Effects of elevated air speed on thermal comfort in hot-humid climate and the extended summer comfort zone

•Quantified relations between mechanical airflow and thermal comfort were studied.•The upper limit of air speeds that did not cause draught feelings were examined.•Mean skin temperatures decreased 0.2 °C-0.6 °C for increasing the air speed by 1 m/s.•Cooling effect of mechanical airflow was restricte...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 287; p. 112953
Main Authors Zhou, Jinyue, Zhang, Xiaojing, Xie, Jingchao, Liu, Jiaping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2023
Subjects
Online AccessGet full text
ISSN0378-7788
DOI10.1016/j.enbuild.2023.112953

Cover

Abstract •Quantified relations between mechanical airflow and thermal comfort were studied.•The upper limit of air speeds that did not cause draught feelings were examined.•Mean skin temperatures decreased 0.2 °C-0.6 °C for increasing the air speed by 1 m/s.•Cooling effect of mechanical airflow was restricted under humidity up to 85%.•Acceptable operative temperature range in 40%-60% humidity was extended by 1.3 °C. Indoor air movement is beneficial for building energy conservation and human thermal comfort. Chamber experiments were conducted to evaluate the cooling effect of elevated air speeds on thermal comfort. Three temperature (26, 29, and 32 °C) and two relative humidity (40%–60% and 70%–90%) levels were selected for a total of six experimental conditions. Thirty-six subjects in summer clothes (0.5 clo) were exposed to mechanical airflow produced by electric fans and experienced four 30-min exposures at various air speeds (0.01–2.0 m/s), and subjective perceptions and skin temperature were collected. Results showed that mean skin temperatures decreased by 0.2 °C–0.6 °C for every 1 m/s increase in air speed. Airflow may alleviate thermal dissatisfaction, but air speeds up to 2.0 m/s cannot eliminate discomfort in extremely hot-humid environments (29 °C/85%, 32 °C/55%, and 32 °C/85%). In the experimental conditions of 26 °C/45%, 26 °C/75%, 29 °C/55%, 32 °C/55%, and 32 °C/85%, the upper air speed limits were 1.2, 1.2, 1.6, 2.0, and 2.0 m/s, respectively. Based on experimental data, comfort zones with elevated air speed for both moderate (40%–60%) and high humidity (70%–90%) were obtained. The maximum acceptable operative temperatures in two humidity conditions were 31.3 and 28.6 °C, extending the ASHRAE 55 values by 1.3 and 0.1 °C, respectively.
AbstractList •Quantified relations between mechanical airflow and thermal comfort were studied.•The upper limit of air speeds that did not cause draught feelings were examined.•Mean skin temperatures decreased 0.2 °C-0.6 °C for increasing the air speed by 1 m/s.•Cooling effect of mechanical airflow was restricted under humidity up to 85%.•Acceptable operative temperature range in 40%-60% humidity was extended by 1.3 °C. Indoor air movement is beneficial for building energy conservation and human thermal comfort. Chamber experiments were conducted to evaluate the cooling effect of elevated air speeds on thermal comfort. Three temperature (26, 29, and 32 °C) and two relative humidity (40%–60% and 70%–90%) levels were selected for a total of six experimental conditions. Thirty-six subjects in summer clothes (0.5 clo) were exposed to mechanical airflow produced by electric fans and experienced four 30-min exposures at various air speeds (0.01–2.0 m/s), and subjective perceptions and skin temperature were collected. Results showed that mean skin temperatures decreased by 0.2 °C–0.6 °C for every 1 m/s increase in air speed. Airflow may alleviate thermal dissatisfaction, but air speeds up to 2.0 m/s cannot eliminate discomfort in extremely hot-humid environments (29 °C/85%, 32 °C/55%, and 32 °C/85%). In the experimental conditions of 26 °C/45%, 26 °C/75%, 29 °C/55%, 32 °C/55%, and 32 °C/85%, the upper air speed limits were 1.2, 1.2, 1.6, 2.0, and 2.0 m/s, respectively. Based on experimental data, comfort zones with elevated air speed for both moderate (40%–60%) and high humidity (70%–90%) were obtained. The maximum acceptable operative temperatures in two humidity conditions were 31.3 and 28.6 °C, extending the ASHRAE 55 values by 1.3 and 0.1 °C, respectively.
ArticleNumber 112953
Author Xie, Jingchao
Liu, Jiaping
Zhou, Jinyue
Zhang, Xiaojing
Author_xml – sequence: 1
  givenname: Jinyue
  surname: Zhou
  fullname: Zhou, Jinyue
– sequence: 2
  givenname: Xiaojing
  surname: Zhang
  fullname: Zhang, Xiaojing
– sequence: 3
  givenname: Jingchao
  surname: Xie
  fullname: Xie, Jingchao
  email: xiejc@bjut.edu.cn
– sequence: 4
  givenname: Jiaping
  surname: Liu
  fullname: Liu, Jiaping
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB-zq4Tg2XZQS0gcEumnXQpZGRMaWgqSEtl9fhYQuuslqZjHncufM0MR5BwjdUVJSQuv7vgTX7e2gS0YYLyll7YJP0JTwZVMsl01zjWYx9oSQerGkU9SvjQGVIvYGwwAHmUBjaQOOO8ibdzhtIYxywMqPxoeErcNbn4rtfrQaq8GOGcHS6eMhhq8ETmcw7scRwh_0k1veoCsjhwi35zlHn8_rj9VrsXl_eVs9bQrFSZsKaSpdtUBV1xHOms4Ar1VbMw6NlIyyhTQAtM6tQXLSMWaUUhW0GgiraaX5HC1OuSr4GAMYsQu5ZfgWlIijJNGLsyRxlCROkjL38I9TNslkvUtB2uEi_XiiIb92sBBEVBacAm1DFiy0txcSfgFcS42e
CitedBy_id crossref_primary_10_1080_17512549_2025_2451347
crossref_primary_10_1016_j_dibe_2023_100217
crossref_primary_10_1016_j_jobe_2024_111488
crossref_primary_10_70516_778an593
crossref_primary_10_1007_s42765_024_00412_w
crossref_primary_10_1016_j_enbuild_2024_114750
crossref_primary_10_3390_atmos16030325
crossref_primary_10_3390_buildings15010073
crossref_primary_10_1016_j_buildenv_2024_111820
crossref_primary_10_1016_j_enbuild_2023_113345
crossref_primary_10_1016_j_buildenv_2023_110980
crossref_primary_10_1016_j_buildenv_2024_112288
crossref_primary_10_1080_17512549_2023_2270543
crossref_primary_10_1016_j_ijrefrig_2025_03_008
crossref_primary_10_3390_su16135704
crossref_primary_10_3390_su151511785
crossref_primary_10_1016_j_csite_2023_103798
Cites_doi 10.1111/j.1600-0668.2004.00271.x
10.1016/j.buildenv.2014.04.024
10.1111/ina.12046
10.1007/s00484-009-0246-z
10.1016/j.enbuild.2008.05.001
10.1111/ina.12352
10.1080/00038628.2004.9697036
10.1016/j.enbuild.2020.109858
10.1016/j.enbuild.2004.01.011
10.1016/j.buildenv.2017.03.022
10.1016/j.buildenv.2015.04.003
10.1016/j.buildenv.2010.03.016
10.1016/j.enbuild.2022.111911
10.1016/j.buildenv.2009.06.005
10.1007/s00484-006-0079-y
10.1016/j.buildenv.2014.09.010
10.1111/ina.12184
10.1016/j.enbuild.2019.109448
10.1016/j.buildenv.2010.07.032
10.1016/j.buildenv.2012.12.002
10.1016/0378-7788(88)90053-9
10.1016/S0360-1323(96)00038-8
10.1016/j.buildenv.2010.05.024
10.1007/s004840100093
10.1016/j.enbuild.2022.112184
10.1016/j.buildenv.2012.03.021
10.1016/j.enbuild.2021.110721
10.1016/j.buildenv.2018.07.008
10.1080/00140138608968261
10.1016/j.enbuild.2022.112448
10.1016/j.buildenv.2018.03.013
10.1016/j.buildenv.2017.07.021
10.1016/S0378-7788(97)00025-X
10.1002/cphy.cp090105
10.1016/j.buildenv.2022.109933
10.1016/j.buildenv.2018.03.023
10.1016/j.buildenv.2013.03.022
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2023.112953
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enbuild_2023_112953
S0378778823001834
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
SSH
WUQ
ZMT
ZY4
ID FETCH-LOGICAL-c309t-af4d49e1cbb0328bfe36c9623e8aa2125afee16fecea30b22fccc4e9de02614d3
IEDL.DBID AIKHN
ISSN 0378-7788
IngestDate Thu Apr 24 22:53:31 EDT 2025
Tue Jul 01 01:13:13 EDT 2025
Sat Sep 07 15:51:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Hot-humid climate
Climatic chamber experiment
Air movement
Mechanical airflow
Thermal comfort zone
Mean skin temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-af4d49e1cbb0328bfe36c9623e8aa2125afee16fecea30b22fccc4e9de02614d3
ParticipantIDs crossref_primary_10_1016_j_enbuild_2023_112953
crossref_citationtrail_10_1016_j_enbuild_2023_112953
elsevier_sciencedirect_doi_10_1016_j_enbuild_2023_112953
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy and buildings
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mcintyre (b0055) 1979
Candido, Dear, Lamberts (b0140) 2010; 45
Schiavon, Melikov (b0170) 2008; 40
Jebaei, Aryal (b0175) 2022; 274
Lipczynska, Schiavon, Graham (b0245) 2018; 135
Tanabe (b0275) 1989
David (b0105) 2004; 47
Faheem M, Bhandari N, Tadepalli S. Adaptive thermal comfort in naturally ventilated hostels of warm and humid climatic region, Tiruchirappalli, India. Energy and Built Environment, 2022.
Toftum (b0005) 2004; 14
ASHRAE. ANSI/ASHRAE Standard 55-2017, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2017.
Schiavon, Yang, Donner (b0230) 2017; 27
ASHRAE. ANSI/ASHRAE Standard 55-2004, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2004.
Y. Ji Study on the influence of air velocity on human thermal comfort [D] 2002 Tianjin University.
Nguyen, Singh, Reiter (b0135) 2012; 56
Tanabe, Kimura (b0240) 1989
Arens E, Turner S, Zhang H, et al. Moving air for comfort. ASHRAE journal, 2009, May 51 (25), 8–18.
Standards S. Thermal environments - Instruments and methods for measuring physical quantities. ISO-7726, 1998.
Zhang, Arens, Fard (b0125) 2007; 51
Rohles, Kontz, Jones (b0265) 1983; 89
Zhai, Zhang (b0285) 2015; 90
Fanger, Ostergaard, Olesen (b0065) 1974; 80
Luo, Arens, Zhang (b0165) 2018; 143
ASHRAE. ANSI/ASHRAE Standard 55-2020, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2020.
Arens, Xu, Miura (b0225) 1998; 27
Iso Standard 7730, Moderate thermal environments–determination of the PMV and PPD indices and specification of the conditions for thermal comfort 1984 Switzerland.
Dear, Fountain (b0095) 1994; 100
Pasut, Arens, Zhang (b0320) 2014; 79
Rajan Rawal, Marcel Schweiker, Ongun Berk Kazanci, et al. Personal comfort systems: A review on comfort, energy, and economics. Energy and Buildings, 214, 2020, 109858.
Gagge A P, Nishi Y. Heat Exchange between Human Skin Surface and Thermal Environment- Handbook of Physiology, American Physiological Society, Bethesda, 1977.
ASHRAE. ANSI/ASHRAE Standard 55-2010, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010.
Scheatzle, Wu, Yellott (b0270) 1989; 95
Tanabe, Kimura (b0315) 1987; 382
Hoyt, Arens, Zhang (b0155) 2015; 88
André, Kamimura, Bavaresco (b0180) 2022; 259
Du, Li, Liu (b0290) 2018; 136
Simone, Olesen (b0250) 2013
Kubo, Isoda, Enomoto-Koshimizu (b0235) 1997; 32
Rissetto, Schweiker, Wagner (b0160) 2021; 235
Zhang, Bin, Liu (b0305) 2019; 49
Yan, Liu, Zhao (b0145) 2020; 177
Zhou, Zhang, Xie, Liu (b0330) 2023; 229
Dear, Akimoto, Arens (b0035) 2013; 23
Houghten, Gutberlet, Witkowski (b0010) 1938; 44
Fanger, Melikov, Hanzawa (b0050) 1988; 12
Candido, Dear, Lamberts (b0215) 2011; 46
Mcintyre (b0020) 1980
Working Group on Obesity in China (WGOC). Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Chinese Journal of Epidemiology, 2002, 23(11): 5–10.
Sekhar (b0030) 2016 (1):26
Fountain (b0015) 1994; 100
Zhang, Zhang, Mai (b0115) 2017; 117
He, Li, He (b0255) 2017; 123
Dear, Brager (b0100) 2001; 45
Fanger, Christensen (b0045) 1986; 29
Zhang, Wang, Chen (b0130) 2010; 45
Huang, Ouyang, Zhu (b0260) 2013; 61
Fanger (b0060) 1970
Fountain M E, Arens E A. Air movement and thermal comfort. ASHRAE Journal, 1993, August.
Fountain (b0070) 1991; 97
Feriadi, Wong (b0090) 2004; 36
Yang, Zhang (b0110) 2009; 53
ASHRAE. ANSI/ASHRAE Standard 55-1992, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 1992.
Mihara, Sekhar, Takemasa (b0190) 2019; 203
Arens, Turner, Zhang (b0120) 2009; 51
Fanger, Pedersen (b0040) 1977
Zhai, Zhang, Zhang (b0220) 2013; 65
Chow, Fong (b0280) 2010; 45
Toftum (10.1016/j.enbuild.2023.112953_b0005) 2004; 14
Fountain (10.1016/j.enbuild.2023.112953_b0070) 1991; 97
He (10.1016/j.enbuild.2023.112953_b0255) 2017; 123
10.1016/j.enbuild.2023.112953_b0295
Houghten (10.1016/j.enbuild.2023.112953_b0010) 1938; 44
Dear (10.1016/j.enbuild.2023.112953_b0095) 1994; 100
Zhang (10.1016/j.enbuild.2023.112953_b0125) 2007; 51
10.1016/j.enbuild.2023.112953_b0210
Fanger (10.1016/j.enbuild.2023.112953_b0060) 1970
Huang (10.1016/j.enbuild.2023.112953_b0260) 2013; 61
Scheatzle (10.1016/j.enbuild.2023.112953_b0270) 1989; 95
Candido (10.1016/j.enbuild.2023.112953_b0140) 2010; 45
10.1016/j.enbuild.2023.112953_b0080
Mcintyre (10.1016/j.enbuild.2023.112953_b0055) 1979
Jebaei (10.1016/j.enbuild.2023.112953_b0175) 2022; 274
Hoyt (10.1016/j.enbuild.2023.112953_b0155) 2015; 88
Feriadi (10.1016/j.enbuild.2023.112953_b0090) 2004; 36
Zhang (10.1016/j.enbuild.2023.112953_b0305) 2019; 49
Simone (10.1016/j.enbuild.2023.112953_b0250) 2013
10.1016/j.enbuild.2023.112953_b0085
10.1016/j.enbuild.2023.112953_b0325
Yang (10.1016/j.enbuild.2023.112953_b0110) 2009; 53
10.1016/j.enbuild.2023.112953_b0205
10.1016/j.enbuild.2023.112953_b0200
Dear (10.1016/j.enbuild.2023.112953_b0100) 2001; 45
Zhou (10.1016/j.enbuild.2023.112953_b0330) 2023; 229
Fountain (10.1016/j.enbuild.2023.112953_b0015) 1994; 100
Nguyen (10.1016/j.enbuild.2023.112953_b0135) 2012; 56
André (10.1016/j.enbuild.2023.112953_b0180) 2022; 259
Du (10.1016/j.enbuild.2023.112953_b0290) 2018; 136
Kubo (10.1016/j.enbuild.2023.112953_b0235) 1997; 32
10.1016/j.enbuild.2023.112953_b0075
David (10.1016/j.enbuild.2023.112953_b0105) 2004; 47
Yan (10.1016/j.enbuild.2023.112953_b0145) 2020; 177
Zhang (10.1016/j.enbuild.2023.112953_b0115) 2017; 117
10.1016/j.enbuild.2023.112953_b0150
10.1016/j.enbuild.2023.112953_b0195
Mcintyre (10.1016/j.enbuild.2023.112953_b0020) 1980
Luo (10.1016/j.enbuild.2023.112953_b0165) 2018; 143
Schiavon (10.1016/j.enbuild.2023.112953_b0230) 2017; 27
Zhai (10.1016/j.enbuild.2023.112953_b0285) 2015; 90
10.1016/j.enbuild.2023.112953_b0310
Dear (10.1016/j.enbuild.2023.112953_b0035) 2013; 23
Arens (10.1016/j.enbuild.2023.112953_b0225) 1998; 27
Fanger (10.1016/j.enbuild.2023.112953_b0045) 1986; 29
Fanger (10.1016/j.enbuild.2023.112953_b0040) 1977
Tanabe (10.1016/j.enbuild.2023.112953_b0240) 1989
Tanabe (10.1016/j.enbuild.2023.112953_b0275) 1989
Chow (10.1016/j.enbuild.2023.112953_b0280) 2010; 45
Pasut (10.1016/j.enbuild.2023.112953_b0320) 2014; 79
10.1016/j.enbuild.2023.112953_b0185
Schiavon (10.1016/j.enbuild.2023.112953_b0170) 2008; 40
Rissetto (10.1016/j.enbuild.2023.112953_b0160) 2021; 235
Fanger (10.1016/j.enbuild.2023.112953_b0050) 1988; 12
Tanabe (10.1016/j.enbuild.2023.112953_b0315) 1987; 382
Arens (10.1016/j.enbuild.2023.112953_b0120) 2009; 51
Zhang (10.1016/j.enbuild.2023.112953_b0130) 2010; 45
Sekhar (10.1016/j.enbuild.2023.112953_b0030) 2016
10.1016/j.enbuild.2023.112953_b0025
Lipczynska (10.1016/j.enbuild.2023.112953_b0245) 2018; 135
10.1016/j.enbuild.2023.112953_b0300
Zhai (10.1016/j.enbuild.2023.112953_b0220) 2013; 65
Mihara (10.1016/j.enbuild.2023.112953_b0190) 2019; 203
Fanger (10.1016/j.enbuild.2023.112953_b0065) 1974; 80
Candido (10.1016/j.enbuild.2023.112953_b0215) 2011; 46
Rohles (10.1016/j.enbuild.2023.112953_b0265) 1983; 89
References_xml – volume: 27
  start-page: 45
  year: 1998
  end-page: 59
  ident: b0225
  article-title: A study of occupant cooling by personally controlled air movement
  publication-title: Energy Build.
– volume: 88
  start-page: 89
  year: 2015
  end-page: 96
  ident: b0155
  article-title: Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings
  publication-title: Build. Environ.
– volume: 229
  year: 2023
  ident: b0330
  article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Environ.
– volume: 259
  year: 2022
  ident: b0180
  article-title: Achieving mid-rise NZEB offices in Brazilian urban centres: a control strategy with desk fans and extension of set point temperature
  publication-title: Energy Build.
– reference: ASHRAE. ANSI/ASHRAE Standard 55-2020, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2020.
– start-page: 138
  year: 2016 (1):26,
  end-page: 152
  ident: b0030
  article-title: Thermal comfort in air-conditioned buildings in hot and humid climates – why are we not getting it right?
  publication-title: Indoor Air
– volume: 12
  start-page: 21
  year: 1988
  end-page: 39
  ident: b0050
  article-title: Air turbulence and sensation of draught
  publication-title: Energy Buildings
– volume: 382
  year: 1987
  ident: b0315
  article-title: Effects of air movement on thermal comfort in air-conditioned spaces during summer season
  publication-title: J. Archit. Plann. Environ. Eng. (Trans. AIJ)
– volume: 29
  start-page: 215
  year: 1986
  end-page: 235
  ident: b0045
  article-title: Perception of draught in ventilated spaces
  publication-title: Ergonomics
– volume: 135
  start-page: 202
  year: 2018
  end-page: 212
  ident: b0245
  article-title: Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics
  publication-title: Build. Environ.
– volume: 46
  start-page: 379
  year: 2011
  end-page: 385
  ident: b0215
  article-title: Combined thermal acceptability and air movement assessments in a hot humid climate
  publication-title: Build. Environ.
– year: 2013
  ident: b0250
  article-title: Preferred air velocity and local cooling effect of desk fans in warm environments
  publication-title: In Proceedings of the 34th AIVC conference
– volume: 89
  start-page: 245
  year: 1983
  end-page: 263
  ident: b0265
  article-title: Ceiling fans as extenders of the summer comfort envelope
  publication-title: ASHRAE Trans.
– year: 1970
  ident: b0060
  article-title: Code for Thermal Indoor Climate
– reference: Iso Standard 7730, Moderate thermal environments–determination of the PMV and PPD indices and specification of the conditions for thermal comfort 1984 Switzerland.
– start-page: 541
  year: 1979
  end-page: 560
  ident: b0055
  article-title: The effect of air movement on thermal comfort and sensation
  publication-title: Proc. Indoor Clim.
– volume: 45
  start-page: 222
  year: 2010
  end-page: 229
  ident: b0140
  article-title: Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone
  publication-title: Build. Environ.
– volume: 61
  start-page: 27
  year: 2013
  end-page: 33
  ident: b0260
  article-title: A study about the demand for air movement in warm environment
  publication-title: Build. Environ.
– reference: ASHRAE. ANSI/ASHRAE Standard 55-1992, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 1992.
– volume: 117
  start-page: 238
  year: 2017
  end-page: 247
  ident: b0115
  article-title: Adaptation-based indoor environment control in a hot-humid area
  publication-title: Build. Environ.
– volume: 40
  start-page: 1954
  year: 2008
  end-page: 1960
  ident: b0170
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
– volume: 27
  start-page: 690
  year: 2017
  end-page: 702
  ident: b0230
  article-title: Thermal comfort, perceived air quality and cognitive performance when personally controlled air movement is used by tropically acclimatized persons
  publication-title: Indoor Air
– volume: 95
  year: 1989
  ident: b0270
  article-title: Extending the summer comfort envelope with ceiling fans in hot, arid climates
  publication-title: ASHRAE Trans.
– reference: Fountain M E, Arens E A. Air movement and thermal comfort. ASHRAE Journal, 1993, August.
– volume: 45
  start-page: 100
  year: 2001
  end-page: 108
  ident: b0100
  article-title: The adaptive model of thermal comfort and energy conservation in the built environment
  publication-title: Int. J. Biometeorol.
– reference: Rajan Rawal, Marcel Schweiker, Ongun Berk Kazanci, et al. Personal comfort systems: A review on comfort, energy, and economics. Energy and Buildings, 214, 2020, 109858.
– volume: 143
  start-page: 206
  year: 2018
  end-page: 216
  ident: b0165
  article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices
  publication-title: Build. Environ.
– start-page: 95
  year: 1989
  end-page: 103
  ident: b0240
  article-title: Importance of air movement for thermal comfort under hot and humid conditions
  publication-title: ASHRAE Trans.
– volume: 79
  start-page: 13
  year: 2014
  end-page: 19
  ident: b0320
  article-title: Enabling energy-efficient approaches to thermal comfort using room air motion
  publication-title: Build. Environ.
– volume: 100
  start-page: 2230
  year: 1994
  end-page: 2234
  ident: b0015
  article-title: Locally controlled air movement preferred in warm environments
  publication-title: ASHRAE Trans.
– volume: 177
  year: 2020
  ident: b0145
  article-title: The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China
  publication-title: Build. Environ.
– volume: 49
  start-page: 7
  year: 2019
  ident: b0305
  article-title: Field study on thermal comfort of natural ventilation buildings in offshore islands in hot and humid climate zone
  publication-title: Heat. Ventilat. Air Condition.
– volume: 235
  year: 2021
  ident: b0160
  article-title: Personalized ceiling fans: Effects of air motion, air direction and personal control on thermal comfort
  publication-title: Energy Build.
– volume: 90
  start-page: 178
  year: 2015
  ident: b0285
  article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans
  publication-title: Build. Environ.
– year: 1989
  ident: b0275
  article-title: Importance of air movements on thermal comfort under hot and humid conditions
  publication-title: Proceedings of ASHRAE Far East conf
– volume: 47
  start-page: 131
  year: 2004
  end-page: 140
  ident: b0105
  article-title: Thermal comfort in a naturally ventilated environment with supplementary cooling and heating
  publication-title: Architect. Sci. Rev.
– volume: 44
  start-page: 289
  year: 1938
  ident: b0010
  article-title: Draft temperatures and velocities in relation to skin temperature and feeling of warmth
  publication-title: ASHRAE Trans.
– volume: 45
  start-page: 2177
  year: 2010
  end-page: 2183
  ident: b0280
  article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment
  publication-title: Build. Environ.
– reference: Gagge A P, Nishi Y. Heat Exchange between Human Skin Surface and Thermal Environment- Handbook of Physiology, American Physiological Society, Bethesda, 1977.
– volume: 80
  start-page: 142
  year: 1974
  end-page: 157
  ident: b0065
  article-title: The effect on man's comfort of a uniform airflow from different directions
  publication-title: ASHRAE Trans.
– volume: 51
  start-page: 349
  year: 2007
  end-page: 360
  ident: b0125
  article-title: Air movement preferences observed in office buildings
  publication-title: Int. J. Biometeorol.
– start-page: 289
  year: 1977
  end-page: 296
  ident: b0040
  article-title: Discomfort due to air velocities in spaces
  publication-title: Proceedings of the Meeting of Commissions
– reference: Standards S. Thermal environments - Instruments and methods for measuring physical quantities. ISO-7726, 1998.
– volume: 136
  start-page: 146
  year: 2018
  end-page: 155
  ident: b0290
  article-title: Quantifying the cooling efficiency of air velocity by heat loss from skin surface in warm and hot environments
  publication-title: Build. Environ.
– volume: 23
  start-page: 442
  year: 2013
  end-page: 461
  ident: b0035
  article-title: Progress in thermal comfort research over the last 20 years
  publication-title: Indoor Air
– volume: 274
  year: 2022
  ident: b0175
  article-title: Quantifying the impact of personal comfort systems on thermal satisfaction and energy consumption in office buildings under different U.S. climates
  publication-title: Energy Build.
– volume: 97
  year: 1991
  ident: b0070
  article-title: Laboratory studies of the effect of air movement on thermal comfort: a comparison and discussion of methods
  publication-title: ASHRAE Trans.
– volume: 32
  start-page: 211
  year: 1997
  end-page: 218
  ident: b0235
  article-title: Cooling effects of preferred air velocity in muggy conditions
  publication-title: Build. Environ.
– volume: 100
  year: 1994
  ident: b0095
  article-title: Field experiments on occupant comfort and office thermal environments in a hot-humid climate
  publication-title: ASHRAE Trans.
– volume: 123
  start-page: 378
  year: 2017
  end-page: 389
  ident: b0255
  article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments
  publication-title: Build. Environ.
– reference: Faheem M, Bhandari N, Tadepalli S. Adaptive thermal comfort in naturally ventilated hostels of warm and humid climatic region, Tiruchirappalli, India. Energy and Built Environment, 2022.
– year: 1980
  ident: b0020
  article-title: Indoor Climate
– volume: 45
  start-page: 2562
  year: 2010
  end-page: 2570
  ident: b0130
  article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China
  publication-title: Build. Environ.
– volume: 14
  start-page: 40
  year: 2004
  end-page: 45
  ident: b0005
  article-title: Air movement – good or bad?
  publication-title: Indoor Air
– volume: 65
  start-page: 109
  year: 2013
  end-page: 117
  ident: b0220
  article-title: Comfort under personally controlled air movement in warm and humid environments
  publication-title: Build. Environ.
– reference: Y. Ji Study on the influence of air velocity on human thermal comfort [D] 2002 Tianjin University.
– volume: 36
  start-page: 614
  year: 2004
  end-page: 626
  ident: b0090
  article-title: Thermal comfort for naturally ventilated houses in Indonesia
  publication-title: Energy Build.
– reference: Arens E, Turner S, Zhang H, et al. Moving air for comfort. ASHRAE journal, 2009, May 51 (25), 8–18.
– reference: Working Group on Obesity in China (WGOC). Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Chinese Journal of Epidemiology, 2002, 23(11): 5–10.
– volume: 51
  start-page: 18
  year: 2009
  end-page: 28
  ident: b0120
  article-title: Moving air for comfort
  publication-title: ASHRAE J.
– reference: ASHRAE. ANSI/ASHRAE Standard 55-2017, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2017.
– volume: 56
  start-page: 291
  year: 2012
  end-page: 300
  ident: b0135
  article-title: An adaptive thermal comfort model for hot humid South-East Asia
  publication-title: Build. Environ.
– reference: ASHRAE. ANSI/ASHRAE Standard 55-2004, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2004.
– volume: 53
  start-page: 563
  year: 2009
  ident: b0110
  article-title: Air movement preferences observed in naturally ventilated buildings in humid subtropical climate zone in China
  publication-title: Int. J. Biometeorol.
– reference: ASHRAE. ANSI/ASHRAE Standard 55-2010, Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010.
– volume: 203
  year: 2019
  ident: b0190
  article-title: Thermal comfort and energy performance of a dedicated outdoor air system with ceiling fans in hot and humid climate
  publication-title: Energy Build.
– volume: 14
  start-page: 40
  issue: S7
  year: 2004
  ident: 10.1016/j.enbuild.2023.112953_b0005
  article-title: Air movement – good or bad?
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2004.00271.x
– ident: 10.1016/j.enbuild.2023.112953_b0200
– volume: 79
  start-page: 13
  year: 2014
  ident: 10.1016/j.enbuild.2023.112953_b0320
  article-title: Enabling energy-efficient approaches to thermal comfort using room air motion
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.04.024
– volume: 23
  start-page: 442
  issue: 6
  year: 2013
  ident: 10.1016/j.enbuild.2023.112953_b0035
  article-title: Progress in thermal comfort research over the last 20 years
  publication-title: Indoor Air
  doi: 10.1111/ina.12046
– volume: 53
  start-page: 563
  issue: 6
  year: 2009
  ident: 10.1016/j.enbuild.2023.112953_b0110
  article-title: Air movement preferences observed in naturally ventilated buildings in humid subtropical climate zone in China
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-009-0246-z
– volume: 40
  start-page: 1954
  issue: 10
  year: 2008
  ident: 10.1016/j.enbuild.2023.112953_b0170
  article-title: Energy saving and improved comfort by increased air movement
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.05.001
– volume: 27
  start-page: 690
  issue: 3
  year: 2017
  ident: 10.1016/j.enbuild.2023.112953_b0230
  article-title: Thermal comfort, perceived air quality and cognitive performance when personally controlled air movement is used by tropically acclimatized persons
  publication-title: Indoor Air
  doi: 10.1111/ina.12352
– volume: 89
  start-page: 245
  year: 1983
  ident: 10.1016/j.enbuild.2023.112953_b0265
  article-title: Ceiling fans as extenders of the summer comfort envelope
  publication-title: ASHRAE Trans.
– volume: 47
  start-page: 131
  issue: 2
  year: 2004
  ident: 10.1016/j.enbuild.2023.112953_b0105
  article-title: Thermal comfort in a naturally ventilated environment with supplementary cooling and heating
  publication-title: Architect. Sci. Rev.
  doi: 10.1080/00038628.2004.9697036
– ident: 10.1016/j.enbuild.2023.112953_b0185
  doi: 10.1016/j.enbuild.2020.109858
– volume: 36
  start-page: 614
  issue: 7
  year: 2004
  ident: 10.1016/j.enbuild.2023.112953_b0090
  article-title: Thermal comfort for naturally ventilated houses in Indonesia
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.01.011
– volume: 117
  start-page: 238
  year: 2017
  ident: 10.1016/j.enbuild.2023.112953_b0115
  article-title: Adaptation-based indoor environment control in a hot-humid area
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.03.022
– volume: 90
  start-page: 178
  year: 2015
  ident: 10.1016/j.enbuild.2023.112953_b0285
  article-title: Human comfort and perceived air quality in warm and humid environments with ceiling fans
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.003
– volume: 45
  start-page: 2177
  issue: 10
  year: 2010
  ident: 10.1016/j.enbuild.2023.112953_b0280
  article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.03.016
– volume: 259
  year: 2022
  ident: 10.1016/j.enbuild.2023.112953_b0180
  article-title: Achieving mid-rise NZEB offices in Brazilian urban centres: a control strategy with desk fans and extension of set point temperature
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.111911
– volume: 45
  start-page: 222
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2023.112953_b0140
  article-title: Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.06.005
– volume: 97
  issue: 1
  year: 1991
  ident: 10.1016/j.enbuild.2023.112953_b0070
  article-title: Laboratory studies of the effect of air movement on thermal comfort: a comparison and discussion of methods
  publication-title: ASHRAE Trans.
– ident: 10.1016/j.enbuild.2023.112953_b0210
– volume: 100
  start-page: 2230
  issue: 2
  year: 1994
  ident: 10.1016/j.enbuild.2023.112953_b0015
  article-title: Locally controlled air movement preferred in warm environments
  publication-title: ASHRAE Trans.
– volume: 51
  start-page: 349
  issue: 5
  year: 2007
  ident: 10.1016/j.enbuild.2023.112953_b0125
  article-title: Air movement preferences observed in office buildings
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-006-0079-y
– ident: 10.1016/j.enbuild.2023.112953_b0195
– ident: 10.1016/j.enbuild.2023.112953_b0025
– ident: 10.1016/j.enbuild.2023.112953_b0300
– volume: 88
  start-page: 89
  issue: 6
  year: 2015
  ident: 10.1016/j.enbuild.2023.112953_b0155
  article-title: Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.09.010
– start-page: 138
  year: 2016
  ident: 10.1016/j.enbuild.2023.112953_b0030
  article-title: Thermal comfort in air-conditioned buildings in hot and humid climates – why are we not getting it right?
  publication-title: Indoor Air
  doi: 10.1111/ina.12184
– year: 2013
  ident: 10.1016/j.enbuild.2023.112953_b0250
  article-title: Preferred air velocity and local cooling effect of desk fans in warm environments
– ident: 10.1016/j.enbuild.2023.112953_b0205
– volume: 203
  year: 2019
  ident: 10.1016/j.enbuild.2023.112953_b0190
  article-title: Thermal comfort and energy performance of a dedicated outdoor air system with ceiling fans in hot and humid climate
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109448
– volume: 46
  start-page: 379
  issue: 2
  year: 2011
  ident: 10.1016/j.enbuild.2023.112953_b0215
  article-title: Combined thermal acceptability and air movement assessments in a hot humid climate
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.07.032
– ident: 10.1016/j.enbuild.2023.112953_b0295
– volume: 61
  start-page: 27
  issue: 5
  year: 2013
  ident: 10.1016/j.enbuild.2023.112953_b0260
  article-title: A study about the demand for air movement in warm environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.12.002
– volume: 12
  start-page: 21
  issue: 1
  year: 1988
  ident: 10.1016/j.enbuild.2023.112953_b0050
  article-title: Air turbulence and sensation of draught
  publication-title: Energy Buildings
  doi: 10.1016/0378-7788(88)90053-9
– start-page: 541
  year: 1979
  ident: 10.1016/j.enbuild.2023.112953_b0055
  article-title: The effect of air movement on thermal comfort and sensation
  publication-title: Proc. Indoor Clim.
– volume: 32
  start-page: 211
  issue: 3
  year: 1997
  ident: 10.1016/j.enbuild.2023.112953_b0235
  article-title: Cooling effects of preferred air velocity in muggy conditions
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(96)00038-8
– volume: 45
  start-page: 2562
  year: 2010
  ident: 10.1016/j.enbuild.2023.112953_b0130
  article-title: Thermal comfort in naturally ventilated buildings in hot-humid area of China
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.05.024
– volume: 45
  start-page: 100
  issue: 2
  year: 2001
  ident: 10.1016/j.enbuild.2023.112953_b0100
  article-title: The adaptive model of thermal comfort and energy conservation in the built environment
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840100093
– year: 1980
  ident: 10.1016/j.enbuild.2023.112953_b0020
– ident: 10.1016/j.enbuild.2023.112953_b0150
  doi: 10.1016/j.enbuild.2022.112184
– ident: 10.1016/j.enbuild.2023.112953_b0080
– volume: 56
  start-page: 291
  issue: 3
  year: 2012
  ident: 10.1016/j.enbuild.2023.112953_b0135
  article-title: An adaptive thermal comfort model for hot humid South-East Asia
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.03.021
– volume: 100
  issue: 2
  year: 1994
  ident: 10.1016/j.enbuild.2023.112953_b0095
  article-title: Field experiments on occupant comfort and office thermal environments in a hot-humid climate
  publication-title: ASHRAE Trans.
– year: 1989
  ident: 10.1016/j.enbuild.2023.112953_b0275
  article-title: Importance of air movements on thermal comfort under hot and humid conditions
– year: 1970
  ident: 10.1016/j.enbuild.2023.112953_b0060
– volume: 235
  year: 2021
  ident: 10.1016/j.enbuild.2023.112953_b0160
  article-title: Personalized ceiling fans: Effects of air motion, air direction and personal control on thermal comfort
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110721
– volume: 143
  start-page: 206
  year: 2018
  ident: 10.1016/j.enbuild.2023.112953_b0165
  article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.07.008
– volume: 382
  year: 1987
  ident: 10.1016/j.enbuild.2023.112953_b0315
  article-title: Effects of air movement on thermal comfort in air-conditioned spaces during summer season
  publication-title: J. Archit. Plann. Environ. Eng. (Trans. AIJ)
– volume: 44
  start-page: 289
  year: 1938
  ident: 10.1016/j.enbuild.2023.112953_b0010
  article-title: Draft temperatures and velocities in relation to skin temperature and feeling of warmth
  publication-title: ASHRAE Trans.
– start-page: 95
  year: 1989
  ident: 10.1016/j.enbuild.2023.112953_b0240
  article-title: Importance of air movement for thermal comfort under hot and humid conditions
  publication-title: ASHRAE Trans.
– volume: 80
  start-page: 142
  year: 1974
  ident: 10.1016/j.enbuild.2023.112953_b0065
  article-title: The effect on man's comfort of a uniform airflow from different directions
  publication-title: ASHRAE Trans.
– ident: 10.1016/j.enbuild.2023.112953_b0325
– volume: 29
  start-page: 215
  year: 1986
  ident: 10.1016/j.enbuild.2023.112953_b0045
  article-title: Perception of draught in ventilated spaces
  publication-title: Ergonomics
  doi: 10.1080/00140138608968261
– volume: 274
  year: 2022
  ident: 10.1016/j.enbuild.2023.112953_b0175
  article-title: Quantifying the impact of personal comfort systems on thermal satisfaction and energy consumption in office buildings under different U.S. climates
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112448
– volume: 95
  year: 1989
  ident: 10.1016/j.enbuild.2023.112953_b0270
  article-title: Extending the summer comfort envelope with ceiling fans in hot, arid climates
  publication-title: ASHRAE Trans.
– volume: 177
  issue: 4
  year: 2020
  ident: 10.1016/j.enbuild.2023.112953_b0145
  article-title: The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China
  publication-title: Build. Environ.
– volume: 51
  start-page: 18
  issue: 05
  year: 2009
  ident: 10.1016/j.enbuild.2023.112953_b0120
  article-title: Moving air for comfort
  publication-title: ASHRAE J.
– ident: 10.1016/j.enbuild.2023.112953_b0085
– volume: 49
  start-page: 7
  issue: 8
  year: 2019
  ident: 10.1016/j.enbuild.2023.112953_b0305
  article-title: Field study on thermal comfort of natural ventilation buildings in offshore islands in hot and humid climate zone
  publication-title: Heat. Ventilat. Air Condition.
– volume: 135
  start-page: 202
  issue: 5
  year: 2018
  ident: 10.1016/j.enbuild.2023.112953_b0245
  article-title: Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.03.013
– start-page: 289
  year: 1977
  ident: 10.1016/j.enbuild.2023.112953_b0040
  article-title: Discomfort due to air velocities in spaces
– ident: 10.1016/j.enbuild.2023.112953_b0075
– volume: 123
  start-page: 378
  issue: 10
  year: 2017
  ident: 10.1016/j.enbuild.2023.112953_b0255
  article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.07.021
– volume: 27
  start-page: 45
  issue: 1
  year: 1998
  ident: 10.1016/j.enbuild.2023.112953_b0225
  article-title: A study of occupant cooling by personally controlled air movement
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00025-X
– ident: 10.1016/j.enbuild.2023.112953_b0310
  doi: 10.1002/cphy.cp090105
– volume: 229
  year: 2023
  ident: 10.1016/j.enbuild.2023.112953_b0330
  article-title: Occupant's preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109933
– volume: 136
  start-page: 146
  year: 2018
  ident: 10.1016/j.enbuild.2023.112953_b0290
  article-title: Quantifying the cooling efficiency of air velocity by heat loss from skin surface in warm and hot environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.03.023
– volume: 65
  start-page: 109
  year: 2013
  ident: 10.1016/j.enbuild.2023.112953_b0220
  article-title: Comfort under personally controlled air movement in warm and humid environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.03.022
SSID ssj0006571
Score 2.5192547
Snippet •Quantified relations between mechanical airflow and thermal comfort were studied.•The upper limit of air speeds that did not cause draught feelings were...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112953
SubjectTerms Air movement
Climatic chamber experiment
Hot-humid climate
Mean skin temperature
Mechanical airflow
Thermal comfort zone
Title Effects of elevated air speed on thermal comfort in hot-humid climate and the extended summer comfort zone
URI https://dx.doi.org/10.1016/j.enbuild.2023.112953
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BuSyHFQusloWtfODq1mmckByriqr7hRAfErfIscciVUmrEi4c-O3MNEkBCe1KHBN5LGc8mvcm8jwDHCe5T1i2XBK11VIHGEsTxUYm9iRVPlQGV-r6f8_iybX-dRPdbMCo7YXhY5VN7q9z-ipbN2_6jTf7i6LoX6qQgo0qOCLRigJTb8LWgNA-6cDW8Ofvydk6IcfRqu7i8ZINXhp5-tMeKwwUM9YMHYTcT5NG4fsQ9Qp2xjvwueGLYlgv6QtsYLkL269UBPdgWisQ34u5F9wtTuzRCVMsxf2CoEnMS8Ek745moY8kjlqJohS380rePtwVTthZQawVhSkdDxTtb3HBMYrLtdHjvMR9uB6fXo0msrlCQdpQpZU0XjudYmDznIXzco9hbFOiPJgYQ6gVGY8YxLRKNKHKBwNvrdWYOuTaTLvwK3RKmv4bCKd8nFuLxFgsVYFoqJLygT9B5WKvXHQAuvVaZht9cb7mYpa1B8mmWePsjJ2d1c4-gN7abFELbPzPIGm3JHsTKRmBwL9Nv3_c9BA-8ROfGwiiI-hUywf8QXSkyruw2XsKuhR0o4s_590m-J4Bu07jNg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-NADLagHIADWmBXvJadA9ehk2aSJscKgcqrF0DiFk1mPCJVSasSLvx67CbpgoRYaa_JeDTxWPbnyP4McJLkPmHacknQVksdYCxNFBuZ2H6qfKgMLtj1b0fx8EFfPUaPK3DW9sJwWWXj-2ufvvDWzZNuo83urCi6dyokY6MMjkC0IsPUq7Cmeah1B9YGl9fD0dIhx9Ei7-L1kgX-NvJ0x6fMMFBMmDO0F3I_TRqFX4eoD2Hn4gdsNXhRDOojbcMKljuw-YFFcBfGNQPxi5h6wd3ihB6dMMVcvMwoNIlpKRjkPdMu9JGEUStRlOJpWsmn1-fCCTspCLWiMKXjhaL9LS7YRnG-FHqblvgTHi7O78-GshmhIG2o0koar51OMbB5zsR5uccwtilBHkyMoagVGY8YxHRKNKHKez1vrdWYOuTcTLvwF3RK2n4PhFM-zq1FQiyWskA0lEn5wPdRudgrF-2DbrWW2YZfnMdcTLK2kGycNcrOWNlZrex9OF2KzWqCjX8JJO2VZJ8sJaMg8L3owf-L_oH14f3tTXZzObo-hA1-wzUEQXQEnWr-ir8JmlT5cWN67_wf44c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+elevated+air+speed+on+thermal+comfort+in+hot-humid+climate+and+the+extended+summer+comfort+zone&rft.jtitle=Energy+and+buildings&rft.au=Zhou%2C+Jinyue&rft.au=Zhang%2C+Xiaojing&rft.au=Xie%2C+Jingchao&rft.au=Liu%2C+Jiaping&rft.date=2023-05-15&rft.issn=0378-7788&rft.volume=287&rft.spage=112953&rft_id=info:doi/10.1016%2Fj.enbuild.2023.112953&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2023_112953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon