329
  issue: 3
  year: 1984
  ident: 10.1016/j.anucene.2020.107526_b0075
  article-title: The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(84)90024-2
– volume: 29
  start-page: 523
  issue: 4
  year: 2005
  ident: 10.1016/j.anucene.2020.107526_b0145
  article-title: An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2004.06.004
– volume: 59
  start-page: 277
  issue: 2
  year: 1978
  ident: 10.1016/j.anucene.2020.107526_b0155
  article-title: Cross-flow induced vibrations in a tube bank—turbulent buffeting and fluid elastic instability
  publication-title: J. Sound Vib.
  doi: 10.1016/0022-460X(78)90506-0
– volume: 104
  start-page: 147
  year: 1982
  ident: 10.1016/j.anucene.2020.107526_b0180
  article-title: A theoretical model for fluidelastic instability in heat exchanger tube bundles
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.3264196
– volume: 107
  start-page: 500
  issue: 146
  year: 1984
  ident: 10.1016/j.anucene.2020.107526_b0185
  article-title: A potential-flow theory for the dynamics of cylinder arrays in cross-flow
  publication-title: J. Fluid Mech.
– ident: 10.1016/j.anucene.2020.107526_b0005
  doi: 10.1115/PVP2017-65898
– volume: 124
  start-page: 198
  year: 2019
  ident: 10.1016/j.anucene.2020.107526_b0210
  article-title: On the number of tubes required to study oscillating vortices and frequency spectrums of tube arrays in crossflow
  publication-title: Ann. Nucl. Energy.
  doi: 10.1016/j.anucene.2018.10.008
– volume: 129
  start-page: 21
  issue: 1
  year: 2007
  ident: 10.1016/j.anucene.2020.107526_b0090
  article-title: Vibration excitation force measurements in a rotated triangular tube bundle subjected to two-phase crossflow
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.2388996
– volume: 223
  start-page: 361
  issue: 4
  year: 2009
  ident: 10.1016/j.anucene.2020.107526_b0195
  article-title: A new model for damping controlled fluidelastic instability in heat exchanger tube arrays
  publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy.
  doi: 10.1243/09576509JPE700
– volume: 241
  start-page: 2666
  issue: 8
  year: 2011
  ident: 10.1016/j.anucene.2020.107526_b0030
  article-title: Damping-controlled Fluid-elastic instability forces in multi-span tubes with loose supports
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2011.05.028
– volume: 135
  issue: 1
  year: 2013
  ident: 10.1016/j.anucene.2020.107526_b0020
  article-title: Fluid-elastic instability modeling of loosely supported multispan u-tubes in nuclear steam generators
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4006854
– volume: 25
  start-page: 1348
  issue: 8
  year: 2009
  ident: 10.1016/j.anucene.2020.107526_b0065
  article-title: Surface pressure distribution survey in normal triangular tube arrays
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2009.07.006
– volume: 138
  issue: 5
  year: 2016
  ident: 10.1016/j.anucene.2020.107526_b0175
  article-title: Modeling of streamwise and transverse Fluid-elastic instability in tube arrays
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4032817
– ident: 10.1016/j.anucene.2020.107526_b0115
– ident: 10.1016/j.anucene.2020.107526_b0010
– volume: 107
  start-page: 375
  issue: 3
  year: 1986
  ident: 10.1016/j.anucene.2020.107526_b0060
  article-title: On the stability of heat exchanger tube bundles, part I: Modified theoretical model
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(86)80114-6
– volume: 16
  start-page: 1145
  issue: 8
  year: 2002
  ident: 10.1016/j.anucene.2020.107526_b0025
  article-title: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports
  publication-title: J. Fluid. Struct.
  doi: 10.1006/jfls.2002.0468
– volume: 49
  start-page: 1
  year: 2014
  ident: 10.1016/j.anucene.2020.107526_b0135
  article-title: Fluid-elastic instability study in a rotated triangular tube array subject to two-phase cross-flow. Part I: Fluid force measurements and time delay extraction
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2014.02.004
– volume: 116
  start-page: 370
  issue: 4
  year: 1994
  ident: 10.1016/j.anucene.2020.107526_b0080
  article-title: Fluid damping and fluid stiffness of a tube row in crossflow
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.2929604
– volume: 57
  start-page: 264
  year: 2015
  ident: 10.1016/j.anucene.2020.107526_b0110
  article-title: An investigation of time lag causing Fluid-elastic instability in tube arrays
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2015.06.005
– volume: 135
  issue: 3
  year: 2013
  ident: 10.1016/j.anucene.2020.107526_b0120
  article-title: An experimental study of flow-induced vibration and the associated flow perturbations in a parallel triangular tube array
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4023427
– volume: 105
  start-page: 51
  issue: 1
  year: 1983
  ident: 10.1016/j.anucene.2020.107526_b0215
  article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow. Part 1
  publication-title: Theory. J. Vib, Acoust, Stress, Reliab. Des.
  doi: 10.1115/1.3269066
– volume: 70
  start-page: 346
  year: 2017
  ident: 10.1016/j.anucene.2020.107526_b0105
  article-title: Development of a time delay formulation for Fluid-elastic instability model
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2017.01.020
– volume: 76
  start-page: 411
  year: 2018
  ident: 10.1016/j.anucene.2020.107526_b0130
  article-title: A CFD study on the fluctuating flow field across a parallel triangular array with one tube oscillating transversely
  publication-title: J. Fluid. Struct.
  doi: 10.1016/j.jfluidstructs.2017.10.014
– volume: 16
  start-page: 93
  issue: 1
  year: 2002
  ident: 10.1016/j.anucene.2020.107526_b0150
  article-title: Fluid-elastic analysis of tube bundle vibration in cross-flow
  publication-title: J. Fluid. Struct.
  doi: 10.1006/jfls.2001.0411
– volume: 77
  start-page: 19
  issue: 1
  year: 1981
  ident: 10.1016/j.anucene.2020.107526_b0050
  article-title: Fluid elastic vibration of tube array in cross flow
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(81)80005-3
– ident: 10.1016/j.anucene.2020.107526_b0170
– volume: 132
  issue: 4
  year: 2010
  ident: 10.1016/j.anucene.2020.107526_b0200
  article-title: Effect of preferential flexibility direction on Fluid-elastic instability of a rotated triangular tube bundle
  publication-title: J. Press. Vess-Technol. ASME
  doi: 10.1115/1.4002181
SSID ssj0012844
Score 2.272872
Snippet •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107526
SubjectTerms Crossflow
Flow-induced vibration
Fluid forces
Fluid-elastic instability
Forced vibration
Title Time and frequency domain analyses of fluid force fluctuations in a normal triangular tube array in forced vibrations
URI https://dx.doi.org/10.1016/j.anucene.2020.107526
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2100
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012844
  issn: 0306-4549
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIuhBtCrWR9mD1zSP3Tz2WIqlKvZihd7CJpuFlpqWNBF68bc7k0etIAreNst8Iexs5gEz3xByxwMB_5-GyI15icEDpQxpW8xQQsrE9rVmATYnP4-90St_nLrTFhk0vTBYVlnb_sqml9a63jHr0zRXs5n5gtEuR4IxWIAjQsZPzn2cYtD72JZ5oPmtKKQgc0bpry4ec47dvTGYFEgTHdzzXeRY-Mk_7fic4Qk5roNF2q--55S0krRNjnYoBNvkoCzhjNdnpMBuDipTRXVW1UdvqFq-QeYPm8g8kqzpUlO9KGYgssziBNfYP1JePYpyNMUQdkFxlkeKQ-ozmhcRvDXL5AYlSpyi75hkl7BzMhneTwYjox6qYMTMErkRQ4AgkEVfCyUt38eUxYq1z4TkjpY8Af1IXwnFIuWxyAFtySCGuMpyIs9W7ILspcs0uSQ0cFSgPdvzOEA9xkSgLCnR6bqWsoTsEN6cZBjXhOM492IRNpVl87BWQIgKCCsFdEhvC1tVjBt_AYJGTeG3qxOCV_gdevV_6DU5xCcsHbHdG7KXZ0VyC_FJHnXLC9gl-_2Hp9H4E9Dn5q0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58IOpBfGJ97sFrbJLdPPYoYqna9mIFb2GTzUKlpiVthF787c7k4QNEwduymQlhZzPzDcx8A3AhQon_n0Hkxv3UEqHWlnJsbmmpVOoExvCQmpP7A7_7KO6evKcluG56Yaissvb9lU8vvXW9065Psz0djdoPhHYFEYzhAgMRX4ZV4bkBZWCXbx91HuR_Kw4pTJ1J_LONp_1M7b0J-hTME13aCzwiWfgpQH0JOp1t2KrRIruqPmgHltJsFza_cAjuwlpZw5nM9qCgdg6mMs1MXhVIL5ievGDqj5tEPZLO2MQwMy5GKDLJk5TW1EBS3j1GciwjDDtmNMwjoyn1OZsXMb41z9WCJEo9zV4pyy7V9mHYuRled616qoKVcFvOrQQRgiQafSO1soOAchY7MQGXSrhGiRQNpAItNY-1z2MXzaXCBIGV7ca-o_kBrGSTLD0EFro6NL7j-wJVfc5lqG2lKOp6tralaoFoTjJKasZxGnwxjprSsueoNkBEBogqA7Tg8kNtWlFu_KUQNmaKvt2dCMPC76pH_1c9h_XusN-LereD-2PYoCdUR-J4J7Ayz4v0FMHKPD4rL-M7OA3oQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+and+frequency+domain+analyses+of+fluid+force+fluctuations+in+a+normal+triangular+tube+array+in+forced+vibrations&rft.jtitle=Annals+of+nuclear+energy&rft.au=Chen%2C+Yonggui&rft.au=Ling%2C+Zhangwei&rft.au=Bao%2C+Shiyi&rft.au=Tang%2C+Di&rft.date=2020-09-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=145&rft_id=info:doi/10.1016%2Fj.anucene.2020.107526&rft.externalDocID=S0306454920302243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon