Massive LMS log data analysis for the early prediction of course-agnostic student performance

The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized add...

Full description

Saved in:
Bibliographic Details
Published inComputers and education Vol. 163; p. 104108
Main Authors Riestra-González, Moises, Paule-Ruíz, Maria del Puerto, Ortin, Francisco
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text
ISSN0360-1315
1873-782X
DOI10.1016/j.compedu.2020.104108

Cover

Abstract The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized additional activities. This is why there are research works aimed to early detect students’ performance. Some of them try to achieve it with the analysis of LMS log files, which store information about student interaction with the LMS. Many works create predictive models with the log files generated for the whole course, but those models are not useful for early prediction because the actual log information used for predicting is different to the one used to train the models. Other works do create predictive models with the log information retrieved at the early stages of courses, but they are just focused on a particular type of course. In this work, we use machine learning to create models for the early prediction of students' performance in solving LMS assignments, by just analyzing the LMS log files generated up to the moment of prediction. Moreover, our models are course agnostic, because the datasets are created with all the University of Oviedo1 courses for one academic year. We predict students' performance at 10%, 25%, 33% and 50% of the course length. Our objective is not to predict the exact student's mark in LMS assignments, but to detect at-risk, fail and excellent students in the early stages of the course. That is why we create different classification models for each of those three student groups. Decision tree, nave Bayes, logistic regression, multilayer perceptron (MLP) neural network, and support vector machine models are created and evaluated. Accuracies of all the models grow as the moment of prediction increases. Although all the algorithms but nave Bayes show accuracy differences lower than 5%, MLP obtains the best performance: from 80.1% accuracy when 10% of the course has been delivered to 90.1% when half of it has taken place. We also discuss the LMS log entries that most influence the students' performance. By using a clustering algorithm, we detect six different clusters of students regarding their interaction with the LMS. Analyzing the interaction patterns of each cluster, we find that those patterns are repeated in all the early stages of the course. Finally, we show how four out of those six student-LMS interaction patterns have a strong correlation with students' performance. •Early prediction of students' performance is achieved by analyzing LMS logs.•Our models detect at-risk and excellent students at early stages of the courses.•We find six student-LMS interaction patterns repeated in all stages of the course.•Four student clusters are correlated with the students' performance.•Our predictive and clustering models do not depend on particular course features.
AbstractList The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized additional activities. This is why there are research works aimed to early detect students’ performance. Some of them try to achieve it with the analysis of LMS log files, which store information about student interaction with the LMS. Many works create predictive models with the log files generated for the whole course, but those models are not useful for early prediction because the actual log information used for predicting is different to the one used to train the models. Other works do create predictive models with the log information retrieved at the early stages of courses, but they are just focused on a particular type of course. In this work, we use machine learning to create models for the early prediction of students' performance in solving LMS assignments, by just analyzing the LMS log files generated up to the moment of prediction. Moreover, our models are course agnostic, because the datasets are created with all the University of Oviedo1 courses for one academic year. We predict students' performance at 10%, 25%, 33% and 50% of the course length. Our objective is not to predict the exact student's mark in LMS assignments, but to detect at-risk, fail and excellent students in the early stages of the course. That is why we create different classification models for each of those three student groups. Decision tree, nave Bayes, logistic regression, multilayer perceptron (MLP) neural network, and support vector machine models are created and evaluated. Accuracies of all the models grow as the moment of prediction increases. Although all the algorithms but nave Bayes show accuracy differences lower than 5%, MLP obtains the best performance: from 80.1% accuracy when 10% of the course has been delivered to 90.1% when half of it has taken place. We also discuss the LMS log entries that most influence the students' performance. By using a clustering algorithm, we detect six different clusters of students regarding their interaction with the LMS. Analyzing the interaction patterns of each cluster, we find that those patterns are repeated in all the early stages of the course. Finally, we show how four out of those six student-LMS interaction patterns have a strong correlation with students' performance. •Early prediction of students' performance is achieved by analyzing LMS logs.•Our models detect at-risk and excellent students at early stages of the courses.•We find six student-LMS interaction patterns repeated in all stages of the course.•Four student clusters are correlated with the students' performance.•Our predictive and clustering models do not depend on particular course features.
ArticleNumber 104108
Author Ortin, Francisco
Paule-Ruíz, Maria del Puerto
Riestra-González, Moises
Author_xml – sequence: 1
  givenname: Moises
  surname: Riestra-González
  fullname: Riestra-González, Moises
  email: moises.riestra@accenture.com
  organization: Accenture SL, Applied Intelligence Department, C/Jimena Fernandez de La Vega 140, Edificio Asturias, Offices 1 A-E, 33202, Gijon, Spain
– sequence: 2
  givenname: Maria del Puerto
  surname: Paule-Ruíz
  fullname: Paule-Ruíz, Maria del Puerto
  email: paule@uniovi.es
  organization: University of Oviedo, Computer Science Department, C/Federico Garcia Lorca 18, 33007, Oviedo, Spain
– sequence: 3
  givenname: Francisco
  surname: Ortin
  fullname: Ortin, Francisco
  email: ortin@uniovi.es
  organization: University of Oviedo, Computer Science Department, C/Federico Garcia Lorca 18, 33007, Oviedo, Spain
BookMark eNqFkE1LAzEQhoNUsK3-BCF_YGs-drMbPIgUv6DFgwpeJGST2Zqy3ZQkLfTfu0t78lLmMDDMM8z7TNCo8x0gdEvJjBIq7tYz4zdbsLsZI2yY5ZRUF2hMq5JnZcW-R2hMuCAZ5bS4QpMY14SQXOTFGP0sdYxuD3ix_MCtX2Grk8a60-0huogbH3D6BQw6tAe8DWCdSc532DfY-F2IkOlV52NyBse0s9AlvIXQYxvdGbhGl41uI9yc-hR9PT99zl-zxfvL2_xxkRlOZMp0bksuRdloZrgsRCWF5qwC3VcteV2DoVxawmRZNLSom6psbL8DIueMScGn6P541wQfY4BGGZf08GgK2rWKEjWYUmt1MqUGU-poqqeLf_Q2uI0Oh7Pcw5GDPtreQVDROOhjWxfAJGW9O3PhD0nQicc
CitedBy_id crossref_primary_10_1007_s10639_022_11120_6
crossref_primary_10_1007_s40747_024_01476_2
crossref_primary_10_3390_educsci12120935
crossref_primary_10_1080_09639284_2022_2145570
crossref_primary_10_1007_s42087_024_00399_1
crossref_primary_10_1016_j_simpa_2022_100220
crossref_primary_10_1007_s10639_022_11146_w
crossref_primary_10_1088_1742_6596_2106_1_012018
crossref_primary_10_1080_10494820_2022_2146141
crossref_primary_10_1016_j_caeai_2022_100103
crossref_primary_10_3390_bdcc6010006
crossref_primary_10_1016_j_eswa_2023_121555
crossref_primary_10_1186_s40561_024_00340_7
crossref_primary_10_5817_SP2023_3_3
crossref_primary_10_1371_journal_pone_0309838
crossref_primary_10_1002_cae_22572
crossref_primary_10_1038_s41597_024_03392_z
crossref_primary_10_3390_app12041885
crossref_primary_10_1016_j_caeai_2023_100175
crossref_primary_10_31862_1819_463X_2023_4_71_83
crossref_primary_10_3390_informatics11030046
crossref_primary_10_1080_15391523_2024_2437741
crossref_primary_10_1016_j_caeai_2022_100108
crossref_primary_10_1007_s10639_023_12308_0
crossref_primary_10_1186_s40537_024_00918_5
crossref_primary_10_1109_ACCESS_2024_3471681
crossref_primary_10_3390_su142214685
crossref_primary_10_1007_s10639_025_13370_6
crossref_primary_10_1109_ACCESS_2024_3496929
crossref_primary_10_3390_math12203272
crossref_primary_10_46647_ijetms_2023_v07i02_068
crossref_primary_10_1109_ACCESS_2024_3361479
crossref_primary_10_22363_2312_8631_2023_20_1_7_19
crossref_primary_10_3390_app112411845
crossref_primary_10_3390_educsci15030279
crossref_primary_10_1111_exsy_13837
crossref_primary_10_1155_2022_3183492
crossref_primary_10_3390_su16073034
crossref_primary_10_1109_ACCESS_2022_3193935
crossref_primary_10_1080_00220973_2024_2376606
crossref_primary_10_3389_fpsyg_2022_932777
crossref_primary_10_53759_7669_jmc202505042
crossref_primary_10_1016_j_caeai_2024_100244
crossref_primary_10_3390_su14137965
crossref_primary_10_1016_j_caeai_2025_100369
crossref_primary_10_3389_feduc_2024_1421479
crossref_primary_10_1109_ACCESS_2024_3429554
crossref_primary_10_1177_00131644241255109
crossref_primary_10_3389_frai_2022_921476
crossref_primary_10_1108_AEDS_08_2024_0166
crossref_primary_10_18037_ausbd_1272568
crossref_primary_10_3390_app13179675
crossref_primary_10_1007_s40747_024_01344_z
crossref_primary_10_1186_s40561_022_00210_0
crossref_primary_10_3390_fi16060206
crossref_primary_10_1007_s10639_023_11642_7
crossref_primary_10_1007_s11277_024_11197_x
crossref_primary_10_1007_s40747_022_00731_8
crossref_primary_10_1007_s00521_021_06712_1
crossref_primary_10_1016_j_caeai_2023_100196
crossref_primary_10_1109_ACCESS_2024_3351186
crossref_primary_10_1080_09639284_2022_2075707
crossref_primary_10_1007_s10639_024_12709_9
crossref_primary_10_1007_s13132_024_02159_6
crossref_primary_10_1016_j_ijedro_2024_100380
crossref_primary_10_1016_j_procs_2024_09_682
crossref_primary_10_1080_10447318_2022_2049145
crossref_primary_10_4018_IJDET_296702
crossref_primary_10_1007_s40692_025_00358_x
crossref_primary_10_3390_electronics11030468
crossref_primary_10_1109_ACCESS_2023_3285612
Cites_doi 10.1016/j.future.2019.12.016
10.1093/bioinformatics/bty373
10.1186/1471-2105-10-213
10.3390/e22010012
10.1109/34.990133
10.1109/TLT.2016.2616312
10.1002/nur.20100
10.1002/cae.20456
10.1080/03075079.2018.1466872
10.1016/j.iheduc.2015.11.001
10.1016/j.compedu.2016.02.006
10.1016/j.csi.2007.07.006
10.1016/j.compedu.2013.06.009
10.1016/j.chb.2014.04.002
10.1016/j.compedu.2019.103676
10.3390/app10010354
10.1016/j.chb.2017.01.047
10.1016/j.iheduc.2015.10.002
10.2466/PR0.96.3.1015-1021
10.1016/j.compedu.2009.09.008
10.1037/a0018082
10.1007/s11251-005-1278-3
10.1007/BF00143964
10.1007/s12528-017-9161-1
10.1109/TKDE.2012.35
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compedu.2020.104108
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 1873-782X
ExternalDocumentID 10_1016_j_compedu_2020_104108
S0360131520303067
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHQT
ACRLP
ACTDY
ADBBV
ADEZE
ADHUB
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HLZ
HMY
HVGLF
HZ~
IHE
J1W
KOM
LG9
M3Y
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPCBC
SSB
SSO
SSS
SSZ
T5K
UNMZH
VH1
WUQ
XSW
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-a4d73967fa2c3956896a328eaeaeb93bbec139d02975f15bf87fd96ae64322963
IEDL.DBID .~1
ISSN 0360-1315
IngestDate Thu Oct 09 00:33:12 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:48:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Learning management systems
Student performance
Machine learning
Early prediction
Interaction patterns
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-a4d73967fa2c3956896a328eaeaeb93bbec139d02975f15bf87fd96ae64322963
ParticipantIDs crossref_citationtrail_10_1016_j_compedu_2020_104108
crossref_primary_10_1016_j_compedu_2020_104108
elsevier_sciencedirect_doi_10_1016_j_compedu_2020_104108
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Computers and education
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lopez, Luna, Romero, Ventura (bib28) 2012
Menze, Kelm, Masuch, Himmelreich, Bachert, Petrich, Hamprecht (bib31) 2009; 10
Costa, Fonseca, Santana, de Araújo, Rego (bib7) 2017; 73
Kadoić, Oreški (bib20) 2018
Rout, Mishra, Mallick (bib43) 2018
Kelly, Nanjiani (bib21) 2004
Tukey (bib51) 1977
Garcia, Luengo, Sáez, Lopez, Herrera (bib12) 2012; 25
Kuzilek, Hlosta, Herrmannova, Zdrahal, Wolff (bib22) 2015
del Puerto Paule Ruiz, Díaz, Ortin, Pérez (bib38) 2008; 30
Jokhan, Sharma, Singh (bib19) 2019; 44
Rijsbergen (bib40) 1979
Gerritsen (bib14) 2017
Ellis (bib10) 2009
Gašević, Dawson, Rogers, Gasevic (bib13) 2016; 28
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib37) 2011; 12
Zhao, Liu (bib52) 2007
Tomašev, Radovanovič, Mladenič, Ivanovič (bib48) 2011
Fox-Wasylyshyn, El-Masri (bib11) 2005; 28
Li, Singh, Bunk (bib24) 2018
Ljubobratović, Matetić (bib25) 2019
Kvålseth (bib23) 1985; 39
Trivedi, Pardos, Heffernan (bib49) 2011
Reitermanová (bib39) 2010
Cole, Foster (bib5) 2007
Conijn, Snijders, Kleingeld, Matzat (bib6) 2017; 10
Hu, Lo, Shih (bib17) 2014; 36
Llamas, Caeiro, Castro, Plaza, Tovar (bib26) 2011
Cerezo, Sánchez-Santillán, Paule-Ruiz, Núñez (bib3) 2016; 96
Nembrini, König, Wright (bib33) 2018; 34
Park, Yu, Jo (bib36) 2016; 29
Talavera, Gaudioso (bib46) 2004
Mitra, Murthy, Pal (bib32) 2002; 24
Romero, López, Luna, Ventura (bib42) 2013; 68
Hooshyar, Pedaste, Yang (bib16) 2020; 22
Macfadyen, Dawson (bib29) 2010; 54
Schlomer, Bauman, Card (bib44) 2010; 57
Tuckman (bib50) 2005; 96
Romero, Espejo, Zafra, Romero, Ventura (bib41) 2013; 21
Dabbagh, Kitsantas (bib8) 2005; 33
Okubo, Yamashita, Shimada, Ogata (bib34) 2017
Tomasevic, Gvozdenovic, Vranes (bib47) 2020; 143
Brusilovsky (bib2) 1996; 16
López-Zambrano, Lara, Romero (bib27) 2020; 10
Marbouti, Diefes-Dux (bib30) 2015
B. K. Singh, K. Verma, A. S. Thoke, Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification, International Journal of Computer Application 116 (19).
Cobo, García-Solórzano, Morán, Santamaría, Monzo, Melenchón (bib4) 2012
Abdi, Williams (bib1) 2010
Ortin, Rodriguez-Prieto, Pascual, Garcia (bib35) 2020; 105
Davis, Goadrich (bib9) 2006
Henrie, Bodily, Larsen, Graham (bib15) 2018; 30
Hung, Zhang (bib18) 2008; 4
10.1016/j.compedu.2020.104108_bib45
Llamas (10.1016/j.compedu.2020.104108_bib26) 2011
Gerritsen (10.1016/j.compedu.2020.104108_bib14) 2017
Costa (10.1016/j.compedu.2020.104108_bib7) 2017; 73
del Puerto Paule Ruiz (10.1016/j.compedu.2020.104108_bib38) 2008; 30
Tukey (10.1016/j.compedu.2020.104108_bib51) 1977
Tomašev (10.1016/j.compedu.2020.104108_bib48) 2011
Zhao (10.1016/j.compedu.2020.104108_bib52) 2007
Gašević (10.1016/j.compedu.2020.104108_bib13) 2016; 28
Reitermanová (10.1016/j.compedu.2020.104108_bib39) 2010
Ortin (10.1016/j.compedu.2020.104108_bib35) 2020; 105
Pedregosa (10.1016/j.compedu.2020.104108_bib37) 2011; 12
Davis (10.1016/j.compedu.2020.104108_bib9) 2006
Jokhan (10.1016/j.compedu.2020.104108_bib19) 2019; 44
Abdi (10.1016/j.compedu.2020.104108_bib1) 2010
Garcia (10.1016/j.compedu.2020.104108_bib12) 2012; 25
Hung (10.1016/j.compedu.2020.104108_bib18) 2008; 4
Kadoić (10.1016/j.compedu.2020.104108_bib20) 2018
Mitra (10.1016/j.compedu.2020.104108_bib32) 2002; 24
Ellis (10.1016/j.compedu.2020.104108_bib10) 2009
Li (10.1016/j.compedu.2020.104108_bib24) 2018
Romero (10.1016/j.compedu.2020.104108_bib41) 2013; 21
Hooshyar (10.1016/j.compedu.2020.104108_bib16) 2020; 22
Kvålseth (10.1016/j.compedu.2020.104108_bib23) 1985; 39
Schlomer (10.1016/j.compedu.2020.104108_bib44) 2010; 57
Trivedi (10.1016/j.compedu.2020.104108_bib49) 2011
Kuzilek (10.1016/j.compedu.2020.104108_bib22) 2015
Marbouti (10.1016/j.compedu.2020.104108_bib30) 2015
López-Zambrano (10.1016/j.compedu.2020.104108_bib27) 2020; 10
Cerezo (10.1016/j.compedu.2020.104108_bib3) 2016; 96
Cobo (10.1016/j.compedu.2020.104108_bib4) 2012
Kelly (10.1016/j.compedu.2020.104108_bib21) 2004
Tuckman (10.1016/j.compedu.2020.104108_bib50) 2005; 96
Romero (10.1016/j.compedu.2020.104108_bib42) 2013; 68
Brusilovsky (10.1016/j.compedu.2020.104108_bib2) 1996; 16
Tomasevic (10.1016/j.compedu.2020.104108_bib47) 2020; 143
Ljubobratović (10.1016/j.compedu.2020.104108_bib25) 2019
Fox-Wasylyshyn (10.1016/j.compedu.2020.104108_bib11) 2005; 28
Nembrini (10.1016/j.compedu.2020.104108_bib33) 2018; 34
Hu (10.1016/j.compedu.2020.104108_bib17) 2014; 36
Menze (10.1016/j.compedu.2020.104108_bib31) 2009; 10
Okubo (10.1016/j.compedu.2020.104108_bib34) 2017
Macfadyen (10.1016/j.compedu.2020.104108_bib29) 2010; 54
Conijn (10.1016/j.compedu.2020.104108_bib6) 2017; 10
Lopez (10.1016/j.compedu.2020.104108_bib28) 2012
Park (10.1016/j.compedu.2020.104108_bib36) 2016; 29
Dabbagh (10.1016/j.compedu.2020.104108_bib8) 2005; 33
Henrie (10.1016/j.compedu.2020.104108_bib15) 2018; 30
Rijsbergen (10.1016/j.compedu.2020.104108_bib40) 1979
Rout (10.1016/j.compedu.2020.104108_bib43) 2018
Cole (10.1016/j.compedu.2020.104108_bib5) 2007
Talavera (10.1016/j.compedu.2020.104108_bib46) 2004
References_xml – volume: 29
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib36
  article-title: Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute
  publication-title: The Internet and Higher Education
– volume: 143
  start-page: 1
  year: 2020
  end-page: 18
  ident: bib47
  article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Computers & Education
– volume: 30
  start-page: 62
  year: 2008
  end-page: 70
  ident: bib38
  article-title: Adaptation in current e-learning systems
  publication-title: Computer Standards & Interfaces
– volume: 73
  start-page: 247
  year: 2017
  end-page: 256
  ident: bib7
  article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses
  publication-title: Computers in Human Behavior
– volume: 36
  start-page: 469
  year: 2014
  end-page: 478
  ident: bib17
  article-title: Developing early warning systems to predict students’ online learning performance
  publication-title: Computers in Human Behavior
– year: 2010
  ident: bib39
  article-title: Data splitting
  publication-title: Proceedings of the 19th annual conference of doctoral student
– volume: 105
  start-page: 380
  year: 2020
  end-page: 394
  ident: bib35
  article-title: Heterogeneous tree structure classification to label Java programmers according to their expertise level
  publication-title: Future Generation Computer Systems
– start-page: 1151
  year: 2007
  end-page: 1157
  ident: bib52
  article-title: Spectral feature selection for supervised and unsupervised learning
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 57
  start-page: 1
  year: 2010
  ident: bib44
  article-title: Best practices for missing data management in counseling psychology
  publication-title: Journal of Counseling Psychology
– start-page: 248
  year: 2012
  end-page: 251
  ident: bib4
  article-title: Using agglomerative hierarchical clustering to model learner participation profiles in online discussion forums
  publication-title: Proceedings of the 2nd international conference on learning Analytics and knowledge
– volume: 16
  start-page: 87
  year: 1996
  end-page: 129
  ident: bib2
  article-title: Methods and techniques of adaptive hypermedia
  publication-title: User Modeling and User-Adapted Interaction
– start-page: 1982
  year: 2018
  end-page: 1987
  ident: bib24
  article-title: Technology tools in distance education: A review of faculty adoption
  publication-title: EdMedia+ innovate learning, association for the advancement of computing in education
– volume: 28
  start-page: 68
  year: 2016
  end-page: 84
  ident: bib13
  article-title: Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success
  publication-title: The Internet and Higher Education
– volume: 21
  start-page: 135
  year: 2013
  end-page: 146
  ident: bib41
  article-title: Web usage mining for predicting final marks of students that use Moodle courses
  publication-title: Computer Applications in Engineering Education
– year: 2017
  ident: bib14
  article-title: Predicting student performance with neural networks
– start-page: 233
  year: 2006
  end-page: 240
  ident: bib9
  article-title: The relationship between precision-recall and ROC curves
  publication-title: Proceedings of the 23rd international conference on machine learning
– volume: 4
  start-page: 426
  year: 2008
  end-page: 437
  ident: bib18
  article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching
  publication-title: MERLOT Journal of Online Learning and Teaching
– start-page: 113
  year: 2019
  ident: bib25
  article-title: Using LMS activity logs to predict student failure with random forest algorithm
  publication-title: The Future of Information Sciences
– year: 2011
  ident: bib26
  article-title: Use of LMS functionalities in engineering education
  publication-title: 2011 frontiers in education conference (FIE)
– volume: 25
  start-page: 734
  year: 2012
  end-page: 750
  ident: bib12
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– year: 1979
  ident: bib40
  article-title: Information retrieval
– start-page: 1
  year: 2015
  end-page: 16
  ident: bib22
  article-title: OU analyse: Analysing at-risk students at the open university
  publication-title: Learning Analytics Review
– volume: 68
  start-page: 458
  year: 2013
  end-page: 472
  ident: bib42
  article-title: Predicting students' final performance from participation in on-line discussion forums
  publication-title: Computers & Education
– start-page: 654
  year: 2018
  end-page: 659
  ident: bib20
  article-title: Analysis of student behavior and success based on logs in Moodle
  publication-title: 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO)
– volume: 10
  start-page: 213
  year: 2009
  ident: bib31
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
– reference: B. K. Singh, K. Verma, A. S. Thoke, Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification, International Journal of Computer Application 116 (19).
– start-page: 598
  year: 2017
  end-page: 599
  ident: bib34
  article-title: A neural network approach for students' performance prediction
  publication-title: Proceedings of the seventh international learning Analytics & knowledge conference
– volume: 54
  start-page: 588
  year: 2010
  end-page: 599
  ident: bib29
  article-title: Mining LMS data to develop an “early warning system” for educators: A proof of concept
  publication-title: Computers & Education
– volume: 96
  start-page: 1015
  year: 2005
  end-page: 1021
  ident: bib50
  article-title: Relations of academic procrastination, rationalizations, and performance in a web course with deadlines
  publication-title: Psychological Reports
– year: 2007
  ident: bib5
  article-title: Using Moodle: Teaching with the popular open source course management system
– volume: 22
  start-page: 12
  year: 2020
  ident: bib16
  article-title: Mining educational data to predict students’ performance through procrastination behavior
  publication-title: Entropy
– volume: 34
  start-page: 3711
  year: 2018
  end-page: 3718
  ident: bib33
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
– start-page: 17
  year: 2004
  end-page: 23
  ident: bib46
  article-title: Mining student data to characterize similar behavior groups in unstructured collaboration spaces
  publication-title: Workshop on artificial intelligence in CSCL. 16th European conference on artificial intelligence
– volume: 96
  start-page: 42
  year: 2016
  end-page: 54
  ident: bib3
  article-title: Students' LMS interaction patterns and their relationship with achievement: A case study in higher education
  publication-title: Computers & Education
– start-page: 1
  year: 2015
  end-page: 10
  ident: bib30
  article-title: Building course-specific regression-based models to identify at-risk students
  publication-title: The american society for engineering educators annual conference
– volume: 24
  start-page: 301
  year: 2002
  end-page: 312
  ident: bib32
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 39
  start-page: 279
  year: 1985
  end-page: 285
  ident: bib23
  article-title: Cautionary note about R2
  publication-title: The American Statistician
– year: 1977
  ident: bib51
  article-title: Exploratory data analysis
– volume: 44
  start-page: 1900
  year: 2019
  end-page: 1911
  ident: bib19
  article-title: Early warning system as a predictor for student performance in higher education blended courses
  publication-title: Studies in Higher Education
– start-page: 377
  year: 2011
  end-page: 384
  ident: bib49
  article-title: Clustering students to generate an ensemble to improve standard test score predictions
  publication-title: International conference on artificial intelligence in education
– volume: 10
  start-page: 17
  year: 2017
  end-page: 29
  ident: bib6
  article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS
  publication-title: IEEE Transactions on Learning Technologies
– year: 2004
  ident: bib21
  article-title: The business case for E-learning
– start-page: 183
  year: 2011
  end-page: 195
  ident: bib48
  article-title: The role of hubness in clustering high-dimensional data
  publication-title: Proceedings of the 15th pacific-asia conference on advances in knowledge discovery and data mining - volume Part I, PAKDD’11
– start-page: 1
  year: 2010
  end-page: 5
  ident: bib1
  article-title: Tukey's honestly significant difference (HSD) test
  publication-title: Encyclopedia of research design
– volume: 10
  start-page: 354
  year: 2020
  ident: bib27
  article-title: Towards portability of models for predicting students’ final performance in university courses starting from Moodle logs
  publication-title: Applied Sciences
– volume: 33
  start-page: 513
  year: 2005
  end-page: 540
  ident: bib8
  article-title: Using web-based pedagogical tools as scaffolds for self-regulated learning
  publication-title: Instructional Science
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 431
  year: 2018
  end-page: 443
  ident: bib43
  article-title: Handling imbalanced data: A survey
  publication-title: International proceedings on advances in soft computing, intelligent systems and applications
– start-page: 1
  year: 2009
  end-page: 8
  ident: bib10
  article-title: Field guide to learning management systems
  publication-title: ASTD learning circuits
– year: 2012
  ident: bib28
  article-title: Classification via clustering for predicting final marks based on student participation in forums
  publication-title: International Educational Data Mining Society
– volume: 28
  start-page: 488
  year: 2005
  end-page: 495
  ident: bib11
  article-title: Handling missing data in self-report measures
  publication-title: Research in Nursing & Health
– volume: 30
  start-page: 344
  year: 2018
  end-page: 362
  ident: bib15
  article-title: Exploring the potential of LMS log data as a proxy measure of student engagement
  publication-title: Journal of Computing in Higher Education
– volume: 105
  start-page: 380
  year: 2020
  ident: 10.1016/j.compedu.2020.104108_bib35
  article-title: Heterogeneous tree structure classification to label Java programmers according to their expertise level
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.12.016
– volume: 34
  start-page: 3711
  issue: 21
  year: 2018
  ident: 10.1016/j.compedu.2020.104108_bib33
  article-title: The revival of the Gini importance?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty373
– year: 2017
  ident: 10.1016/j.compedu.2020.104108_bib14
– volume: 10
  start-page: 213
  issue: 1
  year: 2009
  ident: 10.1016/j.compedu.2020.104108_bib31
  article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-213
– start-page: 431
  year: 2018
  ident: 10.1016/j.compedu.2020.104108_bib43
  article-title: Handling imbalanced data: A survey
– volume: 22
  start-page: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.compedu.2020.104108_bib16
  article-title: Mining educational data to predict students’ performance through procrastination behavior
  publication-title: Entropy
  doi: 10.3390/e22010012
– volume: 24
  start-page: 301
  issue: 3
  year: 2002
  ident: 10.1016/j.compedu.2020.104108_bib32
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.990133
– volume: 10
  start-page: 17
  issue: 1
  year: 2017
  ident: 10.1016/j.compedu.2020.104108_bib6
  article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS
  publication-title: IEEE Transactions on Learning Technologies
  doi: 10.1109/TLT.2016.2616312
– start-page: 1
  year: 2010
  ident: 10.1016/j.compedu.2020.104108_bib1
  article-title: Tukey's honestly significant difference (HSD) test
– year: 2007
  ident: 10.1016/j.compedu.2020.104108_bib5
– volume: 28
  start-page: 488
  issue: 6
  year: 2005
  ident: 10.1016/j.compedu.2020.104108_bib11
  article-title: Handling missing data in self-report measures
  publication-title: Research in Nursing & Health
  doi: 10.1002/nur.20100
– start-page: 17
  year: 2004
  ident: 10.1016/j.compedu.2020.104108_bib46
  article-title: Mining student data to characterize similar behavior groups in unstructured collaboration spaces
– volume: 21
  start-page: 135
  issue: 1
  year: 2013
  ident: 10.1016/j.compedu.2020.104108_bib41
  article-title: Web usage mining for predicting final marks of students that use Moodle courses
  publication-title: Computer Applications in Engineering Education
  doi: 10.1002/cae.20456
– year: 2004
  ident: 10.1016/j.compedu.2020.104108_bib21
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compedu.2020.104108_bib37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 44
  start-page: 1900
  issue: 11
  year: 2019
  ident: 10.1016/j.compedu.2020.104108_bib19
  article-title: Early warning system as a predictor for student performance in higher education blended courses
  publication-title: Studies in Higher Education
  doi: 10.1080/03075079.2018.1466872
– volume: 29
  start-page: 1
  year: 2016
  ident: 10.1016/j.compedu.2020.104108_bib36
  article-title: Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2015.11.001
– volume: 96
  start-page: 42
  year: 2016
  ident: 10.1016/j.compedu.2020.104108_bib3
  article-title: Students' LMS interaction patterns and their relationship with achievement: A case study in higher education
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2016.02.006
– start-page: 1
  year: 2009
  ident: 10.1016/j.compedu.2020.104108_bib10
  article-title: Field guide to learning management systems
  publication-title: ASTD learning circuits
– year: 2010
  ident: 10.1016/j.compedu.2020.104108_bib39
  article-title: Data splitting
– start-page: 377
  year: 2011
  ident: 10.1016/j.compedu.2020.104108_bib49
  article-title: Clustering students to generate an ensemble to improve standard test score predictions
– start-page: 113
  year: 2019
  ident: 10.1016/j.compedu.2020.104108_bib25
  article-title: Using LMS activity logs to predict student failure with random forest algorithm
  publication-title: The Future of Information Sciences
– start-page: 1
  year: 2015
  ident: 10.1016/j.compedu.2020.104108_bib30
  article-title: Building course-specific regression-based models to identify at-risk students
– year: 1979
  ident: 10.1016/j.compedu.2020.104108_bib40
– volume: 30
  start-page: 62
  issue: 1
  year: 2008
  ident: 10.1016/j.compedu.2020.104108_bib38
  article-title: Adaptation in current e-learning systems
  publication-title: Computer Standards & Interfaces
  doi: 10.1016/j.csi.2007.07.006
– volume: 68
  start-page: 458
  year: 2013
  ident: 10.1016/j.compedu.2020.104108_bib42
  article-title: Predicting students' final performance from participation in on-line discussion forums
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2013.06.009
– start-page: 1982
  year: 2018
  ident: 10.1016/j.compedu.2020.104108_bib24
  article-title: Technology tools in distance education: A review of faculty adoption
– year: 2012
  ident: 10.1016/j.compedu.2020.104108_bib28
  article-title: Classification via clustering for predicting final marks based on student participation in forums
  publication-title: International Educational Data Mining Society
– volume: 36
  start-page: 469
  year: 2014
  ident: 10.1016/j.compedu.2020.104108_bib17
  article-title: Developing early warning systems to predict students’ online learning performance
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2014.04.002
– volume: 4
  start-page: 426
  issue: 4
  year: 2008
  ident: 10.1016/j.compedu.2020.104108_bib18
  article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching
  publication-title: MERLOT Journal of Online Learning and Teaching
– volume: 143
  start-page: 1
  year: 2020
  ident: 10.1016/j.compedu.2020.104108_bib47
  article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2019.103676
– volume: 10
  start-page: 354
  issue: 1
  year: 2020
  ident: 10.1016/j.compedu.2020.104108_bib27
  article-title: Towards portability of models for predicting students’ final performance in university courses starting from Moodle logs
  publication-title: Applied Sciences
  doi: 10.3390/app10010354
– volume: 73
  start-page: 247
  year: 2017
  ident: 10.1016/j.compedu.2020.104108_bib7
  article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2017.01.047
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  ident: 10.1016/j.compedu.2020.104108_bib23
  article-title: Cautionary note about R2
  publication-title: The American Statistician
– start-page: 1
  year: 2015
  ident: 10.1016/j.compedu.2020.104108_bib22
  article-title: OU analyse: Analysing at-risk students at the open university
  publication-title: Learning Analytics Review
– start-page: 1151
  year: 2007
  ident: 10.1016/j.compedu.2020.104108_bib52
  article-title: Spectral feature selection for supervised and unsupervised learning
– start-page: 233
  year: 2006
  ident: 10.1016/j.compedu.2020.104108_bib9
  article-title: The relationship between precision-recall and ROC curves
– volume: 28
  start-page: 68
  year: 2016
  ident: 10.1016/j.compedu.2020.104108_bib13
  article-title: Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success
  publication-title: The Internet and Higher Education
  doi: 10.1016/j.iheduc.2015.10.002
– volume: 96
  start-page: 1015
  issue: 3
  year: 2005
  ident: 10.1016/j.compedu.2020.104108_bib50
  article-title: Relations of academic procrastination, rationalizations, and performance in a web course with deadlines
  publication-title: Psychological Reports
  doi: 10.2466/PR0.96.3.1015-1021
– volume: 54
  start-page: 588
  issue: 2
  year: 2010
  ident: 10.1016/j.compedu.2020.104108_bib29
  article-title: Mining LMS data to develop an “early warning system” for educators: A proof of concept
  publication-title: Computers & Education
  doi: 10.1016/j.compedu.2009.09.008
– start-page: 183
  year: 2011
  ident: 10.1016/j.compedu.2020.104108_bib48
  article-title: The role of hubness in clustering high-dimensional data
– volume: 57
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.compedu.2020.104108_bib44
  article-title: Best practices for missing data management in counseling psychology
  publication-title: Journal of Counseling Psychology
  doi: 10.1037/a0018082
– year: 2011
  ident: 10.1016/j.compedu.2020.104108_bib26
  article-title: Use of LMS functionalities in engineering education
– start-page: 598
  year: 2017
  ident: 10.1016/j.compedu.2020.104108_bib34
  article-title: A neural network approach for students' performance prediction
– volume: 33
  start-page: 513
  issue: 5
  year: 2005
  ident: 10.1016/j.compedu.2020.104108_bib8
  article-title: Using web-based pedagogical tools as scaffolds for self-regulated learning
  publication-title: Instructional Science
  doi: 10.1007/s11251-005-1278-3
– start-page: 248
  year: 2012
  ident: 10.1016/j.compedu.2020.104108_bib4
  article-title: Using agglomerative hierarchical clustering to model learner participation profiles in online discussion forums
– ident: 10.1016/j.compedu.2020.104108_bib45
– year: 1977
  ident: 10.1016/j.compedu.2020.104108_bib51
– volume: 16
  start-page: 87
  year: 1996
  ident: 10.1016/j.compedu.2020.104108_bib2
  article-title: Methods and techniques of adaptive hypermedia
  publication-title: User Modeling and User-Adapted Interaction
  doi: 10.1007/BF00143964
– volume: 30
  start-page: 344
  issue: 2
  year: 2018
  ident: 10.1016/j.compedu.2020.104108_bib15
  article-title: Exploring the potential of LMS log data as a proxy measure of student engagement
  publication-title: Journal of Computing in Higher Education
  doi: 10.1007/s12528-017-9161-1
– start-page: 654
  year: 2018
  ident: 10.1016/j.compedu.2020.104108_bib20
  article-title: Analysis of student behavior and success based on logs in Moodle
– volume: 25
  start-page: 734
  issue: 4
  year: 2012
  ident: 10.1016/j.compedu.2020.104108_bib12
  article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.35
SSID ssj0004645
Score 2.5812094
Snippet The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104108
SubjectTerms Early prediction
Interaction patterns
Learning management systems
Machine learning
Student performance
Title Massive LMS log data analysis for the early prediction of course-agnostic student performance
URI https://dx.doi.org/10.1016/j.compedu.2020.104108
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-782X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004645
  issn: 0360-1315
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBahXbqUPmn6CBq6KrbllzyG0JA-kiUNZClCsmRIKIlJ07W_vXe23KRQWijejE6Yk3T6ZH33HSG3kU0CE-mYobYcg_04ZgpOASzNrfBNIlJdSQqNxslwGj3M4lmL9JtcGKRVuthfx_QqWrs3nvOmV87n3gRiL4rFxBzmKQJfzGCPUqxi0P0IdnIjq0LF2Jhh620Wj7fAvkv8J8IBNOFtZ4BVJn_an3b2nMEROXRgkfbq7zkmLbs8wTrLjpNxSl5GgH0hXtGn0YRCFKNI-KTKCY1QAKQUAB61qGJMyzVeyqAhXRU0XyF9g1VEO-ievtUil7TcZhKckeng7rk_ZK5gAstDP9uAl00aZklaKJ6HmAeYJSrkwip4dBZqGC8AfAbrVcVFEOtCpIWBNhZgCeewFM_J3nK1tBeEcqWNX1ijLJyhUj8XRokwsoUQkeZCqzaJGjfJ3KmJY1GLV9nQxhbSeVeid2Xt3TbpfpmVtZzGXwaiGQP5bV5ICPm_m17-3_SKHHDkrlQMnWuyt1m_2xsAHxvdqWZXh-z37h-H4098wNoG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHvQifuL8zMFr1y79So8yHFPXXbbBLhKSJoUN2cqcV_9232tTN0EUpLeSF8pL8vJL83u_R8hdYKKODlTooLacA_tx6Eg4BThxZrinIx6rUlIoHUb9SfA0DacN0q1zYZBWaWN_FdPLaG3fuNabbjGbuSOIvSgWEzKYpwh8d8huELIYT2Dtj85WcmRZqRhbO9h8k8bjzrHzAn-KMEBNeN3ZwTKTP21QW5tO75AcWLRI76sPOiINszjGQsuWlHFCXlIAvxCw6CAdUQhjFBmfVFqlEQqIlALCowZljGmxwlsZNKTLnGZL5G84JdMOuqdvlcolLTapBKdk0nsYd_uOrZjgZL6XrMHNOvaTKM4ly3xMBEwi6TNuJDwq8RUMGCA-jQWrwrwTqpzHuYY2BnAJY7AWz0hzsVyYc0KZVNrLjZYGDlGxl3EtuR-YnPNAMa5kiwS1m0Rm5cSxqsWrqHljc2G9K9C7ovJui7S_zIpKT-MvA16Pgfg2MQTE_N9NL_5vekv2-uN0IAaPw-dLss-QyFLSda5Ic716N9eARNbqppxpn6ki25s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+LMS+log+data+analysis+for+the+early+prediction+of+course-agnostic+student+performance&rft.jtitle=Computers+and+education&rft.au=Riestra-Gonz%C3%A1lez%2C+Moises&rft.au=Paule-Ru%C3%ADz%2C+Maria+del+Puerto&rft.au=Ortin%2C+Francisco&rft.date=2021-04-01&rft.issn=0360-1315&rft.volume=163&rft.spage=104108&rft_id=info:doi/10.1016%2Fj.compedu.2020.104108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compedu_2020_104108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1315&client=summon