Time and frequency domain analyses of fluid force fluctuations in a normal triangular tube array in forced vibrations
•Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are disc...
Saved in:
| Published in | Annals of nuclear energy Vol. 145; p. 107526 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-4549 1873-2100 |
| DOI | 10.1016/j.anucene.2020.107526 |
Cover
| Abstract | •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are discussed.
Vibrations of tube bundles in heat exchange equipment, such as nuclear steam generators and tube-and-shell type heat exchangers, are often caused by unsteady fluid forces. The study of flow-induced vibration excitation forces on tubes is necessary for understanding the fluid-elastic instability phenomenon. In this paper, a forced vibration method is introduced to investigate unsteady motion-dependent fluid forces in a normal triangular tube array with the pitch ratio of 1.32 that is subjected to water crossflow. Fluid force behaviors of a single flexible central tube and its lift response spectra are investigated in various forced vibration modes. In a seven-tube kernel unit, coupling effects of surrounding tubes on the central tube are also discussed. Results show that the lift force on a flexible vibrating tube mainly depends on the vibration amplitude of tube itself in the lift direction, and is less affected by the degree of freedom, the rotation direction and the main vibration direction of tube vibration. The frequency spectrum of lift responses is dominated by two main frequencies: the vortex alternating frequency and the tube natural frequency. Surrounding flexible tubes increase higher order harmonics of the periodic lift force fluctuations of the central tube. Compared with rear-column tubes, vibrations of the front-column tubes have more significant effects on lift force responses of the tube kernel, which facts causes strong coupling to promote the fluid-elastic instability of tubes. |
|---|---|
| AbstractList | •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are investigated.•Effects of various tube vibration behaviors on fluid forces are studied.•Coupling effects of tubes in a seven-tube kernel unit are discussed.
Vibrations of tube bundles in heat exchange equipment, such as nuclear steam generators and tube-and-shell type heat exchangers, are often caused by unsteady fluid forces. The study of flow-induced vibration excitation forces on tubes is necessary for understanding the fluid-elastic instability phenomenon. In this paper, a forced vibration method is introduced to investigate unsteady motion-dependent fluid forces in a normal triangular tube array with the pitch ratio of 1.32 that is subjected to water crossflow. Fluid force behaviors of a single flexible central tube and its lift response spectra are investigated in various forced vibration modes. In a seven-tube kernel unit, coupling effects of surrounding tubes on the central tube are also discussed. Results show that the lift force on a flexible vibrating tube mainly depends on the vibration amplitude of tube itself in the lift direction, and is less affected by the degree of freedom, the rotation direction and the main vibration direction of tube vibration. The frequency spectrum of lift responses is dominated by two main frequencies: the vortex alternating frequency and the tube natural frequency. Surrounding flexible tubes increase higher order harmonics of the periodic lift force fluctuations of the central tube. Compared with rear-column tubes, vibrations of the front-column tubes have more significant effects on lift force responses of the tube kernel, which facts causes strong coupling to promote the fluid-elastic instability of tubes. |
| ArticleNumber | 107526 |
| Author | Chen, Yonggui Ling, Zhangwei Tang, Di Bao, Shiyi Luo, Lijia |
| Author_xml | – sequence: 1 givenname: Yonggui surname: Chen fullname: Chen, Yonggui organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 2 givenname: Zhangwei surname: Ling fullname: Ling, Zhangwei organization: Zhejiang Academy of Special Equipment Science, Hangzhou 310020, China – sequence: 3 givenname: Shiyi surname: Bao fullname: Bao, Shiyi organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 4 givenname: Di orcidid: 0000-0003-4770-4788 surname: Tang fullname: Tang, Di organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China – sequence: 5 givenname: Lijia orcidid: 0000-0002-6040-6147 surname: Luo fullname: Luo, Lijia email: lijialuo@zjut.edu.cn organization: Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
| BookMark | eNqFkMtqwzAQRUVJoUnaTyjoB5yObPlFF6WEviDQTfZirEdRsOVWkgP--9pJVt10NWK45zI6K7JwvdOE3DPYMGDFw2GDbpDa6U0K6bwr87S4IktWlVmSMoAFWUIGRcJzXt-QVQgHAJZWnC_JsLedpugUNV7_DNrJkaq-Q-umJbZj0IH2hpp2sFOk91LPbxkHjLZ3gc456nrfYUujt-i-hhY9jUMztXqP45w4cYoebePP2C25NtgGfXeZa7J_fdlv35Pd59vH9nmXyAzqmEioWQ1QcVMrhLJkOa9AmjKrkacGuS6NwVLVKmtUkTWpMRlWMs8ZpE3BVLYm-blW-j4Er4349rZDPwoGYlYnDuKiTszqxFndxD3-4aSNp8ujR9v-Sz-daT397Gi1F0HaSaxW1msZhertPw2_266SXQ |
| CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2023_108230 crossref_primary_10_1016_j_oceaneng_2024_116999 crossref_primary_10_1016_j_ijmecsci_2024_109414 crossref_primary_10_1016_j_oceaneng_2020_108114 crossref_primary_10_1108_HFF_03_2024_0237 crossref_primary_10_1016_j_engstruct_2025_119658 crossref_primary_10_1016_j_anucene_2021_108564 |
| Cites_doi | 10.12989/was.2016.23.2.157 10.1115/PVP2015-45091 10.1006/jfls.1997.0140 10.1016/j.jfluidstructs.2016.04.006 10.1115/FEDSM-ICNMM2010-30528 10.1115/1.4004562 10.1017/S0022112096007495 10.1115/1.4002112 10.1016/j.jfluidstructs.2017.11.009 10.1016/j.nucengdes.2012.04.024 10.1016/j.jfluidstructs.2005.03.010 10.1016/0022-460X(84)90512-1 10.1016/j.jfluidstructs.2014.04.013 10.1115/1.2138064 10.1115/1.3269095 10.1016/0167-6105(84)90024-2 10.1016/j.expthermflusci.2004.06.004 10.1016/0022-460X(78)90506-0 10.1115/1.3264196 10.1115/PVP2017-65898 10.1016/j.anucene.2018.10.008 10.1115/1.2388996 10.1243/09576509JPE700 10.1016/j.nucengdes.2011.05.028 10.1115/1.4006854 10.1016/j.jfluidstructs.2009.07.006 10.1115/1.4032817 10.1016/S0022-460X(86)80114-6 10.1006/jfls.2002.0468 10.1016/j.jfluidstructs.2014.02.004 10.1115/1.2929604 10.1016/j.jfluidstructs.2015.06.005 10.1115/1.4023427 10.1115/1.3269066 10.1016/j.jfluidstructs.2017.01.020 10.1016/j.jfluidstructs.2017.10.014 10.1006/jfls.2001.0411 10.1016/S0022-460X(81)80005-3 10.1115/1.4002181 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.anucene.2020.107526 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-2100 |
| ExternalDocumentID | 10_1016_j_anucene_2020_107526 S0306454920302243 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSJ SSR SSZ T5K ~G- .GJ 53G 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW UHS WUQ ~HD |
| ID | FETCH-LOGICAL-c309t-c09190084f9da07715480cf739a42fa4e7ffa7d9d3bd63b2ff3a8c55102b61d3 |
| IEDL.DBID | .~1 |
| ISSN | 0306-4549 |
| IngestDate | Thu Apr 24 22:52:10 EDT 2025 Thu Oct 09 00:17:40 EDT 2025 Fri Feb 23 02:47:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Flow-induced vibration Fluid-elastic instability Crossflow Fluid forces Forced vibration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c309t-c09190084f9da07715480cf739a42fa4e7ffa7d9d3bd63b2ff3a8c55102b61d3 |
| ORCID | 0000-0002-6040-6147 0000-0003-4770-4788 |
| ParticipantIDs | crossref_primary_10_1016_j_anucene_2020_107526 crossref_citationtrail_10_1016_j_anucene_2020_107526 elsevier_sciencedirect_doi_10_1016_j_anucene_2020_107526 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-15 |
| PublicationDateYYYYMMDD | 2020-09-15 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Annals of nuclear energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Pettigrew, Mureithi (b0090) 2007; 129 Connors (b0045) 1970; 41 Chen (b0220) 1983; 105 Sawadogo, Mureithi (b0135) 2014; 49 Ting, Wang, Price, Paidoussis (b0085) 1998; 12 Tang, Bao, Xu, Luo, Lv, Yu, Cui (b0210) 2019; 124 Mureithi, Zhang, Ruel, Pettigrew (b0225) 2005; 21 Hassan, Gerber, Omar (b0040) 2010; 132 Granger, Paidoussis (b0190) 1996; 320 Hassan, Rogers, Gerber (b0030) 2011; 241 Lever, Weaver (b0180) 1982; 104 Weaver, Grover (b0155) 1978; 59 Li, Mureithi (b0105) 2017; 70 Tanaka, Takahara (b0050) 1981; 77 Tanaka, Tanaka, Shimizu, Takahara (b0150) 2002; 16 de Pedro, Parrondo, Meskell, Oro (b0125) 2016; 64 Hassan, Mohany (b0020) 2013; 135 Chen (b0215) 1983; 105 Khalifa, A., 2012. Fluid-elastic instability in heat exchanger tube arrays (Doctoral dissertation). Paidoussis, Mavriplis, Price (b0185) 1984; 107 Hassan, Weaver, Dokainish (b0025) 2002; 16 Chen, Zhu, Jendrzejczyk (b0080) 1994; 116 Violette, Pettigrew, Mureithi (b0205) 2006; 128 Ricciardi, Pettigrew, Mureithi (b0100) 2011; 133 Price, Paidoussis (b0055) 1984; 97 Sawadogo, Mureithi (b0140) 2014; 49 Khalifa, Weaver, Ziada (b0120) 2013; 135 Sadek, Mohany, Hassan (b0035) 2018; 79 Parrondo, de Pedro, Fernández-Oro, Blanco-Marigorta (b0130) 2018; 76 Elhelaly Jr, A., 2016. Approach Flow Direction Effects on the Dynamics of a Loosely Supported Tube Array (Doctoral dissertation). De Paula, Endres, Möller (b0165) 2012; 249 Nakamura, T., Hagiwara, S., Yamada, J., Usuki, K., 2015. Investigation of in-Flow fluid-elastic instability of square tube arrays subjected to air crossflow. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers. Khalvatti, Mureithi, Pettigrew (b0200) 2010; 132 Southern California Edison, 2012. San Onofre Nuclear Generating Station Unit 2 Return to Service Report. NRC Web site, 1-54. Meskell (b0195) 2009; 223 Lin, Yu (b0145) 2005; 29 Jafari, Dehkordi (b0160) 2013; 135 Senez, H., Mureithi, N.W., Pettigrew, M.J., 2010. Vibration excitation forces in a rotated triangular tube bundle subjected to two-phase crossflow. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers. Lever, Weaver (b0060) 1986; 107 Price, Paidoussis (b0075) 1984; 17 Chen, S.S., 1985. Flow-induced vibration of circular cylindrical structures (No. ANL-85-51). Argonne National Lab. (ANL), Argonne, IL (United States). Hassan, Mohany (b0070) 2016; 23 El Bouzidi, Hassan (b0110) 2015; 57 Hassan, Weaver (b0175) 2016; 138 Mahon, Meskell (b0065) 2009; 25 Tanaka (10.1016/j.anucene.2020.107526_b0150) 2002; 16 10.1016/j.anucene.2020.107526_b0170 Chen (10.1016/j.anucene.2020.107526_b0215) 1983; 105 Sawadogo (10.1016/j.anucene.2020.107526_b0140) 2014; 49 10.1016/j.anucene.2020.107526_b0095 El Bouzidi (10.1016/j.anucene.2020.107526_b0110) 2015; 57 10.1016/j.anucene.2020.107526_b0010 10.1016/j.anucene.2020.107526_b0115 10.1016/j.anucene.2020.107526_b0015 Sadek (10.1016/j.anucene.2020.107526_b0035) 2018; 79 Tang (10.1016/j.anucene.2020.107526_b0210) 2019; 124 Hassan (10.1016/j.anucene.2020.107526_b0070) 2016; 23 Chen (10.1016/j.anucene.2020.107526_b0080) 1994; 116 de Pedro (10.1016/j.anucene.2020.107526_b0125) 2016; 64 Khalifa (10.1016/j.anucene.2020.107526_b0120) 2013; 135 Mahon (10.1016/j.anucene.2020.107526_b0065) 2009; 25 Parrondo (10.1016/j.anucene.2020.107526_b0130) 2018; 76 Jafari (10.1016/j.anucene.2020.107526_b0160) 2013; 135 Hassan (10.1016/j.anucene.2020.107526_b0020) 2013; 135 Ting (10.1016/j.anucene.2020.107526_b0085) 1998; 12 Ricciardi (10.1016/j.anucene.2020.107526_b0100) 2011; 133 Lever (10.1016/j.anucene.2020.107526_b0180) 1982; 104 Meskell (10.1016/j.anucene.2020.107526_b0195) 2009; 223 Zhang (10.1016/j.anucene.2020.107526_b0090) 2007; 129 Price (10.1016/j.anucene.2020.107526_b0055) 1984; 97 Hassan (10.1016/j.anucene.2020.107526_b0030) 2011; 241 Khalvatti (10.1016/j.anucene.2020.107526_b0200) 2010; 132 Sawadogo (10.1016/j.anucene.2020.107526_b0135) 2014; 49 Hassan (10.1016/j.anucene.2020.107526_b0025) 2002; 16 Lever (10.1016/j.anucene.2020.107526_b0060) 1986; 107 Li (10.1016/j.anucene.2020.107526_b0105) 2017; 70 De Paula (10.1016/j.anucene.2020.107526_b0165) 2012; 249 10.1016/j.anucene.2020.107526_b0005 Hassan (10.1016/j.anucene.2020.107526_b0040) 2010; 132 Chen (10.1016/j.anucene.2020.107526_b0220) 1983; 105 Price (10.1016/j.anucene.2020.107526_b0075) 1984; 17 Granger (10.1016/j.anucene.2020.107526_b0190) 1996; 320 Lin (10.1016/j.anucene.2020.107526_b0145) 2005; 29 Violette (10.1016/j.anucene.2020.107526_b0205) 2006; 128 Paidoussis (10.1016/j.anucene.2020.107526_b0185) 1984; 107 Tanaka (10.1016/j.anucene.2020.107526_b0050) 1981; 77 Hassan (10.1016/j.anucene.2020.107526_b0175) 2016; 138 Connors (10.1016/j.anucene.2020.107526_b0045) 1970; 41 Mureithi (10.1016/j.anucene.2020.107526_b0225) 2005; 21 Weaver (10.1016/j.anucene.2020.107526_b0155) 1978; 59 |
| References_xml | – reference: Khalifa, A., 2012. Fluid-elastic instability in heat exchanger tube arrays (Doctoral dissertation). – reference: Southern California Edison, 2012. San Onofre Nuclear Generating Station Unit 2 Return to Service Report. NRC Web site, 1-54. – volume: 16 start-page: 93 year: 2002 end-page: 112 ident: b0150 article-title: Fluid-elastic analysis of tube bundle vibration in cross-flow publication-title: J. Fluid. Struct. – volume: 17 start-page: 329 year: 1984 end-page: 347 ident: b0075 article-title: The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow publication-title: J. Wind Eng. Ind. Aerodyn. – reference: Senez, H., Mureithi, N.W., Pettigrew, M.J., 2010. Vibration excitation forces in a rotated triangular tube bundle subjected to two-phase crossflow. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers. – volume: 64 start-page: 67 year: 2016 end-page: 86 ident: b0125 article-title: CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or Fluid-elastic instability publication-title: J. Fluid. Struct. – volume: 29 start-page: 523 year: 2005 end-page: 536 ident: b0145 article-title: An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays publication-title: Exp. Therm. Fluid Sci. – volume: 107 start-page: 500 year: 1984 end-page: 506 ident: b0185 article-title: A potential-flow theory for the dynamics of cylinder arrays in cross-flow publication-title: J. Fluid Mech. – volume: 132 year: 2010 ident: b0040 article-title: Numerical estimation of Fluid-elastic instability in tube arrays publication-title: J. Press. Vess-Technol. ASME – volume: 104 start-page: 147 year: 1982 end-page: 158 ident: b0180 article-title: A theoretical model for fluidelastic instability in heat exchanger tube bundles publication-title: J. Press. Vess-Technol. ASME – volume: 320 start-page: 163 year: 1996 end-page: 184 ident: b0190 article-title: An improvement to the quasi-steady model with application to cross-flow-induced vibration of tube arrays publication-title: J. Fluid Mech. – volume: 76 start-page: 411 year: 2018 end-page: 430 ident: b0130 article-title: A CFD study on the fluctuating flow field across a parallel triangular array with one tube oscillating transversely publication-title: J. Fluid. Struct. – volume: 128 start-page: 148 year: 2006 end-page: 159 ident: b0205 article-title: Fluid-elastic instability of an array of tubes preferentially flexible in the flow direction subjected to two-phase crossflow publication-title: J. Press. Vess-Technol. ASME – reference: Elhelaly Jr, A., 2016. Approach Flow Direction Effects on the Dynamics of a Loosely Supported Tube Array (Doctoral dissertation). – volume: 79 start-page: 171 year: 2018 end-page: 186 ident: b0035 article-title: Numerical investigation of the crossflow Fluid-elastic forces of two-phase flow in tube bundle publication-title: J. Fluid. Struct. – volume: 12 start-page: 259 year: 1998 end-page: 294 ident: b0085 article-title: An experimental study on the Fluid-elastic forces for two staggered circular cylinders in cross-flow publication-title: J. Fluid. Struct. – volume: 97 start-page: 615 year: 1984 end-page: 640 ident: b0055 article-title: An improved mathematical model for the stability of cylinder rows subject to cross-flow publication-title: J. Sound Vib. – volume: 21 start-page: 75 year: 2005 end-page: 87 ident: b0225 article-title: Fluid-elastic instability tests on an array of tubes preferentially flexible in the flow direction publication-title: J. Fluid. Struct. – volume: 249 start-page: 379 year: 2012 end-page: 387 ident: b0165 article-title: Bistable features of the turbulent flow in tube banks of triangular arrangement publication-title: Nucl. Eng. Des. – volume: 57 start-page: 264 year: 2015 end-page: 276 ident: b0110 article-title: An investigation of time lag causing Fluid-elastic instability in tube arrays publication-title: J. Fluid. Struct. – volume: 241 start-page: 2666 year: 2011 end-page: 2673 ident: b0030 article-title: Damping-controlled Fluid-elastic instability forces in multi-span tubes with loose supports publication-title: Nucl. Eng. Des. – volume: 25 start-page: 1348 year: 2009 end-page: 1368 ident: b0065 article-title: Surface pressure distribution survey in normal triangular tube arrays publication-title: J. Fluid. Struct. – volume: 107 start-page: 375 year: 1986 end-page: 392 ident: b0060 article-title: On the stability of heat exchanger tube bundles, part I: Modified theoretical model publication-title: J. Sound Vib. – reference: Nakamura, T., Hagiwara, S., Yamada, J., Usuki, K., 2015. Investigation of in-Flow fluid-elastic instability of square tube arrays subjected to air crossflow. In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers. – volume: 105 start-page: 253 year: 1983 end-page: 260 ident: b0220 article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow—part 2: Numerical results and discussions publication-title: J. Vib, Acoust, Stress, Reliab. Des. – volume: 105 start-page: 51 year: 1983 end-page: 58 ident: b0215 article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow. Part 1 publication-title: Theory. J. Vib, Acoust, Stress, Reliab. Des. – volume: 41 start-page: 93 year: 1970 end-page: 107 ident: b0045 article-title: Fluid elastic vibrations of tube arrays excited by cross-flow publication-title: Proc. asme Winter Annual Meet. – volume: 138 year: 2016 ident: b0175 article-title: Modeling of streamwise and transverse Fluid-elastic instability in tube arrays publication-title: J. Press. Vess-Technol. ASME – volume: 135 year: 2013 ident: b0020 article-title: Fluid-elastic instability modeling of loosely supported multispan u-tubes in nuclear steam generators publication-title: J. Press. Vess-Technol. ASME – volume: 124 start-page: 198 year: 2019 end-page: 210 ident: b0210 article-title: On the number of tubes required to study oscillating vortices and frequency spectrums of tube arrays in crossflow publication-title: Ann. Nucl. Energy. – volume: 133 year: 2011 ident: b0100 article-title: Fluid-elastic Instability in a Normal Triangular Tube Bundle Subjected to Air-Water Cross-Flow publication-title: J. Press. Vess-Technol. ASME – volume: 49 start-page: 1 year: 2014 end-page: 15 ident: b0135 article-title: Fluid-elastic instability study in a rotated triangular tube array subject to two-phase cross-flow. Part I: Fluid force measurements and time delay extraction publication-title: J. Fluid. Struct. – volume: 16 start-page: 1145 year: 2002 end-page: 1176 ident: b0025 article-title: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports publication-title: J. Fluid. Struct. – volume: 116 start-page: 370 year: 1994 end-page: 383 ident: b0080 article-title: Fluid damping and fluid stiffness of a tube row in crossflow publication-title: J. Press. Vess-Technol. ASME – volume: 135 year: 2013 ident: b0120 article-title: An experimental study of flow-induced vibration and the associated flow perturbations in a parallel triangular tube array publication-title: J. Press. Vess-Technol. ASME – reference: Chen, S.S., 1985. Flow-induced vibration of circular cylindrical structures (No. ANL-85-51). Argonne National Lab. (ANL), Argonne, IL (United States). – volume: 49 start-page: 16 year: 2014 end-page: 28 ident: b0140 article-title: Fluid-elastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results publication-title: J. Fluid. Struct. – volume: 23 start-page: 157 year: 2016 end-page: 169 ident: b0070 article-title: Simulations of Fluid-elastic forces and fretting wear in U-bend tube bundles of steam generators: effect of tube-support conditions publication-title: Wind Struct. – volume: 70 start-page: 346 year: 2017 end-page: 359 ident: b0105 article-title: Development of a time delay formulation for Fluid-elastic instability model publication-title: J. Fluid. Struct. – volume: 129 start-page: 21 year: 2007 end-page: 27 ident: b0090 article-title: Vibration excitation force measurements in a rotated triangular tube bundle subjected to two-phase crossflow publication-title: J. Press. Vess-Technol. ASME – volume: 135 year: 2013 ident: b0160 article-title: Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders publication-title: J. Fluids Eng.-Trans. ASME – volume: 59 start-page: 277 year: 1978 end-page: 294 ident: b0155 article-title: Cross-flow induced vibrations in a tube bank—turbulent buffeting and fluid elastic instability publication-title: J. Sound Vib. – volume: 77 start-page: 19 year: 1981 end-page: 37 ident: b0050 article-title: Fluid elastic vibration of tube array in cross flow publication-title: J. Sound Vib. – volume: 223 start-page: 361 year: 2009 end-page: 368 ident: b0195 article-title: A new model for damping controlled fluidelastic instability in heat exchanger tube arrays publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy. – volume: 132 year: 2010 ident: b0200 article-title: Effect of preferential flexibility direction on Fluid-elastic instability of a rotated triangular tube bundle publication-title: J. Press. Vess-Technol. ASME – volume: 23 start-page: 157 issue: 2 year: 2016 ident: 10.1016/j.anucene.2020.107526_b0070 article-title: Simulations of Fluid-elastic forces and fretting wear in U-bend tube bundles of steam generators: effect of tube-support conditions publication-title: Wind Struct. doi: 10.12989/was.2016.23.2.157 – ident: 10.1016/j.anucene.2020.107526_b0015 doi: 10.1115/PVP2015-45091 – volume: 12 start-page: 259 issue: 3 year: 1998 ident: 10.1016/j.anucene.2020.107526_b0085 article-title: An experimental study on the Fluid-elastic forces for two staggered circular cylinders in cross-flow publication-title: J. Fluid. Struct. doi: 10.1006/jfls.1997.0140 – volume: 64 start-page: 67 year: 2016 ident: 10.1016/j.anucene.2020.107526_b0125 article-title: CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or Fluid-elastic instability publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2016.04.006 – ident: 10.1016/j.anucene.2020.107526_b0095 doi: 10.1115/FEDSM-ICNMM2010-30528 – volume: 133 issue: 6 year: 2011 ident: 10.1016/j.anucene.2020.107526_b0100 article-title: Fluid-elastic Instability in a Normal Triangular Tube Bundle Subjected to Air-Water Cross-Flow publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4004562 – volume: 320 start-page: 163 issue: 320 year: 1996 ident: 10.1016/j.anucene.2020.107526_b0190 article-title: An improvement to the quasi-steady model with application to cross-flow-induced vibration of tube arrays publication-title: J. Fluid Mech. doi: 10.1017/S0022112096007495 – volume: 132 issue: 4 year: 2010 ident: 10.1016/j.anucene.2020.107526_b0040 article-title: Numerical estimation of Fluid-elastic instability in tube arrays publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4002112 – volume: 41 start-page: 93 year: 1970 ident: 10.1016/j.anucene.2020.107526_b0045 article-title: Fluid elastic vibrations of tube arrays excited by cross-flow publication-title: Proc. asme Winter Annual Meet. – volume: 79 start-page: 171 year: 2018 ident: 10.1016/j.anucene.2020.107526_b0035 article-title: Numerical investigation of the crossflow Fluid-elastic forces of two-phase flow in tube bundle publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2017.11.009 – volume: 249 start-page: 379 year: 2012 ident: 10.1016/j.anucene.2020.107526_b0165 article-title: Bistable features of the turbulent flow in tube banks of triangular arrangement publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2012.04.024 – volume: 21 start-page: 75 issue: 1 year: 2005 ident: 10.1016/j.anucene.2020.107526_b0225 article-title: Fluid-elastic instability tests on an array of tubes preferentially flexible in the flow direction publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2005.03.010 – volume: 97 start-page: 615 issue: 4 year: 1984 ident: 10.1016/j.anucene.2020.107526_b0055 article-title: An improved mathematical model for the stability of cylinder rows subject to cross-flow publication-title: J. Sound Vib. doi: 10.1016/0022-460X(84)90512-1 – volume: 135 issue: 3 year: 2013 ident: 10.1016/j.anucene.2020.107526_b0160 article-title: Numerical prediction of fluid-elastic instability in normal triangular tube bundles with multiple flexible circular cylinders publication-title: J. Fluids Eng.-Trans. ASME – volume: 49 start-page: 16 year: 2014 ident: 10.1016/j.anucene.2020.107526_b0140 article-title: Fluid-elastic instability study on a rotated triangular tube array subject to two-phase cross-flow. Part II: Experimental tests and comparison with theoretical results publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2014.04.013 – volume: 128 start-page: 148 issue: 1 year: 2006 ident: 10.1016/j.anucene.2020.107526_b0205 article-title: Fluid-elastic instability of an array of tubes preferentially flexible in the flow direction subjected to two-phase crossflow publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.2138064 – volume: 105 start-page: 253 issue: 2 year: 1983 ident: 10.1016/j.anucene.2020.107526_b0220 article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow—part 2: Numerical results and discussions publication-title: J. Vib, Acoust, Stress, Reliab. Des. doi: 10.1115/1.3269095 – volume: 17 start-page: 329 issue: 3 year: 1984 ident: 10.1016/j.anucene.2020.107526_b0075 article-title: The aerodynamic forces acting on groups of two and three circular cylinders when subject to a cross-flow publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(84)90024-2 – volume: 29 start-page: 523 issue: 4 year: 2005 ident: 10.1016/j.anucene.2020.107526_b0145 article-title: An experimental study on the cross-flow vibration of a flexible cylinder in cylinder arrays publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2004.06.004 – volume: 59 start-page: 277 issue: 2 year: 1978 ident: 10.1016/j.anucene.2020.107526_b0155 article-title: Cross-flow induced vibrations in a tube bank—turbulent buffeting and fluid elastic instability publication-title: J. Sound Vib. doi: 10.1016/0022-460X(78)90506-0 – volume: 104 start-page: 147 year: 1982 ident: 10.1016/j.anucene.2020.107526_b0180 article-title: A theoretical model for fluidelastic instability in heat exchanger tube bundles publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.3264196 – volume: 107 start-page: 500 issue: 146 year: 1984 ident: 10.1016/j.anucene.2020.107526_b0185 article-title: A potential-flow theory for the dynamics of cylinder arrays in cross-flow publication-title: J. Fluid Mech. – ident: 10.1016/j.anucene.2020.107526_b0005 doi: 10.1115/PVP2017-65898 – volume: 124 start-page: 198 year: 2019 ident: 10.1016/j.anucene.2020.107526_b0210 article-title: On the number of tubes required to study oscillating vortices and frequency spectrums of tube arrays in crossflow publication-title: Ann. Nucl. Energy. doi: 10.1016/j.anucene.2018.10.008 – volume: 129 start-page: 21 issue: 1 year: 2007 ident: 10.1016/j.anucene.2020.107526_b0090 article-title: Vibration excitation force measurements in a rotated triangular tube bundle subjected to two-phase crossflow publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.2388996 – volume: 223 start-page: 361 issue: 4 year: 2009 ident: 10.1016/j.anucene.2020.107526_b0195 article-title: A new model for damping controlled fluidelastic instability in heat exchanger tube arrays publication-title: Proc. Inst. Mech. Eng. Part A: J. Power Energy. doi: 10.1243/09576509JPE700 – volume: 241 start-page: 2666 issue: 8 year: 2011 ident: 10.1016/j.anucene.2020.107526_b0030 article-title: Damping-controlled Fluid-elastic instability forces in multi-span tubes with loose supports publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2011.05.028 – volume: 135 issue: 1 year: 2013 ident: 10.1016/j.anucene.2020.107526_b0020 article-title: Fluid-elastic instability modeling of loosely supported multispan u-tubes in nuclear steam generators publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4006854 – volume: 25 start-page: 1348 issue: 8 year: 2009 ident: 10.1016/j.anucene.2020.107526_b0065 article-title: Surface pressure distribution survey in normal triangular tube arrays publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2009.07.006 – volume: 138 issue: 5 year: 2016 ident: 10.1016/j.anucene.2020.107526_b0175 article-title: Modeling of streamwise and transverse Fluid-elastic instability in tube arrays publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4032817 – ident: 10.1016/j.anucene.2020.107526_b0115 – ident: 10.1016/j.anucene.2020.107526_b0010 – volume: 107 start-page: 375 issue: 3 year: 1986 ident: 10.1016/j.anucene.2020.107526_b0060 article-title: On the stability of heat exchanger tube bundles, part I: Modified theoretical model publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(86)80114-6 – volume: 16 start-page: 1145 issue: 8 year: 2002 ident: 10.1016/j.anucene.2020.107526_b0025 article-title: A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports publication-title: J. Fluid. Struct. doi: 10.1006/jfls.2002.0468 – volume: 49 start-page: 1 year: 2014 ident: 10.1016/j.anucene.2020.107526_b0135 article-title: Fluid-elastic instability study in a rotated triangular tube array subject to two-phase cross-flow. Part I: Fluid force measurements and time delay extraction publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2014.02.004 – volume: 116 start-page: 370 issue: 4 year: 1994 ident: 10.1016/j.anucene.2020.107526_b0080 article-title: Fluid damping and fluid stiffness of a tube row in crossflow publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.2929604 – volume: 57 start-page: 264 year: 2015 ident: 10.1016/j.anucene.2020.107526_b0110 article-title: An investigation of time lag causing Fluid-elastic instability in tube arrays publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2015.06.005 – volume: 135 issue: 3 year: 2013 ident: 10.1016/j.anucene.2020.107526_b0120 article-title: An experimental study of flow-induced vibration and the associated flow perturbations in a parallel triangular tube array publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4023427 – volume: 105 start-page: 51 issue: 1 year: 1983 ident: 10.1016/j.anucene.2020.107526_b0215 article-title: Instability mechanisms and stability criteria of a group of circular cylinders subjected to cross-flow. Part 1 publication-title: Theory. J. Vib, Acoust, Stress, Reliab. Des. doi: 10.1115/1.3269066 – volume: 70 start-page: 346 year: 2017 ident: 10.1016/j.anucene.2020.107526_b0105 article-title: Development of a time delay formulation for Fluid-elastic instability model publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2017.01.020 – volume: 76 start-page: 411 year: 2018 ident: 10.1016/j.anucene.2020.107526_b0130 article-title: A CFD study on the fluctuating flow field across a parallel triangular array with one tube oscillating transversely publication-title: J. Fluid. Struct. doi: 10.1016/j.jfluidstructs.2017.10.014 – volume: 16 start-page: 93 issue: 1 year: 2002 ident: 10.1016/j.anucene.2020.107526_b0150 article-title: Fluid-elastic analysis of tube bundle vibration in cross-flow publication-title: J. Fluid. Struct. doi: 10.1006/jfls.2001.0411 – volume: 77 start-page: 19 issue: 1 year: 1981 ident: 10.1016/j.anucene.2020.107526_b0050 article-title: Fluid elastic vibration of tube array in cross flow publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(81)80005-3 – ident: 10.1016/j.anucene.2020.107526_b0170 – volume: 132 issue: 4 year: 2010 ident: 10.1016/j.anucene.2020.107526_b0200 article-title: Effect of preferential flexibility direction on Fluid-elastic instability of a rotated triangular tube bundle publication-title: J. Press. Vess-Technol. ASME doi: 10.1115/1.4002181 |
| SSID | ssj0012844 |
| Score | 2.272872 |
| Snippet | •Fluid force fluctuations are investigated by introducing forced vibrations.•Lift force frequency spectra at above the critical velocity threshold are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107526 |
| SubjectTerms | Crossflow Flow-induced vibration Fluid forces Fluid-elastic instability Forced vibration |
| Title | Time and frequency domain analyses of fluid force fluctuations in a normal triangular tube array in forced vibrations |
| URI | https://dx.doi.org/10.1016/j.anucene.2020.107526 |
| Volume | 145 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2100 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012844 issn: 0306-4549 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIuhBtCrWR9mD1zSP3Tz2WIqlKvZihd7CJpuFlpqWNBF68bc7k0etIAreNst8Iexs5gEz3xByxwMB_5-GyI15icEDpQxpW8xQQsrE9rVmATYnP4-90St_nLrTFhk0vTBYVlnb_sqml9a63jHr0zRXs5n5gtEuR4IxWIAjQsZPzn2cYtD72JZ5oPmtKKQgc0bpry4ec47dvTGYFEgTHdzzXeRY-Mk_7fic4Qk5roNF2q--55S0krRNjnYoBNvkoCzhjNdnpMBuDipTRXVW1UdvqFq-QeYPm8g8kqzpUlO9KGYgssziBNfYP1JePYpyNMUQdkFxlkeKQ-ozmhcRvDXL5AYlSpyi75hkl7BzMhneTwYjox6qYMTMErkRQ4AgkEVfCyUt38eUxYq1z4TkjpY8Af1IXwnFIuWxyAFtySCGuMpyIs9W7ILspcs0uSQ0cFSgPdvzOEA9xkSgLCnR6bqWsoTsEN6cZBjXhOM492IRNpVl87BWQIgKCCsFdEhvC1tVjBt_AYJGTeG3qxOCV_gdevV_6DU5xCcsHbHdG7KXZ0VyC_FJHnXLC9gl-_2Hp9H4E9Dn5q0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58IOpBfGJ97sFrbJLdPPYoYqna9mIFb2GTzUKlpiVthF787c7k4QNEwduymQlhZzPzDcx8A3AhQon_n0Hkxv3UEqHWlnJsbmmpVOoExvCQmpP7A7_7KO6evKcluG56Yaissvb9lU8vvXW9065Psz0djdoPhHYFEYzhAgMRX4ZV4bkBZWCXbx91HuR_Kw4pTJ1J_LONp_1M7b0J-hTME13aCzwiWfgpQH0JOp1t2KrRIruqPmgHltJsFza_cAjuwlpZw5nM9qCgdg6mMs1MXhVIL5ievGDqj5tEPZLO2MQwMy5GKDLJk5TW1EBS3j1GciwjDDtmNMwjoyn1OZsXMb41z9WCJEo9zV4pyy7V9mHYuRled616qoKVcFvOrQQRgiQafSO1soOAchY7MQGXSrhGiRQNpAItNY-1z2MXzaXCBIGV7ca-o_kBrGSTLD0EFro6NL7j-wJVfc5lqG2lKOp6tralaoFoTjJKasZxGnwxjprSsueoNkBEBogqA7Tg8kNtWlFu_KUQNmaKvt2dCMPC76pH_1c9h_XusN-LereD-2PYoCdUR-J4J7Ayz4v0FMHKPD4rL-M7OA3oQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+and+frequency+domain+analyses+of+fluid+force+fluctuations+in+a+normal+triangular+tube+array+in+forced+vibrations&rft.jtitle=Annals+of+nuclear+energy&rft.au=Chen%2C+Yonggui&rft.au=Ling%2C+Zhangwei&rft.au=Bao%2C+Shiyi&rft.au=Tang%2C+Di&rft.date=2020-09-15&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.eissn=1873-2100&rft.volume=145&rft_id=info:doi/10.1016%2Fj.anucene.2020.107526&rft.externalDocID=S0306454920302243 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |