Impact of charge-compensated Fe and Nb co-substitution on BaTiO3: Bandgap and grain size reduction and enhanced bulk photovoltaic power of Al/BFNT/Ag solar cell

•Al/BaTi1-2xFexNbxO3/Ag is an excellent bulk ferroelectric photovoltaic device configuration.•Increment of aliovalent Fe3+and Nb5+ionic substitutions reduces the bandgap of 0.075BFNT ceramics to ∼2.55 eV and broadens the visible spectrum absorption.•The photocurrent density of Al/0.075BFNT/Ag photov...

Full description

Saved in:
Bibliographic Details
Published inSolar energy Vol. 257; pp. 34 - 44
Main Authors Venkidu, L., Raja, N., Sundarakannan, B.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN0038-092X
1471-1257
DOI10.1016/j.solener.2023.03.058

Cover

Abstract •Al/BaTi1-2xFexNbxO3/Ag is an excellent bulk ferroelectric photovoltaic device configuration.•Increment of aliovalent Fe3+and Nb5+ionic substitutions reduces the bandgap of 0.075BFNT ceramics to ∼2.55 eV and broadens the visible spectrum absorption.•The photocurrent density of Al/0.075BFNT/Ag photovoltaic cell is about ∼ 2.2 times higher than that of pure BT.•A high photovoltaic power of ∼ 12 μW/cm2 was achieved. The generation of above bandgap photovoltage using bulk ferroelectric materials has become a subject of great interest, however, their photocurrent density is limited by a broad bandgap and poor conductivity. To overcome this limitation, we replaced aliovalent metal ions (Fe3+and Nb5+)at the B-site of robust ferroelectric BaTiO3and fabricated an Al/BaTi1-2xFexNbxO3/Ag photovoltaic device. Both the experimental and the theoretical studies showed that bandgap was lowered to ∼2.55 eV and hence absorption of wide energy range of the solar spectrum was attained. An apt top electrode, reduced bandgap and domain size resulted in greater photocurrent density of 1.46 μA/cm2 and photovoltage of 8.31 V for Al/0.075BFNT/Ag solar cell in unpoled condition. This research suggest that reduced band gap, mixed structural phases and nano-sized domains suffices greatest PV power output while the large polarization and poling are not necessary prerequisites.
AbstractList •Al/BaTi1-2xFexNbxO3/Ag is an excellent bulk ferroelectric photovoltaic device configuration.•Increment of aliovalent Fe3+and Nb5+ionic substitutions reduces the bandgap of 0.075BFNT ceramics to ∼2.55 eV and broadens the visible spectrum absorption.•The photocurrent density of Al/0.075BFNT/Ag photovoltaic cell is about ∼ 2.2 times higher than that of pure BT.•A high photovoltaic power of ∼ 12 μW/cm2 was achieved. The generation of above bandgap photovoltage using bulk ferroelectric materials has become a subject of great interest, however, their photocurrent density is limited by a broad bandgap and poor conductivity. To overcome this limitation, we replaced aliovalent metal ions (Fe3+and Nb5+)at the B-site of robust ferroelectric BaTiO3and fabricated an Al/BaTi1-2xFexNbxO3/Ag photovoltaic device. Both the experimental and the theoretical studies showed that bandgap was lowered to ∼2.55 eV and hence absorption of wide energy range of the solar spectrum was attained. An apt top electrode, reduced bandgap and domain size resulted in greater photocurrent density of 1.46 μA/cm2 and photovoltage of 8.31 V for Al/0.075BFNT/Ag solar cell in unpoled condition. This research suggest that reduced band gap, mixed structural phases and nano-sized domains suffices greatest PV power output while the large polarization and poling are not necessary prerequisites.
Author Raja, N.
Sundarakannan, B.
Venkidu, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Venkidu
  fullname: Venkidu, L.
  organization: Department of Physics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
– sequence: 2
  givenname: N.
  surname: Raja
  fullname: Raja, N.
  organization: Department of Physics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
– sequence: 3
  givenname: B.
  surname: Sundarakannan
  fullname: Sundarakannan, B.
  email: sundarakannan@msuniv.ac.in
  organization: Department of Physics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012, Tamil Nadu, India
BookMark eNqFkN1KAzEQhYMoWH8eQcgLbJtsds2uXkgVq4LoTQXvlnQy26ZukyVJFX0aH9WseuWNMDADM-cw5zsgu9ZZJOSEszFn_HSyHgfXoUU_zlkuxixVWe2QES8kz3heyl0yYkxUGavz531yEMKaMS55JUfk827TK4jUtRRWyi8xA7fp0QYVUdMZUmU1fVhQcFnYLkI0cRuNszTVpZqbR3GWutVL1X9fLr0ylgbzgdSj3sL37bBAu1IWkuVi273QfuWie3VdVAZo797QDw9Mu8nl7GE-mS5pCqQ8Bey6I7LXqi7g8W8_JE-z6_nVbXb_eHN3Nb3PQLA6ZlIIpnWRYyVrzNPAlC5LpiSABCHVgrdYY1lr3dYyLxK3lusKisQlr0RRiUNy_uML3oXgsW3ARDX8H1OmruGsGWA36-YXdjPAbliqclCXf9S9Nxvl3__VXfzoMEV7NWkbwOAAyniE2Ghn_nH4AscZoJ4
CitedBy_id crossref_primary_10_1016_j_cjph_2023_11_004
crossref_primary_10_1007_s00339_024_07668_4
crossref_primary_10_1016_j_jpowsour_2024_235325
crossref_primary_10_1063_5_0219513
crossref_primary_10_1002_ente_202300616
crossref_primary_10_1016_j_ijleo_2023_171212
crossref_primary_10_1039_D3TC02590J
Cites_doi 10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.65.134304
10.1016/j.solener.2021.05.063
10.1063/1.4999982
10.1016/j.solener.2009.04.004
10.1063/1.5088635
10.1063/1.4899146
10.1038/srep04268
10.1021/jp000114x
10.1039/D1TC04250E
10.1021/acs.jpcc.0c10655
10.1063/1.1655453
10.1063/5.0036488
10.1103/PhysRevB.13.5188
10.1002/pssr.201900074
10.1021/jp306370q
10.1021/ic990921e
10.1002/adma.201703694
10.1016/j.jallcom.2021.161177
10.1038/s41598-018-26205-x
10.1016/j.jeurceramsoc.2017.10.014
10.1016/j.matchemphys.2012.04.041
10.1016/j.ceramint.2018.01.263
10.1016/j.matlet.2021.131473
10.1134/1.1387133
10.1007/BF02660182
10.1016/j.ceramint.2012.10.142
10.1016/j.physleta.2015.02.037
10.1103/PhysRevB.59.1758
10.1016/B978-0-12-811165-9.00008-9
10.1111/jace.16307
10.1103/PhysRevB.87.214110
10.1063/1.5118869
10.1007/978-3-540-68683-5
10.1039/D0TA03201H
10.1039/C5TA04235F
10.1016/j.nanoen.2019.03.036
10.1080/00150193.2015.1059151
10.35848/1347-4065/ac0c6c
10.1016/j.chemphys.2021.111105
10.1103/PhysRevB.59.7413
10.1103/PhysRevB.78.104116
10.1016/j.jallcom.2019.01.223
10.1021/acsenergylett.8b00492
10.1016/j.ceramint.2021.05.061
10.1103/PhysRevApplied.11.044007
10.1002/adfm.201900918
10.1021/acs.jpclett.2c03194
10.1103/PhysRevB.90.161409
10.1142/S0217984919502610
10.1016/j.ssc.2011.02.015
10.1016/j.materresbull.2016.07.031
10.1007/BF01349680
10.1088/2053-1591/ab39a6
10.1103/PhysRevB.94.214111
10.1103/PhysRevB.101.064409
10.1016/j.matchemphys.2020.123791
10.1080/00150193.2018.1528958
ContentType Journal Article
Copyright 2023 International Solar Energy Society
Copyright_xml – notice: 2023 International Solar Energy Society
DBID AAYXX
CITATION
DOI 10.1016/j.solener.2023.03.058
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1471-1257
EndPage 44
ExternalDocumentID 10_1016_j_solener_2023_03_058
S0038092X23002190
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACGOD
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~KM
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c309t-7330dd42e879e2d420ad550a7cc7c37ab1fe9e59ddf9724101f1d8c4003283483
IEDL.DBID .~1
ISSN 0038-092X
IngestDate Wed Oct 01 05:13:33 EDT 2025
Thu Apr 24 23:07:55 EDT 2025
Fri Feb 23 02:39:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ferroelectric photovoltaic
Photocurrent
Open circuit voltage
Bandgap
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-7330dd42e879e2d420ad550a7cc7c37ab1fe9e59ddf9724101f1d8c4003283483
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_solener_2023_03_058
crossref_primary_10_1016_j_solener_2023_03_058
elsevier_sciencedirect_doi_10_1016_j_solener_2023_03_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Solar energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Petricek, Dusek, Palatinus (b0230) 2014; 229
Pal, Muthukrishnan, Sadhukhan, Sarath, Murali, Murugavel (b0195) 2021; 129
Piezoelectricity: evolution and future of a technology
Lu, Liu, Chen (b0150) 2019; 6
Venkidu, Babu, Rubavathi, Bagyalakshmi, Sundarakannan (b0270) 2018; 44
Xie, Hu, Guo, Hua, Liu, Jiang (b0336) 2012; 116
Octahedra in RMnO
Gaoa, Caia, Chena, Deng, Caoa, Fua (b0080) 2016; 84
V.M. Fridkin, Ferroelectricity and Giant Bulk Photovoltaic Effect in BaTiO
Srisombat, Ananta, Singhana, RandallLee, Yimnirun (b0250) 2013; 39
Kresse, Joubert (b0135) 1999; 59
Wang, Xiang, Ming Chen (b0305) 2011; 151
Rubavathi, Venkidu, Babu, Raman, Bagyalakshmi, Kader, Baskar, Muneeswaran, Giridharan, Sundarakannan (b0245) 2019; 30
Films at the Nanoscale, Ferroelectrics, 484:1, 1-13, doi: 10.1080/00150193.2015.1059151.
Liu, Wang, Fan, Li (b0145) 2022; 13
Zenkevich, Matveyev, Maksimova, Gaynutdinov, Tolstikhina, Fridkin (b0325) 2014; 90
Monkhorst, Pack (b0180) 1976; 13
A. Pérez-Tomás, A. Mingorance, D. Tanenbaum, M. Lira-Cantú, Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells In The Future of Semiconductor Oxides in Next-Generation Solar Cells, Barcelona, Spain, (2018) 267–356, doi: 10.1016/B978-0-12-811165- 9.00008-9.
Ti
A. B. Swain, D. Murali, B.R.K. Nanda, P. Murugavel, Large bulk photovoltaic response by symmetry-breaking structural transformation in ferroelectric [Ba(Zr
(Vol. 114). Springer Science & Business Media.
Hsuan-Chung, Li, Lin (b0115) 2012; 2012
Perovskites (R) Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study, Inorg. Chem. 39, 917-923, doi: 10.1021/ic990921e.
Wu, Akbashev, Podpirka, Spanier, Davies (b0315) 2019; 102
Liu, Khatri, Ishikawa, Fujimori, Ueno, Manabe, Nishino, Shirai (b0140) 2013; 103
Pal, Rudrapa, Mahana, Yadav, Paramanik, Mishra, Singh, Sheet, Topwal, Chaudhuri, Choudhury (b0200) 2020; 101
Baiju, Murali, Kumaresan (b0030) 2021; 224
Chandra, Gupta, Nandy, Mahadevan (b0040) 2013; 87
Phuyal, Mukherjee, Jana, Denoel, Kamalakar, Butorin, Kalaboukhov, Rensmo, Karis (b0235) 2019; 9
Kola, Murali, Pal, Nanda, Murugavel (b0130) 2019; 114
Wang, Rappe (b0300) 2015; 91
single crystals, jpn. J. Appl. Phys. 60
Fan, Yao, Wang (b0060) 2014; 105
Fan, Sun, Wang (b0065) 2015; 3
ArturoMorales-Acevedo, Variable band-gap semiconductors as the basis of new solar cells, solar energy, 83 2009 1466-14771, doi: 10.1016/j.solener.2009.04.004.
Fan, Chen, Fan, Zhang, Tan, Li, Huang, Yao, Tian, Luo, Li, Song, Chen, Zeng, Gao, Lu, Zhao, Gao, Liu (b0055) 2017; 111
Ismail (b0120) 2019; 33
Jin, Gao, Zhou, Wang (b0125) 2014; 4
Dahbi, Tahiri, El Bounagui, Ez-Zahraouy (b0045) 2021; 544
Ma, Yang (b0165) 2019; 60
Fridkin (b0070) 2001; 46
Luo, Wang, Tian, Song, Zhao, Cai, Feng, Li (b0155) 2018; 38
Wang, Grinberg, Rappe (b0285) 2014; 104
He, Chen, Li, Zeng, Yi (b0100) 2019; 29
Wang, Li, Liu, Gao (b0290) 2015; 379
Zhang, Cao, Wang, Shen, Su, Fang, Dong, Zheng (b0330) 2012; 135
2021) SFFA01, doi: 10.35848/1347-4065/ac0c6c.
Wang, Liu, Zhang, Min (b0295) 2018; 537
Y. Noguchi, H. Matsuo, Ferroelectric photovoltaic tensor in visible-light-active Fe-doped BaTiO
Wolfram, Ellialtioglu (b0310) 2006
Das, Ghara, Mahadevan, Sundaresan, Gopalakrishnan, Sarma (b0050) 2018; 3
O
Hao, Yao, Vitali-Derrien, Gemeiner, Otonicˇar, Ruello, Bouyanfif, Pierre-Eymeric Janolin, Dkhil, Paillard (b0095) 2022; 10
Hammer, Hansen, Nørskov (b0090) 1999; 59
Xiang, Zhang, Yi, Ma, Gu, Liu, Li, Liu (b0320) 2019; 13
Heywang, W., Lubitz, K. and Wersing, W. eds., 2008.
Brody, Crowne (b0035) 1975; 4
Zhang, Su, Shen, ZhihuaDai, XiyunHe, Cheng, Cao1, Zou (b0335) 2013; 2109
J.A.Alonso, M.J.Martı́nez-Lope, M.T.Casais, 2000. Evolution of the Jahn-Teller Distortion of MnO
]
Vegard (b0265) 1921; 5
Hill (b0110) 2000; 104
Pan, Yu-Cheng Tang, Yin, Jing-Ru, Ye, Zhang, Li (b0215) 2021; 47
Wahl, Vogtenhuber, Kresse (b0280) 2008; 78
Pal, Swain, Biswas, Murali, Pal, Nanda, Murugavel (b0210) 2018; 8
Perdew, Burke, Ernzerhof (b0220) 1996; 77
Pal, Rudrapal, Maji, Chaudhuri, Choudhury (b0205) 2021; 125
Su, Zhang, Wu, Fa-tang Li, Liu, Wang, Xu, Lou, Yu (b0255) 2019; 785
(BaCa)TiO
Phys. Rev. Applied 11 (2019) 044007, doi: 10.1103/PhysRevApplied.11.044007.
Glass, von der Linde, Negran (b0085) 1974; 25
Lv, Zhang, Wu (b0160) 2020; 8
Alkathy, Lente, Eiras (b0005) 2021; 257
Matsuo, Kitanaka, Inoue, Noguchi, Miyayama, Kiguchi, Konno (b0175) 2016; 94
Bai, Zhang, Zhang, Huang, Gao, Liu, Wang (b0025) 2021; 885
Venkidu, Athanas, Kalaiyar, Sundarakannan (b0275) 2022; 311
Neamen (b0185) 2012
Pinto, Stashans (b0240) 2002; 65
Alkathy, Eiras, Zabotto, Raju (b0010) 2021; 32
Ma, Zhang, Yang (b0170) 2017; 29
Glass (10.1016/j.solener.2023.03.058_b0085) 1974; 25
10.1016/j.solener.2023.03.058_b0190
Hill (10.1016/j.solener.2023.03.058_b0110) 2000; 104
Wolfram (10.1016/j.solener.2023.03.058_b0310) 2006
Monkhorst (10.1016/j.solener.2023.03.058_b0180) 1976; 13
Bai (10.1016/j.solener.2023.03.058_b0025) 2021; 885
Su (10.1016/j.solener.2023.03.058_b0255) 2019; 785
Zhang (10.1016/j.solener.2023.03.058_b0335) 2013; 2109
Fan (10.1016/j.solener.2023.03.058_b0060) 2014; 105
Ma (10.1016/j.solener.2023.03.058_b0170) 2017; 29
Ismail (10.1016/j.solener.2023.03.058_b0120) 2019; 33
Ma (10.1016/j.solener.2023.03.058_b0165) 2019; 60
Jin (10.1016/j.solener.2023.03.058_b0125) 2014; 4
10.1016/j.solener.2023.03.058_b0075
Liu (10.1016/j.solener.2023.03.058_b0140) 2013; 103
Wang (10.1016/j.solener.2023.03.058_b0300) 2015; 91
Wu (10.1016/j.solener.2023.03.058_b0315) 2019; 102
Chandra (10.1016/j.solener.2023.03.058_b0040) 2013; 87
Kola (10.1016/j.solener.2023.03.058_b0130) 2019; 114
Venkidu (10.1016/j.solener.2023.03.058_b0270) 2018; 44
Wahl (10.1016/j.solener.2023.03.058_b0280) 2008; 78
Baiju (10.1016/j.solener.2023.03.058_b0030) 2021; 224
Srisombat (10.1016/j.solener.2023.03.058_b0250) 2013; 39
Alkathy (10.1016/j.solener.2023.03.058_b0010) 2021; 32
Fan (10.1016/j.solener.2023.03.058_b0055) 2017; 111
He (10.1016/j.solener.2023.03.058_b0100) 2019; 29
Lu (10.1016/j.solener.2023.03.058_b0150) 2019; 6
Wang (10.1016/j.solener.2023.03.058_b0295) 2018; 537
Wang (10.1016/j.solener.2023.03.058_b0290) 2015; 379
Alkathy (10.1016/j.solener.2023.03.058_b0005) 2021; 257
Rubavathi (10.1016/j.solener.2023.03.058_b0245) 2019; 30
Hsuan-Chung (10.1016/j.solener.2023.03.058_b0115) 2012; 2012
Matsuo (10.1016/j.solener.2023.03.058_b0175) 2016; 94
Pan (10.1016/j.solener.2023.03.058_b0215) 2021; 47
Phuyal (10.1016/j.solener.2023.03.058_b0235) 2019; 9
Luo (10.1016/j.solener.2023.03.058_b0155) 2018; 38
Lv (10.1016/j.solener.2023.03.058_b0160) 2020; 8
Das (10.1016/j.solener.2023.03.058_b0050) 2018; 3
Xie (10.1016/j.solener.2023.03.058_b0336) 2012; 116
Vegard (10.1016/j.solener.2023.03.058_b0265) 1921; 5
Fridkin (10.1016/j.solener.2023.03.058_b0070) 2001; 46
Gaoa (10.1016/j.solener.2023.03.058_b0080) 2016; 84
Hao (10.1016/j.solener.2023.03.058_b0095) 2022; 10
10.1016/j.solener.2023.03.058_b0015
Hammer (10.1016/j.solener.2023.03.058_b0090) 1999; 59
Liu (10.1016/j.solener.2023.03.058_b0145) 2022; 13
Pal (10.1016/j.solener.2023.03.058_b0205) 2021; 125
Wang (10.1016/j.solener.2023.03.058_b0285) 2014; 104
Perdew (10.1016/j.solener.2023.03.058_b0220) 1996; 77
10.1016/j.solener.2023.03.058_b0260
Neamen (10.1016/j.solener.2023.03.058_b0185) 2012
Kresse (10.1016/j.solener.2023.03.058_b0135) 1999; 59
Fan (10.1016/j.solener.2023.03.058_b0065) 2015; 3
Pal (10.1016/j.solener.2023.03.058_b0195) 2021; 129
Petricek (10.1016/j.solener.2023.03.058_b0230) 2014; 229
Zenkevich (10.1016/j.solener.2023.03.058_b0325) 2014; 90
10.1016/j.solener.2023.03.058_b0105
Dahbi (10.1016/j.solener.2023.03.058_b0045) 2021; 544
Zhang (10.1016/j.solener.2023.03.058_b0330) 2012; 135
10.1016/j.solener.2023.03.058_b0020
Brody (10.1016/j.solener.2023.03.058_b0035) 1975; 4
Pal (10.1016/j.solener.2023.03.058_b0210) 2018; 8
Pal (10.1016/j.solener.2023.03.058_b0200) 2020; 101
Wang (10.1016/j.solener.2023.03.058_b0305) 2011; 151
Pinto (10.1016/j.solener.2023.03.058_b0240) 2002; 65
Venkidu (10.1016/j.solener.2023.03.058_b0275) 2022; 311
10.1016/j.solener.2023.03.058_b0225
Xiang (10.1016/j.solener.2023.03.058_b0320) 2019; 13
References_xml – volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: b0180
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
– volume: 537
  start-page: 68
  year: 2018
  end-page: 78
  ident: b0295
  article-title: Electronic, magnetic and optical properties of charge-compensated (Nb, TM=Fe, Cr)-codoped SrTiO
  publication-title: Ferroelectrics
– reference: [(BaCa)TiO
– volume: 116
  start-page: 23041
  year: 2012
  end-page: 23046
  ident: b0336
  article-title: Room Temperature Magnetic Properties of Fe/Co-Doped Barium Niobate Crystals
  publication-title: J. Phys. Chem. C
– volume: 544
  year: 2021
  ident: b0045
  article-title: Electronic, optical, and thermoelectric properties of perovskite BaTiO
  publication-title: Chemical Physics
– volume: 91
  year: 2015
  ident: b0300
  article-title: First-principles calculation of the bulk photovoltaic effect in KNbO
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 23453
  year: 2021
  end-page: 23462
  ident: b0215
  article-title: Ferroelectric and photovoltaic properties of (Ba, Ca) (Ti, Sn, Zr)O3 perovskite ceramics
  publication-title: Ceram Inter
– reference: single crystals, jpn. J. Appl. Phys. 60
– reference: J.A.Alonso, M.J.Martı́nez-Lope, M.T.Casais, 2000. Evolution of the Jahn-Teller Distortion of MnO
– volume: 78
  year: 2008
  ident: b0280
  article-title: SrTiO
  publication-title: Phys. Rev. B
– reference: Y. Noguchi, H. Matsuo, Ferroelectric photovoltaic tensor in visible-light-active Fe-doped BaTiO
– volume: 4
  start-page: 955
  year: 1975
  end-page: 971
  ident: b0035
  article-title: Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics
  publication-title: J. Electron. Mater.
– volume: 4
  start-page: 4268
  year: 2014
  ident: b0125
  article-title: High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films
  publication-title: Sci Rep
– volume: 13
  start-page: 11071
  year: 2022
  end-page: 11075
  ident: b0145
  article-title: Bulk Photovoltage Effect in Ferroelectric BaTiO
  publication-title: J. Phys. Chem. Lett.
– volume: 129
  year: 2021
  ident: b0195
  article-title: Bulk photovoltaic effect in BaTiO3-based ferroelectric oxides: An experimental and theoretical study
  publication-title: J. Appl. Phys.
– volume: 885
  year: 2021
  ident: b0025
  article-title: Enhanced photocurrent of self-powered ultraviolet photodetectors based on Ba
  publication-title: J Alloys compd
– reference: )O]
– volume: 25
  start-page: 233
  year: 1974
  ident: b0085
  article-title: Highvoltage bulk photovoltaic effect and the photorefractive process in LiNbO
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 227
  year: 2022
  end-page: 234
  ident: b0095
  article-title: Optical absorption by design in a ferroelectric: co-doping in BaTiO3
  publication-title: J. Mater. Chem. C
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: b0220
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2013
  ident: b0040
  article-title: Ferroelectric distortions in doped ferroelectrics: BaTiO
  publication-title: Phys. Rev. B
– volume: 105
  year: 2014
  ident: b0060
  article-title: Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO
  publication-title: Appl. Phys. Lett.
– reference: V.M. Fridkin, Ferroelectricity and Giant Bulk Photovoltaic Effect in BaTiO
– volume: 102
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0315
  article-title: Infrared-to-ultraviolet light-absorbing BaTiO
  publication-title: J Am Ceram Soc.
– reference: A. Pérez-Tomás, A. Mingorance, D. Tanenbaum, M. Lira-Cantú, Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells In The Future of Semiconductor Oxides in Next-Generation Solar Cells, Barcelona, Spain, (2018) 267–356, doi: 10.1016/B978-0-12-811165- 9.00008-9.
– volume: 44
  start-page: 8161
  year: 2018
  end-page: 8165
  ident: b0270
  article-title: Structure, microstructure, magnetic and magnetodielectric investigations on BaTi
  publication-title: Ceram Int
– reference: ]
– reference: Films at the Nanoscale, Ferroelectrics, 484:1, 1-13, doi: 10.1080/00150193.2015.1059151.
– volume: 59
  start-page: 7413
  year: 1999
  end-page: 7421
  ident: b0090
  article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
  publication-title: Phys. Rev. B
– reference: (Vol. 114). Springer Science & Business Media.
– volume: 29
  start-page: 1900918
  year: 2019
  ident: b0100
  article-title: Ferroelectric, Photoelectric and photovoltaic performance of silver niobate ceramics
  publication-title: Adv. Funct. Mater.
– reference: Piezoelectricity: evolution and future of a technology
– volume: 6
  year: 2019
  ident: b0150
  article-title: High efficient photovoltaics in BaTiO
  publication-title: Mater. Res. Express
– volume: 104
  year: 2014
  ident: b0285
  article-title: Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
  publication-title: Appl. Phys. Lett.
– volume: 379
  start-page: 1288
  year: 2015
  end-page: 1292
  ident: b0290
  article-title: Resistive switching behavior of BaTiO
  publication-title: Phys Lette A
– reference: ArturoMorales-Acevedo, Variable band-gap semiconductors as the basis of new solar cells, solar energy, 83 2009 1466-14771, doi: 10.1016/j.solener.2009.04.004.
– volume: 84
  start-page: 93
  year: 2016
  end-page: 98
  ident: b0080
  article-title: Enhanced ferroelectric photovoltaic effect based on converging depolarization field
  publication-title: Mater Res Bull
– volume: 2109
  year: 2013
  ident: b0335
  article-title: Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects
  publication-title: Sci Rep 3
– volume: 33
  start-page: 1950261
  year: 2019
  ident: b0120
  article-title: Ferroelectric characteristics of Fe/Nb co-doped BaTiO
  publication-title: Modern Phys. Lett. B
– volume: 32
  start-page: 12828
  year: 2021
  end-page: 12840
  ident: b0010
  article-title: Structural, optical, dielectric, and multiferroic properties of sodium and nickel co-substituted barium titanate ceramics
  publication-title: J Mater Sci: Mater Electron
– volume: 125
  start-page: 5315
  year: 2021
  end-page: 5326
  ident: b0205
  article-title: Toward an Enhanced Room-Temperature Photovoltaic Effect in Ferroelectric Bismuth and Iron Co-doped BaTiO
  publication-title: J. Phys. Chem. C
– volume: 785
  start-page: 584
  year: 2019
  end-page: 589
  ident: b0255
  article-title: Plasmonic-enhanced ferroelectric photovoltaic effect in 0–3 type BaTiO
  publication-title: J Alloys Compd
– volume: 46
  start-page: 654
  year: 2001
  end-page: 658
  ident: b0070
  article-title: Bulk Photovoltaic Effect in Noncentrosymmetric Crystals
  publication-title: Crystallogr. Rep.
– volume: 151
  start-page: 708
  year: 2011
  end-page: 711
  ident: b0305
  article-title: Evolution from relaxor-like dielectric to ferroelectric in Ba[(F
  publication-title: Solid State Commun
– year: 2006
  ident: b0310
  article-title: Electronic and Optical Properties of D-Band Perovskites
– volume: 135
  start-page: 304
  year: 2012
  end-page: 308
  ident: b0330
  article-title: Enhanced photocurrent in Pb(Zr
  publication-title: Mater Chem and Phys
– volume: 311
  year: 2022
  ident: b0275
  article-title: Fabrication of DSSCs using ferroelectric photoanodes of co-substituted (1–x)BiFeO
  publication-title: Mater Letter
– volume: 257
  year: 2021
  ident: b0005
  article-title: Bandgap narrowing of Ba
  publication-title: Mater Chem and Phys
– volume: 5
  start-page: 17
  year: 1921
  end-page: 26
  ident: b0265
  article-title: Die Konstitution der Mischkristalle und die Raumfüllung der Atome
  publication-title: Z. Phys.
– volume: 60
  start-page: 95
  year: 2019
  end-page: 102
  ident: b0165
  article-title: Boosted Photocurrent via Cooling Ferroelectric BaTiO
  publication-title: Nano energy
– volume: 9
  year: 2019
  ident: b0235
  article-title: Ferroelectric properties of BaTiO
  publication-title: AIP Advances
– volume: 103
  year: 2013
  ident: b0140
  article-title: Improved photovoltaic performance of crystalline-Si/organic Schottky junction solar cells using ferroelectric polymers
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1703694
  year: 2017
  ident: b0170
  article-title: Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System
  publication-title: Adv. Mater.
– reference: A. B. Swain, D. Murali, B.R.K. Nanda, P. Murugavel, Large bulk photovoltaic response by symmetry-breaking structural transformation in ferroelectric [Ba(Zr
– reference: Perovskites (R) Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study, Inorg. Chem. 39, 917-923, doi: 10.1021/ic990921e.
– volume: 229
  start-page: 345
  year: 2014
  end-page: 352
  ident: b0230
  article-title: Kristallogr, Crystallographic Computing System JANA2006: General features
  publication-title: Crystalline Mater.
– reference: Octahedra in RMnO
– volume: 114
  year: 2019
  ident: b0130
  article-title: Enhanced bulk photovoltaic response in Sn doped BaTiO3 through composition dependent structural transformation
  publication-title: Appl. Phys. Lett.
– volume: 65
  year: 2002
  ident: b0240
  article-title: Computational study of self-trapped hole polarons in tetragonal BaTiO
  publication-title: Phys. Rev. B
– volume: 39
  start-page: S591
  year: 2013
  end-page: S594
  ident: b0250
  article-title: Chemical investigation of Fe
  publication-title: Ceram Inter
– volume: 224
  start-page: 93
  year: 2021
  end-page: 101
  ident: b0030
  article-title: Ferroelectric barium titanate microspheres with superior light-scattering ability for the performance enhancements of flexible polymer dye sensitized solar cells and photodetectors
  publication-title: Solar Energy
– reference: Heywang, W., Lubitz, K. and Wersing, W. eds., 2008.
– volume: 94
  year: 2016
  ident: b0175
  article-title: Bulk and domain-wall effects in ferroelectric photovoltaics
  publication-title: Phys. Rev. B
– volume: 104
  start-page: 6694
  year: 2000
  end-page: 6709
  ident: b0110
  article-title: Why Are There so Few Magnetic Ferroelectrics?
  publication-title: J. Phys. Chem. B
– volume: 101
  year: 2020
  ident: b0200
  article-title: Origin and tuning of room-temperature multiferroicity in Fe-doped BaTiO
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 10026
  year: 2020
  end-page: 10073
  ident: b0160
  article-title: Nano-Domains in Lead-Free Piezoceramics: A Review
  publication-title: J. Mater. Chem. A
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: b0135
  article-title: From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method
  publication-title: Rev. B
– reference: , Phys. Rev. Applied 11 (2019) 044007, doi: 10.1103/PhysRevApplied.11.044007.
– volume: 3
  start-page: 18809
  year: 2015
  end-page: 18828
  ident: b0065
  article-title: Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 1562
  year: 2018
  end-page: 1568
  ident: b0155
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO
  publication-title: J Eur Ceramic Soc
– volume: 111
  year: 2017
  ident: b0055
  article-title: Resistive switching and photovoltaic effects in ferroelectric BaTiO
  publication-title: Appl. Phys. Lett.
– reference: 2021) SFFA01, doi: 10.35848/1347-4065/ac0c6c.
– volume: 30
  start-page: 5706
  year: 2019
  end-page: 5717
  ident: b0245
  article-title: Structure, morphology and magnetodielectric investigations of BaTi
  publication-title: J Mater Sci: Mater Electron
– reference: Ti
– volume: 3
  start-page: 1176
  year: 2018
  end-page: 1182
  ident: b0050
  article-title: Designing a Lower Band Gap Bulk Ferroelectric Material with a Sizable Polarization at Room Temperature
  publication-title: ACS Energy Lett.
– start-page: 2011
  year: 2012
  ident: b0185
  article-title: Semiconductor Physics and Devices Basic Principles
– volume: 90
  year: 2014
  ident: b0325
  article-title: Giant bulk photovoltaic effect in thin ferroelectric BaTiO
  publication-title: Phys. Rev. B
– volume: 2012
  year: 2012
  ident: b0115
  article-title: Effect of Fe Concentration on Fe-Doped Anatase TiO
  publication-title: Int. J. Photoenergy
– volume: 13
  start-page: 1900074
  year: 2019
  ident: b0320
  article-title: Non-stoichiometry induced switching behavior of ferroelectric photovoltaic effect in BaTiO
  publication-title: Phys. Status Solidi RRL
– volume: 8
  start-page: 8005
  year: 2018
  ident: b0210
  article-title: Giant photovoltaic response in band engineered ferroelectric perovskite
  publication-title: Sci Rep
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.solener.2023.03.058_b0220
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 65
  year: 2002
  ident: 10.1016/j.solener.2023.03.058_b0240
  article-title: Computational study of self-trapped hole polarons in tetragonal BaTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.134304
– volume: 224
  start-page: 93
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0030
  article-title: Ferroelectric barium titanate microspheres with superior light-scattering ability for the performance enhancements of flexible polymer dye sensitized solar cells and photodetectors
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2021.05.063
– volume: 2109
  year: 2013
  ident: 10.1016/j.solener.2023.03.058_b0335
  article-title: Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects
  publication-title: Sci Rep 3
– volume: 111
  year: 2017
  ident: 10.1016/j.solener.2023.03.058_b0055
  article-title: Resistive switching and photovoltaic effects in ferroelectric BaTiO3-based capacitors with Ti and Pt top electrodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4999982
– ident: 10.1016/j.solener.2023.03.058_b0020
  doi: 10.1016/j.solener.2009.04.004
– volume: 114
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0130
  article-title: Enhanced bulk photovoltaic response in Sn doped BaTiO3 through composition dependent structural transformation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5088635
– volume: 104
  year: 2014
  ident: 10.1016/j.solener.2023.03.058_b0285
  article-title: Band gap engineering strategy via polarization rotation in perovskite ferroelectrics
  publication-title: Appl. Phys. Lett.
– volume: 105
  year: 2014
  ident: 10.1016/j.solener.2023.03.058_b0060
  article-title: Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO3/Pt heterostructure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4899146
– volume: 4
  start-page: 4268
  year: 2014
  ident: 10.1016/j.solener.2023.03.058_b0125
  article-title: High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films
  publication-title: Sci Rep
  doi: 10.1038/srep04268
– volume: 91
  year: 2015
  ident: 10.1016/j.solener.2023.03.058_b0300
  article-title: First-principles calculation of the bulk photovoltaic effect in KNbO3 and (K, Ba)(Ni, Nb)O3−δ
  publication-title: Phys. Rev. B
– volume: 104
  start-page: 6694
  year: 2000
  ident: 10.1016/j.solener.2023.03.058_b0110
  article-title: Why Are There so Few Magnetic Ferroelectrics?
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000114x
– volume: 32
  start-page: 12828
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0010
  article-title: Structural, optical, dielectric, and multiferroic properties of sodium and nickel co-substituted barium titanate ceramics
  publication-title: J Mater Sci: Mater Electron
– volume: 30
  start-page: 5706
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0245
  article-title: Structure, morphology and magnetodielectric investigations of BaTi1−xFexO3−δ ceramics
  publication-title: J Mater Sci: Mater Electron
– volume: 10
  start-page: 227
  year: 2022
  ident: 10.1016/j.solener.2023.03.058_b0095
  article-title: Optical absorption by design in a ferroelectric: co-doping in BaTiO3
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC04250E
– volume: 125
  start-page: 5315
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0205
  article-title: Toward an Enhanced Room-Temperature Photovoltaic Effect in Ferroelectric Bismuth and Iron Co-doped BaTiO3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c10655
– volume: 25
  start-page: 233
  year: 1974
  ident: 10.1016/j.solener.2023.03.058_b0085
  article-title: Highvoltage bulk photovoltaic effect and the photorefractive process in LiNbO3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1655453
– volume: 129
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0195
  article-title: Bulk photovoltaic effect in BaTiO3-based ferroelectric oxides: An experimental and theoretical study
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0036488
– volume: 13
  start-page: 5188
  year: 1976
  ident: 10.1016/j.solener.2023.03.058_b0180
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 13
  start-page: 1900074
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0320
  article-title: Non-stoichiometry induced switching behavior of ferroelectric photovoltaic effect in BaTiO3 ceramics
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201900074
– volume: 116
  start-page: 23041
  issue: 43
  year: 2012
  ident: 10.1016/j.solener.2023.03.058_b0336
  article-title: Room Temperature Magnetic Properties of Fe/Co-Doped Barium Niobate Crystals
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306370q
– ident: 10.1016/j.solener.2023.03.058_b0015
  doi: 10.1021/ic990921e
– volume: 29
  start-page: 1703694
  year: 2017
  ident: 10.1016/j.solener.2023.03.058_b0170
  article-title: Photovoltaic-Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703694
– volume: 885
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0025
  article-title: Enhanced photocurrent of self-powered ultraviolet photodetectors based on Ba1−xSrxTiO3 ceramics via ferroelectric polarization
  publication-title: J Alloys compd
  doi: 10.1016/j.jallcom.2021.161177
– volume: 2012
  year: 2012
  ident: 10.1016/j.solener.2023.03.058_b0115
  article-title: Effect of Fe Concentration on Fe-Doped Anatase TiO2 from GGA + U Calculations
  publication-title: Int. J. Photoenergy
– volume: 103
  year: 2013
  ident: 10.1016/j.solener.2023.03.058_b0140
  article-title: Improved photovoltaic performance of crystalline-Si/organic Schottky junction solar cells using ferroelectric polymers
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 8005
  year: 2018
  ident: 10.1016/j.solener.2023.03.058_b0210
  article-title: Giant photovoltaic response in band engineered ferroelectric perovskite
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-26205-x
– volume: 38
  start-page: 1562
  year: 2018
  ident: 10.1016/j.solener.2023.03.058_b0155
  article-title: Giant permittivity and low dielectric loss of Fe doped BaTiO3 ceramics: Experimental and first-principles calculations
  publication-title: J Eur Ceramic Soc
  doi: 10.1016/j.jeurceramsoc.2017.10.014
– volume: 135
  start-page: 304
  year: 2012
  ident: 10.1016/j.solener.2023.03.058_b0330
  article-title: Enhanced photocurrent in Pb(Zr0.2Ti0.8)O3 ferroelectric film by artificially introducing asymmetrical interface Schottky barriers
  publication-title: Mater Chem and Phys
  doi: 10.1016/j.matchemphys.2012.04.041
– volume: 44
  start-page: 8161
  year: 2018
  ident: 10.1016/j.solener.2023.03.058_b0270
  article-title: Structure, microstructure, magnetic and magnetodielectric investigations on BaTi(1–x-y)FexNbyO3 ceramics
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.01.263
– start-page: 2011
  year: 2012
  ident: 10.1016/j.solener.2023.03.058_b0185
– volume: 311
  year: 2022
  ident: 10.1016/j.solener.2023.03.058_b0275
  article-title: Fabrication of DSSCs using ferroelectric photoanodes of co-substituted (1–x)BiFeO3-(x)BaFe1/2Nb1/2O3: Structural correlation to bandgap reduction and its impact on power conversion efficiency
  publication-title: Mater Letter
  doi: 10.1016/j.matlet.2021.131473
– volume: 46
  start-page: 654
  year: 2001
  ident: 10.1016/j.solener.2023.03.058_b0070
  article-title: Bulk Photovoltaic Effect in Noncentrosymmetric Crystals
  publication-title: Crystallogr. Rep.
  doi: 10.1134/1.1387133
– volume: 4
  start-page: 955
  year: 1975
  ident: 10.1016/j.solener.2023.03.058_b0035
  article-title: Mechanism for the high voltage photovoltaic effect in ceramic ferroelectrics
  publication-title: J. Electron. Mater.
  doi: 10.1007/BF02660182
– volume: 39
  start-page: S591
  year: 2013
  ident: 10.1016/j.solener.2023.03.058_b0250
  article-title: Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics
  publication-title: Ceram Inter
  doi: 10.1016/j.ceramint.2012.10.142
– volume: 379
  start-page: 1288
  year: 2015
  ident: 10.1016/j.solener.2023.03.058_b0290
  article-title: Resistive switching behavior of BaTiO3/La0.8Ca0.2MnO3heterostructures
  publication-title: Phys Lette A
  doi: 10.1016/j.physleta.2015.02.037
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.solener.2023.03.058_b0135
  article-title: From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method Phys
  publication-title: Rev. B
  doi: 10.1103/PhysRevB.59.1758
– ident: 10.1016/j.solener.2023.03.058_b0225
  doi: 10.1016/B978-0-12-811165-9.00008-9
– volume: 102
  start-page: 1
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0315
  article-title: Infrared-to-ultraviolet light-absorbing BaTiO3-based ferroelectric photovoltaic materials
  publication-title: J Am Ceram Soc.
  doi: 10.1111/jace.16307
– volume: 87
  year: 2013
  ident: 10.1016/j.solener.2023.03.058_b0040
  article-title: Ferroelectric distortions in doped ferroelectrics: BaTiO3:M (M=V−Fe)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.214110
– volume: 9
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0235
  article-title: Ferroelectric properties of BaTiO3 thin films co-doped with Mn and Nb
  publication-title: AIP Advances
  doi: 10.1063/1.5118869
– ident: 10.1016/j.solener.2023.03.058_b0105
  doi: 10.1007/978-3-540-68683-5
– volume: 8
  start-page: 10026
  year: 2020
  ident: 10.1016/j.solener.2023.03.058_b0160
  article-title: Nano-Domains in Lead-Free Piezoceramics: A Review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03201H
– volume: 3
  start-page: 18809
  year: 2015
  ident: 10.1016/j.solener.2023.03.058_b0065
  article-title: Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04235F
– volume: 60
  start-page: 95
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0165
  article-title: Boosted Photocurrent via Cooling Ferroelectric BaTiO3 Materials for Self-Powered 405 nm Light Detection
  publication-title: Nano energy
  doi: 10.1016/j.nanoen.2019.03.036
– ident: 10.1016/j.solener.2023.03.058_b0075
  doi: 10.1080/00150193.2015.1059151
– ident: 10.1016/j.solener.2023.03.058_b0190
  doi: 10.35848/1347-4065/ac0c6c
– year: 2006
  ident: 10.1016/j.solener.2023.03.058_b0310
– volume: 544
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0045
  article-title: Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain
  publication-title: Chemical Physics
  doi: 10.1016/j.chemphys.2021.111105
– volume: 59
  start-page: 7413
  year: 1999
  ident: 10.1016/j.solener.2023.03.058_b0090
  article-title: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.7413
– volume: 78
  year: 2008
  ident: 10.1016/j.solener.2023.03.058_b0280
  article-title: SrTiO3 and BaTiO3 revisited using the projector augmented wave method: Performance of hybrid and semilocal functionals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.104116
– volume: 785
  start-page: 584
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0255
  article-title: Plasmonic-enhanced ferroelectric photovoltaic effect in 0–3 type BaTiO3-Au ceramics
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2019.01.223
– volume: 3
  start-page: 1176
  year: 2018
  ident: 10.1016/j.solener.2023.03.058_b0050
  article-title: Designing a Lower Band Gap Bulk Ferroelectric Material with a Sizable Polarization at Room Temperature
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00492
– volume: 47
  start-page: 23453
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0215
  article-title: Ferroelectric and photovoltaic properties of (Ba, Ca) (Ti, Sn, Zr)O3 perovskite ceramics
  publication-title: Ceram Inter
  doi: 10.1016/j.ceramint.2021.05.061
– ident: 10.1016/j.solener.2023.03.058_b0260
  doi: 10.1103/PhysRevApplied.11.044007
– volume: 29
  start-page: 1900918
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0100
  article-title: Ferroelectric, Photoelectric and photovoltaic performance of silver niobate ceramics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201900918
– volume: 13
  start-page: 11071
  issue: 48
  year: 2022
  ident: 10.1016/j.solener.2023.03.058_b0145
  article-title: Bulk Photovoltage Effect in Ferroelectric BaTiO3
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c03194
– volume: 90
  year: 2014
  ident: 10.1016/j.solener.2023.03.058_b0325
  article-title: Giant bulk photovoltaic effect in thin ferroelectric BaTiO3 films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.161409
– volume: 33
  start-page: 1950261
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0120
  article-title: Ferroelectric characteristics of Fe/Nb co-doped BaTiO3
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S0217984919502610
– volume: 151
  start-page: 708
  year: 2011
  ident: 10.1016/j.solener.2023.03.058_b0305
  article-title: Evolution from relaxor-like dielectric to ferroelectric in Ba[(Fe0.5Nb0.5)1−xTix]O3
  publication-title: Solid State Commun
  doi: 10.1016/j.ssc.2011.02.015
– volume: 84
  start-page: 93
  year: 2016
  ident: 10.1016/j.solener.2023.03.058_b0080
  article-title: Enhanced ferroelectric photovoltaic effect based on converging depolarization field
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2016.07.031
– volume: 5
  start-page: 17
  year: 1921
  ident: 10.1016/j.solener.2023.03.058_b0265
  article-title: Die Konstitution der Mischkristalle und die Raumfüllung der Atome
  publication-title: Z. Phys.
  doi: 10.1007/BF01349680
– volume: 6
  year: 2019
  ident: 10.1016/j.solener.2023.03.058_b0150
  article-title: High efficient photovoltaics in BaTiO3 thin film
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab39a6
– volume: 94
  year: 2016
  ident: 10.1016/j.solener.2023.03.058_b0175
  article-title: Bulk and domain-wall effects in ferroelectric photovoltaics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.214111
– volume: 229
  start-page: 345
  year: 2014
  ident: 10.1016/j.solener.2023.03.058_b0230
  article-title: Kristallogr, Crystallographic Computing System JANA2006: General features
  publication-title: Crystalline Mater.
– volume: 101
  year: 2020
  ident: 10.1016/j.solener.2023.03.058_b0200
  article-title: Origin and tuning of room-temperature multiferroicity in Fe-doped BaTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.064409
– volume: 257
  year: 2021
  ident: 10.1016/j.solener.2023.03.058_b0005
  article-title: Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3 ferroelectric ceramics by transition metals doping for photovoltaic applications
  publication-title: Mater Chem and Phys
  doi: 10.1016/j.matchemphys.2020.123791
– volume: 537
  start-page: 68
  issue: 1
  year: 2018
  ident: 10.1016/j.solener.2023.03.058_b0295
  article-title: Electronic, magnetic and optical properties of charge-compensated (Nb, TM=Fe, Cr)-codoped SrTiO3 from first principles
  publication-title: Ferroelectrics
  doi: 10.1080/00150193.2018.1528958
SSID ssj0017187
Score 2.4449496
Snippet •Al/BaTi1-2xFexNbxO3/Ag is an excellent bulk ferroelectric photovoltaic device configuration.•Increment of aliovalent Fe3+and Nb5+ionic substitutions reduces...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Bandgap
Ferroelectric photovoltaic
Open circuit voltage
Photocurrent
Title Impact of charge-compensated Fe and Nb co-substitution on BaTiO3: Bandgap and grain size reduction and enhanced bulk photovoltaic power of Al/BFNT/Ag solar cell
URI https://dx.doi.org/10.1016/j.solener.2023.03.058
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1471-1257
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017187
  issn: 0038-092X
  databaseCode: AKRWK
  dateStart: 19570101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQXJbDCvYh3vKBaxonjuuYW0FUZdF2L0XqLXJsp4StkoiGCwd-Cz-VGSdlWQmx0kpWnh7J8jjziGe-IeQ0FjY3irkgkQYOYqgDrcGQy1MhjWUijx3-0P85HU5ukh9zMd8gF-tcGAyr7GV_J9O9tO6fhP1shk1ZYo4vT5mK52BEg6JS6LcnicQqBoOn1zCPCGRvh5vJcZs_nv_J4gnvwIldIrjzAGuIe6xTrPz-nn56o3PGO-RzbyzSUTeeXbLhqi9k-w2E4FfyfOXTHGldUA965AIMEgffFGxIS8eO6srSaU5NHaxARvjAAGAFhXauZ-Uvfgbnyi5043susGIEXZWPjt4jqKvviy9cdetjBWj-sPxNm9u6rUGwtbo0tMFCaziA0TI8H09n4WhBV-gxU9wV-EZuxpezi0nQV10IDGeqDSTnzNokdqlULoYLpi24MVoaIw2XOo8Kp5xQ1hZKgv5nURHZ1IAs4GCqJCn_TjarunJ7hBaWGRsp7cAsTXSstRpqUVjLpYVPX5h9kqznOjM9JDlWxlhm69izu6xnUYYsyhg0ke6TwStZ02Fy_IsgXTMy-2txZaA3PiY9-H_SQ_IJ77q4siOy2d4_uGOwYNr8xC_RE7I1urqeTF8ApQXzFg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNoeUJ8qUFofuGbjxPE65rYgVksL28si7S1ybGcJrJKIDRcO_BZ-KjNOlodUtVIlK4lij2R5nHnEM98QchALmxvFXJBIAxcx1IHWYMjlqZDGMpHHDn_on0-Hk4vk51zMN8jxOhcGwyp72d_JdC-t-zdhv5phU5aY48tTpuI5GNGgqBT47VuJiCV6YIP7pziPCIRvB5zJ8Zw_nj-n8YRX4MUuEd15gEXEPdgpln7_k4J6oXTG78l2by3SUTehD2TDVR_JuxcYgp_Iw6nPc6R1QT3qkQswShycUzAiLR07qitLpzk1dbACIeEjA4AXFNqRnpW_-SHcK7vQjR-5wJIRdFXeOXqDqK5-LHa46tIHC9D8dnlNm8u6rUGytbo0tMFKaziB0TI8Gk9n4WhBV-gyUzwW-Ewuxiez40nQl10IDGeqDSTnzNokdqlULoYHpi34MVoaIw2XOo8Kp5xQ1hZKggHAoiKyqQFhwMFWSVL-hWxWdeW-ElpYZmyktAO7NNGx1mqoRWEtlxa-fWF2SLJe68z0mORYGmOZrYPPrrKeRRmyKGPQRLpDBk9kTQfK8S-CdM3I7NXuykBx_J109_9Jf5A3k9n5WXZ2Ov21R95iTxdk9o1stje3bh_MmTb_7rfrI0YL9Ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+charge-compensated+Fe+and+Nb+co-substitution+on+BaTiO3%3A+Bandgap+and+grain+size+reduction+and+enhanced+bulk+photovoltaic+power+of+Al%2FBFNT%2FAg+solar+cell&rft.jtitle=Solar+energy&rft.au=Venkidu%2C+L.&rft.au=Raja%2C+N.&rft.au=Sundarakannan%2C+B.&rft.date=2023-06-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.eissn=1471-1257&rft.volume=257&rft.spage=34&rft.epage=44&rft_id=info:doi/10.1016%2Fj.solener.2023.03.058&rft.externalDocID=S0038092X23002190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon