Massive LMS log data analysis for the early prediction of course-agnostic student performance
The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized add...
        Saved in:
      
    
          | Published in | Computers and education Vol. 163; p. 104108 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.04.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-1315 1873-782X  | 
| DOI | 10.1016/j.compedu.2020.104108 | 
Cover
| Abstract | The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized additional activities. This is why there are research works aimed to early detect students’ performance. Some of them try to achieve it with the analysis of LMS log files, which store information about student interaction with the LMS. Many works create predictive models with the log files generated for the whole course, but those models are not useful for early prediction because the actual log information used for predicting is different to the one used to train the models. Other works do create predictive models with the log information retrieved at the early stages of courses, but they are just focused on a particular type of course.
In this work, we use machine learning to create models for the early prediction of students' performance in solving LMS assignments, by just analyzing the LMS log files generated up to the moment of prediction. Moreover, our models are course agnostic, because the datasets are created with all the University of Oviedo1 courses for one academic year. We predict students' performance at 10%, 25%, 33% and 50% of the course length. Our objective is not to predict the exact student's mark in LMS assignments, but to detect at-risk, fail and excellent students in the early stages of the course. That is why we create different classification models for each of those three student groups. Decision tree, nave Bayes, logistic regression, multilayer perceptron (MLP) neural network, and support vector machine models are created and evaluated. Accuracies of all the models grow as the moment of prediction increases. Although all the algorithms but nave Bayes show accuracy differences lower than 5%, MLP obtains the best performance: from 80.1% accuracy when 10% of the course has been delivered to 90.1% when half of it has taken place. We also discuss the LMS log entries that most influence the students' performance. By using a clustering algorithm, we detect six different clusters of students regarding their interaction with the LMS. Analyzing the interaction patterns of each cluster, we find that those patterns are repeated in all the early stages of the course. Finally, we show how four out of those six student-LMS interaction patterns have a strong correlation with students' performance.
•Early prediction of students' performance is achieved by analyzing LMS logs.•Our models detect at-risk and excellent students at early stages of the courses.•We find six student-LMS interaction patterns repeated in all stages of the course.•Four student clusters are correlated with the students' performance.•Our predictive and clustering models do not depend on particular course features. | 
    
|---|---|
| AbstractList | The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages of the course, we will have more time to improve their performance. Likewise, excellent students could be motivated with customized additional activities. This is why there are research works aimed to early detect students’ performance. Some of them try to achieve it with the analysis of LMS log files, which store information about student interaction with the LMS. Many works create predictive models with the log files generated for the whole course, but those models are not useful for early prediction because the actual log information used for predicting is different to the one used to train the models. Other works do create predictive models with the log information retrieved at the early stages of courses, but they are just focused on a particular type of course.
In this work, we use machine learning to create models for the early prediction of students' performance in solving LMS assignments, by just analyzing the LMS log files generated up to the moment of prediction. Moreover, our models are course agnostic, because the datasets are created with all the University of Oviedo1 courses for one academic year. We predict students' performance at 10%, 25%, 33% and 50% of the course length. Our objective is not to predict the exact student's mark in LMS assignments, but to detect at-risk, fail and excellent students in the early stages of the course. That is why we create different classification models for each of those three student groups. Decision tree, nave Bayes, logistic regression, multilayer perceptron (MLP) neural network, and support vector machine models are created and evaluated. Accuracies of all the models grow as the moment of prediction increases. Although all the algorithms but nave Bayes show accuracy differences lower than 5%, MLP obtains the best performance: from 80.1% accuracy when 10% of the course has been delivered to 90.1% when half of it has taken place. We also discuss the LMS log entries that most influence the students' performance. By using a clustering algorithm, we detect six different clusters of students regarding their interaction with the LMS. Analyzing the interaction patterns of each cluster, we find that those patterns are repeated in all the early stages of the course. Finally, we show how four out of those six student-LMS interaction patterns have a strong correlation with students' performance.
•Early prediction of students' performance is achieved by analyzing LMS logs.•Our models detect at-risk and excellent students at early stages of the courses.•We find six student-LMS interaction patterns repeated in all stages of the course.•Four student clusters are correlated with the students' performance.•Our predictive and clustering models do not depend on particular course features. | 
    
| ArticleNumber | 104108 | 
    
| Author | Ortin, Francisco Paule-Ruíz, Maria del Puerto Riestra-González, Moises  | 
    
| Author_xml | – sequence: 1 givenname: Moises surname: Riestra-González fullname: Riestra-González, Moises email: moises.riestra@accenture.com organization: Accenture SL, Applied Intelligence Department, C/Jimena Fernandez de La Vega 140, Edificio Asturias, Offices 1 A-E, 33202, Gijon, Spain – sequence: 2 givenname: Maria del Puerto surname: Paule-Ruíz fullname: Paule-Ruíz, Maria del Puerto email: paule@uniovi.es organization: University of Oviedo, Computer Science Department, C/Federico Garcia Lorca 18, 33007, Oviedo, Spain – sequence: 3 givenname: Francisco surname: Ortin fullname: Ortin, Francisco email: ortin@uniovi.es organization: University of Oviedo, Computer Science Department, C/Federico Garcia Lorca 18, 33007, Oviedo, Spain  | 
    
| BookMark | eNqFkE1LAzEQhoNUsK3-BCF_YGs-drMbPIgUv6DFgwpeJGST2Zqy3ZQkLfTfu0t78lLmMDDMM8z7TNCo8x0gdEvJjBIq7tYz4zdbsLsZI2yY5ZRUF2hMq5JnZcW-R2hMuCAZ5bS4QpMY14SQXOTFGP0sdYxuD3ix_MCtX2Grk8a60-0huogbH3D6BQw6tAe8DWCdSc532DfY-F2IkOlV52NyBse0s9AlvIXQYxvdGbhGl41uI9yc-hR9PT99zl-zxfvL2_xxkRlOZMp0bksuRdloZrgsRCWF5qwC3VcteV2DoVxawmRZNLSom6psbL8DIueMScGn6P541wQfY4BGGZf08GgK2rWKEjWYUmt1MqUGU-poqqeLf_Q2uI0Oh7Pcw5GDPtreQVDROOhjWxfAJGW9O3PhD0nQicc | 
    
| CitedBy_id | crossref_primary_10_1007_s10639_022_11120_6 crossref_primary_10_1007_s40747_024_01476_2 crossref_primary_10_3390_educsci12120935 crossref_primary_10_1080_09639284_2022_2145570 crossref_primary_10_1007_s42087_024_00399_1 crossref_primary_10_1016_j_simpa_2022_100220 crossref_primary_10_1007_s10639_022_11146_w crossref_primary_10_1088_1742_6596_2106_1_012018 crossref_primary_10_1080_10494820_2022_2146141 crossref_primary_10_1016_j_caeai_2022_100103 crossref_primary_10_3390_bdcc6010006 crossref_primary_10_1016_j_eswa_2023_121555 crossref_primary_10_1186_s40561_024_00340_7 crossref_primary_10_5817_SP2023_3_3 crossref_primary_10_1371_journal_pone_0309838 crossref_primary_10_1002_cae_22572 crossref_primary_10_1038_s41597_024_03392_z crossref_primary_10_3390_app12041885 crossref_primary_10_1016_j_caeai_2023_100175 crossref_primary_10_31862_1819_463X_2023_4_71_83 crossref_primary_10_3390_informatics11030046 crossref_primary_10_1080_15391523_2024_2437741 crossref_primary_10_1016_j_caeai_2022_100108 crossref_primary_10_1007_s10639_023_12308_0 crossref_primary_10_1186_s40537_024_00918_5 crossref_primary_10_1109_ACCESS_2024_3471681 crossref_primary_10_3390_su142214685 crossref_primary_10_1007_s10639_025_13370_6 crossref_primary_10_1109_ACCESS_2024_3496929 crossref_primary_10_3390_math12203272 crossref_primary_10_46647_ijetms_2023_v07i02_068 crossref_primary_10_1109_ACCESS_2024_3361479 crossref_primary_10_22363_2312_8631_2023_20_1_7_19 crossref_primary_10_3390_app112411845 crossref_primary_10_3390_educsci15030279 crossref_primary_10_1111_exsy_13837 crossref_primary_10_1155_2022_3183492 crossref_primary_10_3390_su16073034 crossref_primary_10_1109_ACCESS_2022_3193935 crossref_primary_10_1080_00220973_2024_2376606 crossref_primary_10_3389_fpsyg_2022_932777 crossref_primary_10_53759_7669_jmc202505042 crossref_primary_10_1016_j_caeai_2024_100244 crossref_primary_10_3390_su14137965 crossref_primary_10_1016_j_caeai_2025_100369 crossref_primary_10_3389_feduc_2024_1421479 crossref_primary_10_1109_ACCESS_2024_3429554 crossref_primary_10_1177_00131644241255109 crossref_primary_10_3389_frai_2022_921476 crossref_primary_10_1108_AEDS_08_2024_0166 crossref_primary_10_18037_ausbd_1272568 crossref_primary_10_3390_app13179675 crossref_primary_10_1007_s40747_024_01344_z crossref_primary_10_1186_s40561_022_00210_0 crossref_primary_10_3390_fi16060206 crossref_primary_10_1007_s10639_023_11642_7 crossref_primary_10_1007_s11277_024_11197_x crossref_primary_10_1007_s40747_022_00731_8 crossref_primary_10_1007_s00521_021_06712_1 crossref_primary_10_1016_j_caeai_2023_100196 crossref_primary_10_1109_ACCESS_2024_3351186 crossref_primary_10_1080_09639284_2022_2075707 crossref_primary_10_1007_s10639_024_12709_9 crossref_primary_10_1007_s13132_024_02159_6 crossref_primary_10_1016_j_ijedro_2024_100380 crossref_primary_10_1016_j_procs_2024_09_682 crossref_primary_10_1080_10447318_2022_2049145 crossref_primary_10_4018_IJDET_296702 crossref_primary_10_1007_s40692_025_00358_x crossref_primary_10_3390_electronics11030468 crossref_primary_10_1109_ACCESS_2023_3285612  | 
    
| Cites_doi | 10.1016/j.future.2019.12.016 10.1093/bioinformatics/bty373 10.1186/1471-2105-10-213 10.3390/e22010012 10.1109/34.990133 10.1109/TLT.2016.2616312 10.1002/nur.20100 10.1002/cae.20456 10.1080/03075079.2018.1466872 10.1016/j.iheduc.2015.11.001 10.1016/j.compedu.2016.02.006 10.1016/j.csi.2007.07.006 10.1016/j.compedu.2013.06.009 10.1016/j.chb.2014.04.002 10.1016/j.compedu.2019.103676 10.3390/app10010354 10.1016/j.chb.2017.01.047 10.1016/j.iheduc.2015.10.002 10.2466/PR0.96.3.1015-1021 10.1016/j.compedu.2009.09.008 10.1037/a0018082 10.1007/s11251-005-1278-3 10.1007/BF00143964 10.1007/s12528-017-9161-1 10.1109/TKDE.2012.35  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2020 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.compedu.2020.104108 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Education | 
    
| EISSN | 1873-782X | 
    
| ExternalDocumentID | 10_1016_j_compedu_2020_104108 S0360131520303067  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 6J9 6TJ 7-5 71M 8P~ 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABIVO ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACHQT ACRLP ACTDY ADBBV ADEZE ADHUB ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HF~ HLZ HMY HVGLF HZ~ IHE J1W KOM LG9 M3Y M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPCBC SSB SSO SSS SSZ T5K UNMZH VH1 WUQ XSW ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c309t-a4d73967fa2c3956896a328eaeaeb93bbec139d02975f15bf87fd96ae64322963 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-1315 | 
    
| IngestDate | Thu Oct 09 00:33:12 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:48:49 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Learning management systems Student performance Machine learning Early prediction Interaction patterns  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c309t-a4d73967fa2c3956896a328eaeaeb93bbec139d02975f15bf87fd96ae64322963 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_compedu_2020_104108 crossref_primary_10_1016_j_compedu_2020_104108 elsevier_sciencedirect_doi_10_1016_j_compedu_2020_104108  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2021 2021-04-00  | 
    
| PublicationDateYYYYMMDD | 2021-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers and education | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Lopez, Luna, Romero, Ventura (bib28) 2012 Menze, Kelm, Masuch, Himmelreich, Bachert, Petrich, Hamprecht (bib31) 2009; 10 Costa, Fonseca, Santana, de Araújo, Rego (bib7) 2017; 73 Kadoić, Oreški (bib20) 2018 Rout, Mishra, Mallick (bib43) 2018 Kelly, Nanjiani (bib21) 2004 Tukey (bib51) 1977 Garcia, Luengo, Sáez, Lopez, Herrera (bib12) 2012; 25 Kuzilek, Hlosta, Herrmannova, Zdrahal, Wolff (bib22) 2015 del Puerto Paule Ruiz, Díaz, Ortin, Pérez (bib38) 2008; 30 Jokhan, Sharma, Singh (bib19) 2019; 44 Rijsbergen (bib40) 1979 Gerritsen (bib14) 2017 Ellis (bib10) 2009 Gašević, Dawson, Rogers, Gasevic (bib13) 2016; 28 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib37) 2011; 12 Zhao, Liu (bib52) 2007 Tomašev, Radovanovič, Mladenič, Ivanovič (bib48) 2011 Fox-Wasylyshyn, El-Masri (bib11) 2005; 28 Li, Singh, Bunk (bib24) 2018 Ljubobratović, Matetić (bib25) 2019 Kvålseth (bib23) 1985; 39 Trivedi, Pardos, Heffernan (bib49) 2011 Reitermanová (bib39) 2010 Cole, Foster (bib5) 2007 Conijn, Snijders, Kleingeld, Matzat (bib6) 2017; 10 Hu, Lo, Shih (bib17) 2014; 36 Llamas, Caeiro, Castro, Plaza, Tovar (bib26) 2011 Cerezo, Sánchez-Santillán, Paule-Ruiz, Núñez (bib3) 2016; 96 Nembrini, König, Wright (bib33) 2018; 34 Park, Yu, Jo (bib36) 2016; 29 Talavera, Gaudioso (bib46) 2004 Mitra, Murthy, Pal (bib32) 2002; 24 Romero, López, Luna, Ventura (bib42) 2013; 68 Hooshyar, Pedaste, Yang (bib16) 2020; 22 Macfadyen, Dawson (bib29) 2010; 54 Schlomer, Bauman, Card (bib44) 2010; 57 Tuckman (bib50) 2005; 96 Romero, Espejo, Zafra, Romero, Ventura (bib41) 2013; 21 Dabbagh, Kitsantas (bib8) 2005; 33 Okubo, Yamashita, Shimada, Ogata (bib34) 2017 Tomasevic, Gvozdenovic, Vranes (bib47) 2020; 143 Brusilovsky (bib2) 1996; 16 López-Zambrano, Lara, Romero (bib27) 2020; 10 Marbouti, Diefes-Dux (bib30) 2015 B. K. Singh, K. Verma, A. S. Thoke, Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification, International Journal of Computer Application 116 (19). Cobo, García-Solórzano, Morán, Santamaría, Monzo, Melenchón (bib4) 2012 Abdi, Williams (bib1) 2010 Ortin, Rodriguez-Prieto, Pascual, Garcia (bib35) 2020; 105 Davis, Goadrich (bib9) 2006 Henrie, Bodily, Larsen, Graham (bib15) 2018; 30 Hung, Zhang (bib18) 2008; 4 10.1016/j.compedu.2020.104108_bib45 Llamas (10.1016/j.compedu.2020.104108_bib26) 2011 Gerritsen (10.1016/j.compedu.2020.104108_bib14) 2017 Costa (10.1016/j.compedu.2020.104108_bib7) 2017; 73 del Puerto Paule Ruiz (10.1016/j.compedu.2020.104108_bib38) 2008; 30 Tukey (10.1016/j.compedu.2020.104108_bib51) 1977 Tomašev (10.1016/j.compedu.2020.104108_bib48) 2011 Zhao (10.1016/j.compedu.2020.104108_bib52) 2007 Gašević (10.1016/j.compedu.2020.104108_bib13) 2016; 28 Reitermanová (10.1016/j.compedu.2020.104108_bib39) 2010 Ortin (10.1016/j.compedu.2020.104108_bib35) 2020; 105 Pedregosa (10.1016/j.compedu.2020.104108_bib37) 2011; 12 Davis (10.1016/j.compedu.2020.104108_bib9) 2006 Jokhan (10.1016/j.compedu.2020.104108_bib19) 2019; 44 Abdi (10.1016/j.compedu.2020.104108_bib1) 2010 Garcia (10.1016/j.compedu.2020.104108_bib12) 2012; 25 Hung (10.1016/j.compedu.2020.104108_bib18) 2008; 4 Kadoić (10.1016/j.compedu.2020.104108_bib20) 2018 Mitra (10.1016/j.compedu.2020.104108_bib32) 2002; 24 Ellis (10.1016/j.compedu.2020.104108_bib10) 2009 Li (10.1016/j.compedu.2020.104108_bib24) 2018 Romero (10.1016/j.compedu.2020.104108_bib41) 2013; 21 Hooshyar (10.1016/j.compedu.2020.104108_bib16) 2020; 22 Kvålseth (10.1016/j.compedu.2020.104108_bib23) 1985; 39 Schlomer (10.1016/j.compedu.2020.104108_bib44) 2010; 57 Trivedi (10.1016/j.compedu.2020.104108_bib49) 2011 Kuzilek (10.1016/j.compedu.2020.104108_bib22) 2015 Marbouti (10.1016/j.compedu.2020.104108_bib30) 2015 López-Zambrano (10.1016/j.compedu.2020.104108_bib27) 2020; 10 Cerezo (10.1016/j.compedu.2020.104108_bib3) 2016; 96 Cobo (10.1016/j.compedu.2020.104108_bib4) 2012 Kelly (10.1016/j.compedu.2020.104108_bib21) 2004 Tuckman (10.1016/j.compedu.2020.104108_bib50) 2005; 96 Romero (10.1016/j.compedu.2020.104108_bib42) 2013; 68 Brusilovsky (10.1016/j.compedu.2020.104108_bib2) 1996; 16 Tomasevic (10.1016/j.compedu.2020.104108_bib47) 2020; 143 Ljubobratović (10.1016/j.compedu.2020.104108_bib25) 2019 Fox-Wasylyshyn (10.1016/j.compedu.2020.104108_bib11) 2005; 28 Nembrini (10.1016/j.compedu.2020.104108_bib33) 2018; 34 Hu (10.1016/j.compedu.2020.104108_bib17) 2014; 36 Menze (10.1016/j.compedu.2020.104108_bib31) 2009; 10 Okubo (10.1016/j.compedu.2020.104108_bib34) 2017 Macfadyen (10.1016/j.compedu.2020.104108_bib29) 2010; 54 Conijn (10.1016/j.compedu.2020.104108_bib6) 2017; 10 Lopez (10.1016/j.compedu.2020.104108_bib28) 2012 Park (10.1016/j.compedu.2020.104108_bib36) 2016; 29 Dabbagh (10.1016/j.compedu.2020.104108_bib8) 2005; 33 Henrie (10.1016/j.compedu.2020.104108_bib15) 2018; 30 Rijsbergen (10.1016/j.compedu.2020.104108_bib40) 1979 Rout (10.1016/j.compedu.2020.104108_bib43) 2018 Cole (10.1016/j.compedu.2020.104108_bib5) 2007 Talavera (10.1016/j.compedu.2020.104108_bib46) 2004  | 
    
| References_xml | – volume: 29 start-page: 1 year: 2016 end-page: 11 ident: bib36 article-title: Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute publication-title: The Internet and Higher Education – volume: 143 start-page: 1 year: 2020 end-page: 18 ident: bib47 article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction publication-title: Computers & Education – volume: 30 start-page: 62 year: 2008 end-page: 70 ident: bib38 article-title: Adaptation in current e-learning systems publication-title: Computer Standards & Interfaces – volume: 73 start-page: 247 year: 2017 end-page: 256 ident: bib7 article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses publication-title: Computers in Human Behavior – volume: 36 start-page: 469 year: 2014 end-page: 478 ident: bib17 article-title: Developing early warning systems to predict students’ online learning performance publication-title: Computers in Human Behavior – year: 2010 ident: bib39 article-title: Data splitting publication-title: Proceedings of the 19th annual conference of doctoral student – volume: 105 start-page: 380 year: 2020 end-page: 394 ident: bib35 article-title: Heterogeneous tree structure classification to label Java programmers according to their expertise level publication-title: Future Generation Computer Systems – start-page: 1151 year: 2007 end-page: 1157 ident: bib52 article-title: Spectral feature selection for supervised and unsupervised learning publication-title: Proceedings of the 24th international conference on Machine learning – volume: 57 start-page: 1 year: 2010 ident: bib44 article-title: Best practices for missing data management in counseling psychology publication-title: Journal of Counseling Psychology – start-page: 248 year: 2012 end-page: 251 ident: bib4 article-title: Using agglomerative hierarchical clustering to model learner participation profiles in online discussion forums publication-title: Proceedings of the 2nd international conference on learning Analytics and knowledge – volume: 16 start-page: 87 year: 1996 end-page: 129 ident: bib2 article-title: Methods and techniques of adaptive hypermedia publication-title: User Modeling and User-Adapted Interaction – start-page: 1982 year: 2018 end-page: 1987 ident: bib24 article-title: Technology tools in distance education: A review of faculty adoption publication-title: EdMedia+ innovate learning, association for the advancement of computing in education – volume: 28 start-page: 68 year: 2016 end-page: 84 ident: bib13 article-title: Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success publication-title: The Internet and Higher Education – volume: 21 start-page: 135 year: 2013 end-page: 146 ident: bib41 article-title: Web usage mining for predicting final marks of students that use Moodle courses publication-title: Computer Applications in Engineering Education – year: 2017 ident: bib14 article-title: Predicting student performance with neural networks – start-page: 233 year: 2006 end-page: 240 ident: bib9 article-title: The relationship between precision-recall and ROC curves publication-title: Proceedings of the 23rd international conference on machine learning – volume: 4 start-page: 426 year: 2008 end-page: 437 ident: bib18 article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching publication-title: MERLOT Journal of Online Learning and Teaching – start-page: 113 year: 2019 ident: bib25 article-title: Using LMS activity logs to predict student failure with random forest algorithm publication-title: The Future of Information Sciences – year: 2011 ident: bib26 article-title: Use of LMS functionalities in engineering education publication-title: 2011 frontiers in education conference (FIE) – volume: 25 start-page: 734 year: 2012 end-page: 750 ident: bib12 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Transactions on Knowledge and Data Engineering – year: 1979 ident: bib40 article-title: Information retrieval – start-page: 1 year: 2015 end-page: 16 ident: bib22 article-title: OU analyse: Analysing at-risk students at the open university publication-title: Learning Analytics Review – volume: 68 start-page: 458 year: 2013 end-page: 472 ident: bib42 article-title: Predicting students' final performance from participation in on-line discussion forums publication-title: Computers & Education – start-page: 654 year: 2018 end-page: 659 ident: bib20 article-title: Analysis of student behavior and success based on logs in Moodle publication-title: 2018 41st international convention on information and communication technology, electronics and microelectronics (MIPRO) – volume: 10 start-page: 213 year: 2009 ident: bib31 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics – reference: B. K. Singh, K. Verma, A. S. Thoke, Investigations on impact of feature normalization techniques on classifier's performance in breast tumor classification, International Journal of Computer Application 116 (19). – start-page: 598 year: 2017 end-page: 599 ident: bib34 article-title: A neural network approach for students' performance prediction publication-title: Proceedings of the seventh international learning Analytics & knowledge conference – volume: 54 start-page: 588 year: 2010 end-page: 599 ident: bib29 article-title: Mining LMS data to develop an “early warning system” for educators: A proof of concept publication-title: Computers & Education – volume: 96 start-page: 1015 year: 2005 end-page: 1021 ident: bib50 article-title: Relations of academic procrastination, rationalizations, and performance in a web course with deadlines publication-title: Psychological Reports – year: 2007 ident: bib5 article-title: Using Moodle: Teaching with the popular open source course management system – volume: 22 start-page: 12 year: 2020 ident: bib16 article-title: Mining educational data to predict students’ performance through procrastination behavior publication-title: Entropy – volume: 34 start-page: 3711 year: 2018 end-page: 3718 ident: bib33 article-title: The revival of the Gini importance? publication-title: Bioinformatics – start-page: 17 year: 2004 end-page: 23 ident: bib46 article-title: Mining student data to characterize similar behavior groups in unstructured collaboration spaces publication-title: Workshop on artificial intelligence in CSCL. 16th European conference on artificial intelligence – volume: 96 start-page: 42 year: 2016 end-page: 54 ident: bib3 article-title: Students' LMS interaction patterns and their relationship with achievement: A case study in higher education publication-title: Computers & Education – start-page: 1 year: 2015 end-page: 10 ident: bib30 article-title: Building course-specific regression-based models to identify at-risk students publication-title: The american society for engineering educators annual conference – volume: 24 start-page: 301 year: 2002 end-page: 312 ident: bib32 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 39 start-page: 279 year: 1985 end-page: 285 ident: bib23 article-title: Cautionary note about R2 publication-title: The American Statistician – year: 1977 ident: bib51 article-title: Exploratory data analysis – volume: 44 start-page: 1900 year: 2019 end-page: 1911 ident: bib19 article-title: Early warning system as a predictor for student performance in higher education blended courses publication-title: Studies in Higher Education – start-page: 377 year: 2011 end-page: 384 ident: bib49 article-title: Clustering students to generate an ensemble to improve standard test score predictions publication-title: International conference on artificial intelligence in education – volume: 10 start-page: 17 year: 2017 end-page: 29 ident: bib6 article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS publication-title: IEEE Transactions on Learning Technologies – year: 2004 ident: bib21 article-title: The business case for E-learning – start-page: 183 year: 2011 end-page: 195 ident: bib48 article-title: The role of hubness in clustering high-dimensional data publication-title: Proceedings of the 15th pacific-asia conference on advances in knowledge discovery and data mining - volume Part I, PAKDD’11 – start-page: 1 year: 2010 end-page: 5 ident: bib1 article-title: Tukey's honestly significant difference (HSD) test publication-title: Encyclopedia of research design – volume: 10 start-page: 354 year: 2020 ident: bib27 article-title: Towards portability of models for predicting students’ final performance in university courses starting from Moodle logs publication-title: Applied Sciences – volume: 33 start-page: 513 year: 2005 end-page: 540 ident: bib8 article-title: Using web-based pedagogical tools as scaffolds for self-regulated learning publication-title: Instructional Science – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib37 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – start-page: 431 year: 2018 end-page: 443 ident: bib43 article-title: Handling imbalanced data: A survey publication-title: International proceedings on advances in soft computing, intelligent systems and applications – start-page: 1 year: 2009 end-page: 8 ident: bib10 article-title: Field guide to learning management systems publication-title: ASTD learning circuits – year: 2012 ident: bib28 article-title: Classification via clustering for predicting final marks based on student participation in forums publication-title: International Educational Data Mining Society – volume: 28 start-page: 488 year: 2005 end-page: 495 ident: bib11 article-title: Handling missing data in self-report measures publication-title: Research in Nursing & Health – volume: 30 start-page: 344 year: 2018 end-page: 362 ident: bib15 article-title: Exploring the potential of LMS log data as a proxy measure of student engagement publication-title: Journal of Computing in Higher Education – volume: 105 start-page: 380 year: 2020 ident: 10.1016/j.compedu.2020.104108_bib35 article-title: Heterogeneous tree structure classification to label Java programmers according to their expertise level publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.12.016 – volume: 34 start-page: 3711 issue: 21 year: 2018 ident: 10.1016/j.compedu.2020.104108_bib33 article-title: The revival of the Gini importance? publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty373 – year: 2017 ident: 10.1016/j.compedu.2020.104108_bib14 – volume: 10 start-page: 213 issue: 1 year: 2009 ident: 10.1016/j.compedu.2020.104108_bib31 article-title: A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-213 – start-page: 431 year: 2018 ident: 10.1016/j.compedu.2020.104108_bib43 article-title: Handling imbalanced data: A survey – volume: 22 start-page: 12 issue: 1 year: 2020 ident: 10.1016/j.compedu.2020.104108_bib16 article-title: Mining educational data to predict students’ performance through procrastination behavior publication-title: Entropy doi: 10.3390/e22010012 – volume: 24 start-page: 301 issue: 3 year: 2002 ident: 10.1016/j.compedu.2020.104108_bib32 article-title: Unsupervised feature selection using feature similarity publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.990133 – volume: 10 start-page: 17 issue: 1 year: 2017 ident: 10.1016/j.compedu.2020.104108_bib6 article-title: Predicting student performance from LMS data: A comparison of 17 blended courses using Moodle LMS publication-title: IEEE Transactions on Learning Technologies doi: 10.1109/TLT.2016.2616312 – start-page: 1 year: 2010 ident: 10.1016/j.compedu.2020.104108_bib1 article-title: Tukey's honestly significant difference (HSD) test – year: 2007 ident: 10.1016/j.compedu.2020.104108_bib5 – volume: 28 start-page: 488 issue: 6 year: 2005 ident: 10.1016/j.compedu.2020.104108_bib11 article-title: Handling missing data in self-report measures publication-title: Research in Nursing & Health doi: 10.1002/nur.20100 – start-page: 17 year: 2004 ident: 10.1016/j.compedu.2020.104108_bib46 article-title: Mining student data to characterize similar behavior groups in unstructured collaboration spaces – volume: 21 start-page: 135 issue: 1 year: 2013 ident: 10.1016/j.compedu.2020.104108_bib41 article-title: Web usage mining for predicting final marks of students that use Moodle courses publication-title: Computer Applications in Engineering Education doi: 10.1002/cae.20456 – year: 2004 ident: 10.1016/j.compedu.2020.104108_bib21 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.compedu.2020.104108_bib37 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 44 start-page: 1900 issue: 11 year: 2019 ident: 10.1016/j.compedu.2020.104108_bib19 article-title: Early warning system as a predictor for student performance in higher education blended courses publication-title: Studies in Higher Education doi: 10.1080/03075079.2018.1466872 – volume: 29 start-page: 1 year: 2016 ident: 10.1016/j.compedu.2020.104108_bib36 article-title: Clustering blended learning courses by online behavior data: A case study in a Korean higher education institute publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2015.11.001 – volume: 96 start-page: 42 year: 2016 ident: 10.1016/j.compedu.2020.104108_bib3 article-title: Students' LMS interaction patterns and their relationship with achievement: A case study in higher education publication-title: Computers & Education doi: 10.1016/j.compedu.2016.02.006 – start-page: 1 year: 2009 ident: 10.1016/j.compedu.2020.104108_bib10 article-title: Field guide to learning management systems publication-title: ASTD learning circuits – year: 2010 ident: 10.1016/j.compedu.2020.104108_bib39 article-title: Data splitting – start-page: 377 year: 2011 ident: 10.1016/j.compedu.2020.104108_bib49 article-title: Clustering students to generate an ensemble to improve standard test score predictions – start-page: 113 year: 2019 ident: 10.1016/j.compedu.2020.104108_bib25 article-title: Using LMS activity logs to predict student failure with random forest algorithm publication-title: The Future of Information Sciences – start-page: 1 year: 2015 ident: 10.1016/j.compedu.2020.104108_bib30 article-title: Building course-specific regression-based models to identify at-risk students – year: 1979 ident: 10.1016/j.compedu.2020.104108_bib40 – volume: 30 start-page: 62 issue: 1 year: 2008 ident: 10.1016/j.compedu.2020.104108_bib38 article-title: Adaptation in current e-learning systems publication-title: Computer Standards & Interfaces doi: 10.1016/j.csi.2007.07.006 – volume: 68 start-page: 458 year: 2013 ident: 10.1016/j.compedu.2020.104108_bib42 article-title: Predicting students' final performance from participation in on-line discussion forums publication-title: Computers & Education doi: 10.1016/j.compedu.2013.06.009 – start-page: 1982 year: 2018 ident: 10.1016/j.compedu.2020.104108_bib24 article-title: Technology tools in distance education: A review of faculty adoption – year: 2012 ident: 10.1016/j.compedu.2020.104108_bib28 article-title: Classification via clustering for predicting final marks based on student participation in forums publication-title: International Educational Data Mining Society – volume: 36 start-page: 469 year: 2014 ident: 10.1016/j.compedu.2020.104108_bib17 article-title: Developing early warning systems to predict students’ online learning performance publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2014.04.002 – volume: 4 start-page: 426 issue: 4 year: 2008 ident: 10.1016/j.compedu.2020.104108_bib18 article-title: Revealing online learning behaviors and activity patterns and making predictions with data mining techniques in online teaching publication-title: MERLOT Journal of Online Learning and Teaching – volume: 143 start-page: 1 year: 2020 ident: 10.1016/j.compedu.2020.104108_bib47 article-title: An overview and comparison of supervised data mining techniques for student exam performance prediction publication-title: Computers & Education doi: 10.1016/j.compedu.2019.103676 – volume: 10 start-page: 354 issue: 1 year: 2020 ident: 10.1016/j.compedu.2020.104108_bib27 article-title: Towards portability of models for predicting students’ final performance in university courses starting from Moodle logs publication-title: Applied Sciences doi: 10.3390/app10010354 – volume: 73 start-page: 247 year: 2017 ident: 10.1016/j.compedu.2020.104108_bib7 article-title: Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses publication-title: Computers in Human Behavior doi: 10.1016/j.chb.2017.01.047 – volume: 39 start-page: 279 issue: 4 year: 1985 ident: 10.1016/j.compedu.2020.104108_bib23 article-title: Cautionary note about R2 publication-title: The American Statistician – start-page: 1 year: 2015 ident: 10.1016/j.compedu.2020.104108_bib22 article-title: OU analyse: Analysing at-risk students at the open university publication-title: Learning Analytics Review – start-page: 1151 year: 2007 ident: 10.1016/j.compedu.2020.104108_bib52 article-title: Spectral feature selection for supervised and unsupervised learning – start-page: 233 year: 2006 ident: 10.1016/j.compedu.2020.104108_bib9 article-title: The relationship between precision-recall and ROC curves – volume: 28 start-page: 68 year: 2016 ident: 10.1016/j.compedu.2020.104108_bib13 article-title: Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success publication-title: The Internet and Higher Education doi: 10.1016/j.iheduc.2015.10.002 – volume: 96 start-page: 1015 issue: 3 year: 2005 ident: 10.1016/j.compedu.2020.104108_bib50 article-title: Relations of academic procrastination, rationalizations, and performance in a web course with deadlines publication-title: Psychological Reports doi: 10.2466/PR0.96.3.1015-1021 – volume: 54 start-page: 588 issue: 2 year: 2010 ident: 10.1016/j.compedu.2020.104108_bib29 article-title: Mining LMS data to develop an “early warning system” for educators: A proof of concept publication-title: Computers & Education doi: 10.1016/j.compedu.2009.09.008 – start-page: 183 year: 2011 ident: 10.1016/j.compedu.2020.104108_bib48 article-title: The role of hubness in clustering high-dimensional data – volume: 57 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.compedu.2020.104108_bib44 article-title: Best practices for missing data management in counseling psychology publication-title: Journal of Counseling Psychology doi: 10.1037/a0018082 – year: 2011 ident: 10.1016/j.compedu.2020.104108_bib26 article-title: Use of LMS functionalities in engineering education – start-page: 598 year: 2017 ident: 10.1016/j.compedu.2020.104108_bib34 article-title: A neural network approach for students' performance prediction – volume: 33 start-page: 513 issue: 5 year: 2005 ident: 10.1016/j.compedu.2020.104108_bib8 article-title: Using web-based pedagogical tools as scaffolds for self-regulated learning publication-title: Instructional Science doi: 10.1007/s11251-005-1278-3 – start-page: 248 year: 2012 ident: 10.1016/j.compedu.2020.104108_bib4 article-title: Using agglomerative hierarchical clustering to model learner participation profiles in online discussion forums – ident: 10.1016/j.compedu.2020.104108_bib45 – year: 1977 ident: 10.1016/j.compedu.2020.104108_bib51 – volume: 16 start-page: 87 year: 1996 ident: 10.1016/j.compedu.2020.104108_bib2 article-title: Methods and techniques of adaptive hypermedia publication-title: User Modeling and User-Adapted Interaction doi: 10.1007/BF00143964 – volume: 30 start-page: 344 issue: 2 year: 2018 ident: 10.1016/j.compedu.2020.104108_bib15 article-title: Exploring the potential of LMS log data as a proxy measure of student engagement publication-title: Journal of Computing in Higher Education doi: 10.1007/s12528-017-9161-1 – start-page: 654 year: 2018 ident: 10.1016/j.compedu.2020.104108_bib20 article-title: Analysis of student behavior and success based on logs in Moodle – volume: 25 start-page: 734 issue: 4 year: 2012 ident: 10.1016/j.compedu.2020.104108_bib12 article-title: A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.35  | 
    
| SSID | ssj0004645 | 
    
| Score | 2.5812094 | 
    
| Snippet | The early prediction of students' performance is a valuable resource to improve their learning. If we are able to detect at-risk students in the initial stages... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 104108 | 
    
| SubjectTerms | Early prediction Interaction patterns Learning management systems Machine learning Student performance  | 
    
| Title | Massive LMS log data analysis for the early prediction of course-agnostic student performance | 
    
| URI | https://dx.doi.org/10.1016/j.compedu.2020.104108 | 
    
| Volume | 163 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-782X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-782X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1873-782X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-782X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-782X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004645 issn: 0360-1315 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBahXbqUPmn6CBq6KrbllzyG0JA-kiUNZClCsmRIKIlJ07W_vXe23KRQWijejE6Yk3T6ZH33HSG3kU0CE-mYobYcg_04ZgpOASzNrfBNIlJdSQqNxslwGj3M4lmL9JtcGKRVuthfx_QqWrs3nvOmV87n3gRiL4rFxBzmKQJfzGCPUqxi0P0IdnIjq0LF2Jhh620Wj7fAvkv8J8IBNOFtZ4BVJn_an3b2nMEROXRgkfbq7zkmLbs8wTrLjpNxSl5GgH0hXtGn0YRCFKNI-KTKCY1QAKQUAB61qGJMyzVeyqAhXRU0XyF9g1VEO-ievtUil7TcZhKckeng7rk_ZK5gAstDP9uAl00aZklaKJ6HmAeYJSrkwip4dBZqGC8AfAbrVcVFEOtCpIWBNhZgCeewFM_J3nK1tBeEcqWNX1ijLJyhUj8XRokwsoUQkeZCqzaJGjfJ3KmJY1GLV9nQxhbSeVeid2Xt3TbpfpmVtZzGXwaiGQP5bV5ICPm_m17-3_SKHHDkrlQMnWuyt1m_2xsAHxvdqWZXh-z37h-H4098wNoG | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHvQifuL8zMFr1y79So8yHFPXXbbBLhKSJoUN2cqcV_9232tTN0EUpLeSF8pL8vJL83u_R8hdYKKODlTooLacA_tx6Eg4BThxZrinIx6rUlIoHUb9SfA0DacN0q1zYZBWaWN_FdPLaG3fuNabbjGbuSOIvSgWEzKYpwh8d8huELIYT2Dtj85WcmRZqRhbO9h8k8bjzrHzAn-KMEBNeN3ZwTKTP21QW5tO75AcWLRI76sPOiINszjGQsuWlHFCXlIAvxCw6CAdUQhjFBmfVFqlEQqIlALCowZljGmxwlsZNKTLnGZL5G84JdMOuqdvlcolLTapBKdk0nsYd_uOrZjgZL6XrMHNOvaTKM4ly3xMBEwi6TNuJDwq8RUMGCA-jQWrwrwTqpzHuYY2BnAJY7AWz0hzsVyYc0KZVNrLjZYGDlGxl3EtuR-YnPNAMa5kiwS1m0Rm5cSxqsWrqHljc2G9K9C7ovJui7S_zIpKT-MvA16Pgfg2MQTE_N9NL_5vekv2-uN0IAaPw-dLss-QyFLSda5Ic716N9eARNbqppxpn6ki25s | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Massive+LMS+log+data+analysis+for+the+early+prediction+of+course-agnostic+student+performance&rft.jtitle=Computers+and+education&rft.au=Riestra-Gonz%C3%A1lez%2C+Moises&rft.au=Paule-Ru%C3%ADz%2C+Maria+del+Puerto&rft.au=Ortin%2C+Francisco&rft.date=2021-04-01&rft.issn=0360-1315&rft.volume=163&rft.spage=104108&rft_id=info:doi/10.1016%2Fj.compedu.2020.104108&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compedu_2020_104108 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1315&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1315&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1315&client=summon |