A community-based approach to identify the most influential nodes in social networks
One of the important issues concerning the spreading process in social networks is the influence maximization. This is the problem of identifying the set of the most influential nodes in order to begin the spreading process based on an information diffusion model in the social networks. In this stud...
Saved in:
| Published in | Journal of information science Vol. 43; no. 2; pp. 204 - 220 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London, England
SAGE Publications
01.04.2017
Bowker-Saur Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0165-5515 1741-6485 |
| DOI | 10.1177/0165551515621005 |
Cover
| Abstract | One of the important issues concerning the spreading process in social networks is the influence maximization. This is the problem of identifying the set of the most influential nodes in order to begin the spreading process based on an information diffusion model in the social networks. In this study, two new methods considering the community structure of the social networks and influence-based closeness centrality measure of the nodes are presented to maximize the spread of influence on the multiplication threshold, minimum threshold and linear threshold information diffusion models. The main objective of this study is to improve the efficiency with respect to the run time while maintaining the accuracy of the final influence spread. Efficiency improvement is obtained by reducing the number of candidate nodes subject to evaluation in order to find the most influential. Experiments consist of two parts: first, the effectiveness of the proposed influence-based closeness centrality measure is established by comparing it with available centrality measures; second, the evaluations are conducted to compare the two proposed community-based methods with well-known benchmarks in the literature on the real datasets, leading to the results demonstrate the efficiency and effectiveness of these methods in maximizing the influence spread in social networks. |
|---|---|
| AbstractList | One of the important issues concerning the spreading process in social networks is the influence maximization. This is the problem of identifying the set of the most influential nodes in order to begin the spreading process based on an information diffusion model in the social networks. In this study, two new methods considering the community structure of the social networks and influence-based closeness centrality measure of the nodes are presented to maximize the spread of influence on the multiplication threshold, minimum threshold and linear threshold information diffusion models. The main objective of this study is to improve the efficiency with respect to the run time while maintaining the accuracy of the final influence spread. Efficiency improvement is obtained by reducing the number of candidate nodes subject to evaluation in order to find the most influential. Experiments consist of two parts: first, the effectiveness of the proposed influence-based closeness centrality measure is established by comparing it with available centrality measures; second, the evaluations are conducted to compare the two proposed community-based methods with well-known benchmarks in the literature on the real datasets, leading to the results demonstrate the efficiency and effectiveness of these methods in maximizing the influence spread in social networks. |
| Author | Zamanifar, Kamran Naghsh-Nilchi, Ahmad Reza Hosseini-Pozveh, Maryam |
| Author_xml | – sequence: 1 givenname: Maryam surname: Hosseini-Pozveh fullname: Hosseini-Pozveh, Maryam organization: Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran – sequence: 2 givenname: Kamran surname: Zamanifar fullname: Zamanifar, Kamran email: zamanifar@eng.ui.ac.ir organization: Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran – sequence: 3 givenname: Ahmad Reza surname: Naghsh-Nilchi fullname: Naghsh-Nilchi, Ahmad Reza organization: Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran |
| BookMark | eNp9UE1PwzAMjdCQ2AZ3jpE4F-K2SdrjNPElTeIyzlWapCyjTUaSCu3f01IOaBLIB8v2e_bzW6CZdVYjdA3kFoDzOwKMUgpDsBQIoWdoDjyHhOUFnaH5OE7G-QVahLAnA6LM8jnarrB0XddbE49JLYJWWBwO3gm5w9Fho7SNpjniuNO4cyFiY5u2H5uixdYpHYYODk5-1zp-Ov8eLtF5I9qgr37yEr0-3G_XT8nm5fF5vdokMiNlTMqckrTQjW4UZTXXDSgKRSlYCYIrnlGlFSNQq5yDpITUTEHKVJELIrlQMluim2nvIPij1yFWe9d7O5ysoISszFk6fLlEbEJJ70LwuqmkiSIaZ6MXpq2AVKOD1amDA5GcEA_edMIf_6MkEyWIN_1LzV_4LziCgPc |
| CitedBy_id | crossref_primary_10_1007_s12652_020_01760_2 crossref_primary_10_1109_ACCESS_2018_2822844 crossref_primary_10_1109_ACCESS_2019_2931925 crossref_primary_10_1177_0961000618769965 crossref_primary_10_1109_TNSE_2024_3420911 crossref_primary_10_1016_j_eswa_2020_113642 crossref_primary_10_1080_03772063_2024_2437545 crossref_primary_10_1016_j_ins_2018_07_003 crossref_primary_10_1088_1742_6596_1818_1_012177 crossref_primary_10_1016_j_knosys_2017_07_029 crossref_primary_10_1109_TFUZZ_2021_3087235 crossref_primary_10_1007_s12652_019_01286_2 crossref_primary_10_3390_sym13010018 crossref_primary_10_1089_big_2020_0133 crossref_primary_10_1177_0165551517698305 crossref_primary_10_1016_j_datak_2017_12_003 crossref_primary_10_1016_j_eswa_2019_01_070 crossref_primary_10_1007_s10115_020_01459_y crossref_primary_10_1109_ACCESS_2019_2962751 crossref_primary_10_1016_j_cnsns_2019_105094 crossref_primary_10_1016_j_neucom_2019_05_053 crossref_primary_10_1177_0165551517748289 crossref_primary_10_1016_j_knosys_2020_106623 crossref_primary_10_1007_s11227_022_04418_2 crossref_primary_10_1016_j_chaos_2018_06_022 crossref_primary_10_1007_s41870_023_01387_4 crossref_primary_10_1177_01655515211047428 crossref_primary_10_1109_TCSS_2024_3392069 |
| Cites_doi | 10.1007/978-3-642-33486-3_35 10.1016/j.knosys.2013.01.017 10.1109/ICDM.2010.118 10.1145/1963192.1963217 10.1007/978-3-642-25856-5_7 10.1145/775047.775057 10.1145/502512.502525 10.1007/s00500-003-0328-5 10.1145/2567948.2577336 10.1145/2489247.2489249 10.1016/j.ins.2013.09.033 10.3233/IDA-150801 10.1145/1281192.1281239 10.1145/1148170.1148258 10.1016/j.eswa.2014.09.037 10.1007/s10791-013-9224-5 10.1007/s12599-010-0127-3 10.1109/ICDM.2007.37 10.1109/NSW.2013.6609210 10.1109/ICDM.2011.132 10.1016/j.eswa.2011.04.119 10.1145/956750.956769 10.1109/ICDM.2013.48 10.1145/1557019.1557047 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 |
| Copyright_xml | – notice: The Author(s) 2016 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1177/0165551515621005 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 1741-6485 |
| EndPage | 220 |
| ExternalDocumentID | 10_1177_0165551515621005 10.1177_0165551515621005 |
| GroupedDBID | -TM -~X .2G .2L .DC 01A 09Z 0R~ 1OL 1~K 29K 31S 31V 31W 31X 4.4 54M 56W 5GY 5VS 77K AABOD AACKU AADIR AADUE AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJNI ABKRH ABPNF ABQKF ABQPY ABQXT ABRHV ABUJY ABYTW ACAEP ACDXX ACFUR ACFZE ACGFS ACHQT ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS AEDXQ AEILP AENEX AEOBU AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 D-I DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ J8X LPU MS~ N9A O9- P.B P2P PQQKQ Q1R Q7O Q7P Q7X RIG ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFT SGP SGU SGV SHB SHF SHM SPJ SPK SPP SQCSI SSDHQ TN5 ZPLXX ZPPRI ~32 ~A~ 77I AAEJI AAPII AAYXX ACCVC AJGYC AJHME AJVBE AMNSR CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c309t-945028efefd56b7ef1d5189a691a7d735ded601bd471c500b6d126d84a0c7adc3 |
| ISSN | 0165-5515 |
| IngestDate | Fri Jul 25 08:35:55 EDT 2025 Wed Oct 01 06:50:39 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Tue Jun 17 22:32:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Community structure influential nodes influence maximization social networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c309t-945028efefd56b7ef1d5189a691a7d735ded601bd471c500b6d126d84a0c7adc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1913946259 |
| PQPubID | 43525 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_1913946259 crossref_citationtrail_10_1177_0165551515621005 crossref_primary_10_1177_0165551515621005 sage_journals_10_1177_0165551515621005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170400 2017-04-00 20170401 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 4 year: 2017 text: 20170400 |
| PublicationDecade | 2010 |
| PublicationPlace | London, England |
| PublicationPlace_xml | – name: London, England – name: Amsterdam |
| PublicationTitle | Journal of information science |
| PublicationYear | 2017 |
| Publisher | SAGE Publications Bowker-Saur Ltd |
| Publisher_xml | – name: SAGE Publications – name: Bowker-Saur Ltd |
| References | Cao, Wu, Wang, Hu 2011; 38 Landherr, Friedl, Heidemann 2010; 2 Jin 2005; 9 Wang, Deng, Zhou, Jiang 2014; 267 Hosseini-Pozveh, Zamanifar, Naghshnilchi, Dolog 2016; 20 Cong, Zhou, Wang, Xie 2014; 26 Chen, Zhu, Peng, Lee, Lee 2014; 5 Rahimkhani, Aleahmad, Rahgozar, Moeini 2015; 42 Morid, Shajari, Hashemi 2004; 17 Zhang, Zhu, Wang, Zhao 2013; 42 Lv, Guo, Ren 2013; 9 Narayanam, Narahari 2010; 99 Lv J (bibr25-0165551515621005) 2013; 9 bibr9-0165551515621005 bibr13-0165551515621005 Kimura M (bibr5-0165551515621005) 2008 bibr22-0165551515621005 bibr19-0165551515621005 bibr20-0165551515621005 Cong G (bibr26-0165551515621005) 2014; 26 bibr6-0165551515621005 bibr14-0165551515621005 bibr10-0165551515621005 Chen Y-C (bibr27-0165551515621005) 2014; 5 bibr1-0165551515621005 bibr32-0165551515621005 bibr2-0165551515621005 bibr15-0165551515621005 bibr7-0165551515621005 bibr28-0165551515621005 bibr29-0165551515621005 bibr11-0165551515621005 bibr16-0165551515621005 Kim J (bibr17-0165551515621005) 2013 bibr24-0165551515621005 bibr31-0165551515621005 bibr33-0165551515621005 Ohsaka N (bibr18-0165551515621005) 2014 bibr3-0165551515621005 Chen Y (bibr23-0165551515621005) 2012 bibr12-0165551515621005 bibr30-0165551515621005 Narayanam R (bibr8-0165551515621005) 2010; 99 bibr21-0165551515621005 Yu Y (bibr4-0165551515621005) 2010 |
| References_xml | – volume: 17 start-page: 137 issue: 2 year: 2004 end-page: 152 article-title: Defending recommender systems by influence analysis publication-title: Information Retrieval – volume: 267 start-page: 101 year: 2014 end-page: 118 article-title: A global optimization algorithm for target set selection problems publication-title: Information Sciences – volume: 5 issue: 2 year: 2014 article-title: CIM: Community-based influence maximization in social networks publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – volume: 20 issue: 1 year: 2016 article-title: Maximizing the spread of positive influence in signed social networks publication-title: Intelligent Data Analysis – volume: 42 start-page: 1353 issue: 3 year: 2015 end-page: 1361 article-title: A fast algorithm for finding most influential people based on the linear threshold model publication-title: Expert Systems with Applications – volume: 42 start-page: 74 year: 2013 end-page: 84 article-title: Identifying influential nodes in complex networks with community structure publication-title: Knowledge-Based Systems – volume: 9 start-page: 5659 issue: 14 year: 2013 end-page: 5666 article-title: A new community-based algorithm for influence maximization in social network publication-title: Journal of Computational Information Systems – volume: 26 start-page: 1379 issue: 5 year: 2014 end-page: 1392 article-title: Influence maximization on large-scale mobile social network: A divide-and-conquer method publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 2 start-page: 371 issue: 6 year: 2010 end-page: 385 article-title: A critical review of centrality measures in social networks publication-title: Business and Information Systems Engineering – volume: 38 start-page: 13128 issue: 10 year: 2011 end-page: 13135 article-title: Maximizing influence spread in modular social networks by optimal resource allocation publication-title: Expert Systems with Applications – volume: 9 start-page: 3 issue: 1 year: 2005 end-page: 12 article-title: A comprehensive survey of fitness approximation in evolutionary computation publication-title: Soft Computing – volume: 99 start-page: 1 year: 2010 end-page: 18 article-title: A Shapley value-based approach to discover influential nodes in social networks publication-title: IEEE Transactions on Automation Science and Engineering – ident: bibr15-0165551515621005 doi: 10.1007/978-3-642-33486-3_35 – ident: bibr24-0165551515621005 doi: 10.1016/j.knosys.2013.01.017 – ident: bibr12-0165551515621005 doi: 10.1109/ICDM.2010.118 – ident: bibr14-0165551515621005 doi: 10.1145/1963192.1963217 – ident: bibr22-0165551515621005 doi: 10.1007/978-3-642-25856-5_7 – ident: bibr2-0165551515621005 doi: 10.1145/775047.775057 – volume: 26 start-page: 1379 issue: 5 year: 2014 ident: bibr26-0165551515621005 publication-title: IEEE Transactions on Parallel and Distributed Systems – ident: bibr1-0165551515621005 doi: 10.1145/502512.502525 – ident: bibr31-0165551515621005 doi: 10.1007/s00500-003-0328-5 – ident: bibr19-0165551515621005 doi: 10.1145/2567948.2577336 – start-page: 1 volume-title: The 6th workshop on social network mining and analysis held in conjunction with KDD, SNA-KDD year: 2012 ident: bibr23-0165551515621005 – volume: 5 issue: 2 year: 2014 ident: bibr27-0165551515621005 publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – ident: bibr33-0165551515621005 doi: 10.1145/2489247.2489249 – ident: bibr9-0165551515621005 doi: 10.1016/j.ins.2013.09.033 – ident: bibr30-0165551515621005 doi: 10.3233/IDA-150801 – start-page: 266 volume-title: 29th International conference on data engineering (ICDE) year: 2013 ident: bibr17-0165551515621005 – volume: 99 start-page: 1 year: 2010 ident: bibr8-0165551515621005 publication-title: IEEE Transactions on Automation Science and Engineering – ident: bibr10-0165551515621005 doi: 10.1145/1281192.1281239 – ident: bibr6-0165551515621005 doi: 10.1145/1148170.1148258 – ident: bibr28-0165551515621005 doi: 10.1016/j.eswa.2014.09.037 – start-page: 1175 volume-title: AAAI’ 08 Proceedings of the 23rd national conference on artificial intelligence – Volume 2 year: 2008 ident: bibr5-0165551515621005 – ident: bibr7-0165551515621005 doi: 10.1007/s10791-013-9224-5 – ident: bibr29-0165551515621005 doi: 10.1007/s12599-010-0127-3 – start-page: 138 volume-title: Proceedings of the twenty-eighth AAAI conference on artificial intelligence year: 2014 ident: bibr18-0165551515621005 – ident: bibr20-0165551515621005 doi: 10.1109/ICDM.2007.37 – ident: bibr32-0165551515621005 doi: 10.1109/NSW.2013.6609210 – ident: bibr13-0165551515621005 doi: 10.1109/ICDM.2011.132 – start-page: 55 volume-title: Advances in social network mining and analysis year: 2010 ident: bibr4-0165551515621005 – volume: 9 start-page: 5659 issue: 14 year: 2013 ident: bibr25-0165551515621005 publication-title: Journal of Computational Information Systems – ident: bibr21-0165551515621005 doi: 10.1016/j.eswa.2011.04.119 – ident: bibr3-0165551515621005 doi: 10.1145/956750.956769 – ident: bibr16-0165551515621005 doi: 10.1109/ICDM.2013.48 – ident: bibr11-0165551515621005 doi: 10.1145/1557019.1557047 |
| SSID | ssj0005934 |
| Score | 2.278371 |
| Snippet | One of the important issues concerning the spreading process in social networks is the influence maximization. This is the problem of identifying the set of... |
| SourceID | proquest crossref sage |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 204 |
| SubjectTerms | Accuracy Efficiency Information dissemination Maximization Social networks |
| Title | A community-based approach to identify the most influential nodes in social networks |
| URI | https://journals.sagepub.com/doi/full/10.1177/0165551515621005 https://www.proquest.com/docview/1913946259 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVSPB databaseName: Sage journals customDbUrl: eissn: 1741-6485 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005934 issn: 0165-5515 databaseCode: AYPQM dateStart: 19990201 isFulltext: true titleUrlDefault: https://journals.sagepub.com providerName: SAGE Publications |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd-GC-BSFDfmAKiFkljSJ0xwjtGmgrQzRSuUUObGzVqzJ1qZD7ZV_nPcc54PCJuASRW7jqnk_-334vd8j5LUn40QJ22WBn4KD4lkWiz0nYYJzZEcDocdY73w24icT9-PUm3Y6P1pZS-sifpds_1hX8j9ShTGQK1bJ_oNk60lhAO5BvnAFCcP1r2QcYkY41ncUG4bqSNYU4WhSznUNbrrRtuUiX2EzAN2RpMAoeZZLnYtVRc2zMh98dYu1aghWNVqM1qwRAXpWzbM5O8-3N2pmKoA2YlEHpQWSbKTCpG8slg0iR-Jitpqx0fwy0d2F34azhcCKya1oxyNAxzVpLDroln__ppbsi1gvW4lJOnTJPQb2WXmGrcrtFuwZxt2yaU-1H5e0TQZ3g_bmWjYq_n3T18fOOD9ODw4puLGW1yi46lB_9Ck6npyeRuOj6bh_dc2w9Rge0Zs-LPfI3gBUg9Ule-HX889nTaZQ4BiK-PIPNKfdh7s_-qt107gsrSxBbbiMH5IHRoY0LOHziHRU9pgcmHoV2qcfGslSs9M_IeOQ7kCLVtCiRU4raFGAFkVo0Ra0qIYWjNASWrSC1lMyOT4avz9hpgEHSxwrKFgAa3cwVKlKpcdjX6W29OxhIHhgC1_6jieVBIc-lmDhJLDMYy7tAZdDV1iJL2TiPCPdLM_Uc0JTAVaR5SvOh9JFBiArEQNXDlOFxdDS7pHD6sVFiWGnxyYpl5FdEdLvvOoeeVM_cVUys9zx3f1KFpFZv6vIRkZcF_3_HumjfFof3TLPi7vneUnuNytin3SL5VodgM1axK8Mpn4CymyWAQ |
| linkProvider | SAGE Publications |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFH4xcNCLv40oaA-GxMNwZWu3HYmRoALRBBL0smxtlxBxMzIO-Nfbbh0gRmPMblvbvPVr-97b3vsewAXhIRMBtg3PiaSDQkzTCInFjIBSxY4mQQ9VvnOvTztD-25ERiulvvQMThsqrEpKlB3Wi92tmJIwJVLLy4tKb0Wxl5YzTrMSlFtPD4-9ZXyHZ2lib2KoDst_lN_G-KqTlobmSmxXpm7aO_BcCJpHmbw0ZqmU8WONw_Ffb7IL29oIRa181ezBhoj3oaZTGFAd6RwlhRnSm_8ABi3E8mySdG4o5cdRQUiO0gSNs4zfaI6kRYlek2mKxnn9E3mETFCccDGVd1D-jR7FefT59BCG7ZvBdcfQNRkMZpleangSzqYrIhFxQkNHRJgT7HoB9XDgcMciXHDp44VcKj0mkQ8px03KXTswmRNwZh1BKU5icQwoCqSiNB1BqcttRQpjsqBpczcSKj-W4wpcFaj4TBOWq7oZEx8XHOVrM1iBy0WPt5ys45e21QJov4DKx4ok1VYuYQXqCreVRz-Mc_LXhuew2Rn0un73tn9_CltNZR5kEUBVKKXvM1GTxk0anull_AlII-rX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_iQHzxW5xumgcZ-NCtXdu0fRzqmB8bEzaYT6VNUhjObtjuYf713rWpmxNFpG9tEtLcNXfX3O93hFzaIuQyMCzNcyIIUGxd10Lb5FrAGLKjgdBDxDt3e6wztO5H9kjl5iAWRq1gUse0KphRtlnj1z0TUUOdMTYQggOWHi4GEQsymJZcCGNAqUut5_5Td5nj4ZmK3NvWsMPynPLbGF_t0tLZXMnvykxOezevq5pkTIWYafJSn6cwz_c1Hsd_v80e2VHOKG3l2rNPNmR8QKoKykBrVGGVUHZUbQKHZNCiPEeVpAsNjaCgBTE5Tad0nCF_owUFz5K-TpOUjvM6KLCVTGg8FTKBOzT_V0_jPAs9OSLD9u3guqOp2gwaN3Uv1TwQa9OVkYyEzUJHRoawDdcLmGcEjnBMW0gBsV4owPhx0ICQCaPJhGsFOncCwc1jshlPY3lCaBSAwdQdyZgrLCSH0XnQtIQbScTJCqNMGoVkfK6Iy7F-xsQ3Cq7ytRUsk6vPHrOctOOXtpVC2H4hLt9AslQLQ8MyqaHsVh79MM7pXxtekK3-Tdt_vOs9nJHtJnoJWSJQhWymb3NZBR8nDc-VJn8AHLPtTA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+community-based+approach+to+identify+the+most+influential+nodes+in+social+networks&rft.jtitle=Journal+of+information+science&rft.au=Hosseini-Pozveh%2C+Maryam&rft.au=Zamanifar%2C+Kamran&rft.au=Naghsh-Nilchi%2C+Ahmad+Reza&rft.date=2017-04-01&rft.pub=Bowker-Saur+Ltd&rft.issn=0165-5515&rft.eissn=1741-6485&rft.volume=43&rft.issue=2&rft.spage=204&rft_id=info:doi/10.1177%2F0165551515621005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5515&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5515&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5515&client=summon |