New algorithms for detecting multi-effect and multi-way epistatic interactions
Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods...
Saved in:
Published in | Bioinformatics (Oxford, England) Vol. 35; no. 24; pp. 5078 - 5085 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
15.12.2019
|
Online Access | Get full text |
ISSN | 1367-4803 1367-4811 1367-4811 |
DOI | 10.1093/bioinformatics/btz463 |
Cover
Abstract | Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.
The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.
Data source was publicly available and details are provided in the text. |
---|---|
AbstractList | Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.MOTIVATIONEpistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.RESULTSThe computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.Data source was publicly available and details are provided in the text.AVAILABILITY AND IMPLEMENTATIONData source was publicly available and details are provided in the text. Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics. The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods. Data source was publicly available and details are provided in the text. |
Author | Wang, Lizhi Ansarifar, Javad |
Author_xml | – sequence: 1 givenname: Javad surname: Ansarifar fullname: Ansarifar, Javad – sequence: 2 givenname: Lizhi surname: Wang fullname: Wang, Lizhi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31168598$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kEtLAzEUhYNU7EN_gjJLN2OTSZNJcCXFF5S60XXIZJIamUlqkqHUX--UtoIuXN0H55zL_cZg4LzTAFwieIMgx9PKeuuMD61MVsVplb5mFJ-AEcK0zGcMocFPD_EQjGP8gBASSOgZGGKEKCOcjcByqTeZbFY-2PTexqxPzGqdtErWrbK2a5LNtTH9nElXHxYbuc302sa0u51Zl3SQvcG7eA5OjWyivjjUCXh7uH-dP-WLl8fn-d0iVxjylFOmkKoYJkpySGe4gERirjhjiLGaQlwiQjBHRhYaMl5CjUslC4O5KWppEJ6A633uOvjPTsckWhuVbhrptO-iKDCmRZ9T0F56dZB2VatrsQ62lWErjgx6we1eoIKPMWgjlN195l0K0jYCQbEjLn4TF3vivZv8cR8P_O_7BvExjRM |
CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108434 crossref_primary_10_1038_s41598_020_68343_1 crossref_primary_10_1038_s41598_021_90835_x crossref_primary_10_1002_alz_13319 crossref_primary_10_1007_s42979_023_02106_3 crossref_primary_10_1038_s41598_021_97221_7 crossref_primary_10_1038_s41598_021_83567_5 crossref_primary_10_1093_bioinformatics_btaa990 crossref_primary_10_1093_bioinformatics_btaa245 crossref_primary_10_3389_fpls_2020_01120 crossref_primary_10_1111_ppl_13969 crossref_primary_10_1088_1748_9326_ab5268 crossref_primary_10_33003_fjs_2024_0801_2220 crossref_primary_10_1093_nar_gkae697 |
Cites_doi | 10.1038/ng2110 10.1534/genetics.109.113688 10.1371/journal.pgen.0020157 10.1093/bioinformatics/btp622 10.1016/j.compbiolchem.2018.11.001 10.1093/bioinformatics/btn182 10.1186/1471-2105-15-216 10.1002/gepi.21602 10.1186/1471-2164-12-S2-S9 10.1371/journal.pgen.1000464 10.1186/1471-2105-10-13 10.1093/bib/bbs024 10.1093/bioinformatics/btn652 10.1016/j.neurobiolaging.2007.11.027 10.1093/bioinformatics/btq257 10.1093/bioinformatics/btq186 10.1002/gepi.20272 10.1590/S1516-35982009001300011 10.1111/j.1469-1809.2011.00692.x 10.1016/j.ajhg.2010.07.021 10.1186/1471-2105-13-298 10.1109/BIBM.2014.6999248 10.1016/j.neurobiolaging.2014.05.014 10.1086/321276 10.1371/journal.pgen.1004324 10.1145/2001576.2001618 10.1186/1471-2164-14-S3-S10 10.1093/bioinformatics/btr603 10.1186/1471-2105-12-469 10.1186/1471-2105-10-S1-S65 10.1016/j.asoc.2006.01.013 10.1504/IJDMB.2012.049300 10.1016/j.compbiolchem.2014.01.005 10.1155/2013/432375 10.1093/bioinformatics/btr114 10.1186/1471-2164-13-S7-S2 10.1016/j.ijmedinf.2018.09.003 10.1038/ncomms9712 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1093/bioinformatics/btz463 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1367-4811 |
EndPage | 5085 |
ExternalDocumentID | 31168598 10_1093_bioinformatics_btz463 |
Genre | Journal Article |
GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM M49 NPM 7X8 |
ID | FETCH-LOGICAL-c309t-68c1cb835ca90643205a39c988188d6037155391fa2e08970e37ca2f39f2daf13 |
ISSN | 1367-4803 1367-4811 |
IngestDate | Fri Jul 11 15:25:20 EDT 2025 Thu Apr 03 07:02:31 EDT 2025 Thu Apr 24 22:55:30 EDT 2025 Tue Jul 01 02:33:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c309t-68c1cb835ca90643205a39c988188d6037155391fa2e08970e37ca2f39f2daf13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31168598 |
PQID | 2336260326 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2336260326 pubmed_primary_31168598 crossref_citationtrail_10_1093_bioinformatics_btz463 crossref_primary_10_1093_bioinformatics_btz463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 2019-Dec-15 20191215 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics (Oxford, England) |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2019 |
References | Uppu (2023020108351573400_btz463-B29) 2018; 119 Zhang (2023020108351573400_btz463-B41) 2010; 26 González-Domínguez (2023020108351573400_btz463-B6) 2014 Han (2023020108351573400_btz463-B10) 2011; 12 Rekaya (2023020108351573400_btz463-B20) 2009; 38 Yurochkin (2023020108351573400_btz463-B39) 2017 Combarros (2023020108351573400_btz463-B3) 2009; 30 Schwarz (2023020108351573400_btz463-B24) 2010; 26 Jiang (2023020108351573400_btz463-B12) 2009; 10 Bloom (2023020108351573400_btz463-B1) 2015; 6 Özgür (2023020108351573400_btz463-B17) 2008; 24 Wan (2023020108351573400_btz463-B33) 2010; 87 Tang (2023020108351573400_btz463-B27) 2009; 5 Goudey (2023020108351573400_btz463-B7) 2013; 14 Fang (2023020108351573400_btz463-B5) 2012; 36 Motsinger (2023020108351573400_btz463-B16) 2006 Gusareva (2023020108351573400_btz463-B9) 2014; 35 Shen (2023020108351573400_btz463-B25) 2012; 6 Wang (2023020108351573400_btz463-B34) 2019 Zhang (2023020108351573400_btz463-B40) 2012; 13 Chen (2023020108351573400_btz463-B2) 2008; 32 Zhang (2023020108351573400_btz463-B42) 2007; 39 Piriyapongsa (2023020108351573400_btz463-B19) 2012; 13 Taylor (2023020108351573400_btz463-B28) 2014; 10 Guan (2023020108351573400_btz463-B8) 2018; 77 Ritchie (2023020108351573400_btz463-B21) 2001; 69 Koo (2023020108351573400_btz463-B13) 2013; 2013 Xie (2023020108351573400_btz463-B35) 2012; 28 Padyukov (2023020108351573400_btz463-B18) 2013 Ritchie (2023020108351573400_btz463-B22) 2007; 7 Yoshida (2023020108351573400_btz463-B37) 2011; 12 Yung (2023020108351573400_btz463-B38) 2011; 27 Upstill-Goddard (2023020108351573400_btz463-B30) 2013; 14 Zou (2023020108351573400_btz463-B43) 2010; 186 Evans (2023020108351573400_btz463-B4) 2006; 2 Wan (2023020108351573400_btz463-B32) 2010; 26 Leem (2023020108351573400_btz463-B14) 2014; 50 Wan (2023020108351573400_btz463-B31) 2009; 10 Lin (2023020108351573400_btz463-B15) 2012; 76 Yang (2023020108351573400_btz463-B36) 2009; 25 Sluga (2023020108351573400_btz463-B26) 2014; 15 Sapin (2023020108351573400_btz463-B23) 2014 Hardison (2023020108351573400_btz463-B11) 2011 |
References_xml | – start-page: 2598 year: 2017 ident: 2023020108351573400_btz463-B39 article-title: Multi-way interacting regression via factorization machines publication-title: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA – volume: 39 start-page: 1167. year: 2007 ident: 2023020108351573400_btz463-B42 article-title: Bayesian inference of epistatic interactions in case-control studies publication-title: Nat. Genet doi: 10.1038/ng2110 – volume: 186 start-page: 385 year: 2010 ident: 2023020108351573400_btz463-B43 article-title: Nonparametric Bayesian variable selection with applications to multiple quantitative trait loci mapping with epistasis and gene–environment interaction publication-title: Genetics doi: 10.1534/genetics.109.113688 – volume: 2 start-page: e157. year: 2006 ident: 2023020108351573400_btz463-B4 article-title: Two-stage two-locus models in genome-wide association publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020157 – volume: 26 start-page: 30 year: 2010 ident: 2023020108351573400_btz463-B32 article-title: Predictive rule inference for epistatic interaction detection in genome-wide association studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp622 – volume: 77 start-page: 354 year: 2018 ident: 2023020108351573400_btz463-B8 article-title: Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions publication-title: Computat. Biol. Chem doi: 10.1016/j.compbiolchem.2018.11.001 – volume: 24 start-page: i277 year: 2008 ident: 2023020108351573400_btz463-B17 article-title: Identifying gene-disease associations using centrality on a literature mined gene-interaction network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn182 – volume: 15 start-page: 216. year: 2014 ident: 2023020108351573400_btz463-B26 article-title: Heterogeneous computing architecture for fast detection of snp-snp interactions publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-216 – volume: 36 start-page: 88 year: 2012 ident: 2023020108351573400_btz463-B5 article-title: Svm-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies publication-title: Genetic Eepidemiol doi: 10.1002/gepi.21602 – volume: 12 start-page: S9 year: 2011 ident: 2023020108351573400_btz463-B10 article-title: bneat: a Bayesian network method for detecting epistatic interactions in genome-wide association studies publication-title: BMC Genomics doi: 10.1186/1471-2164-12-S2-S9 – volume: 5 start-page: e1000464. year: 2009 ident: 2023020108351573400_btz463-B27 article-title: Epistatic module detection for case-control studies: a Bayesian model with a gibbs sampling strategy publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000464 – volume: 10 start-page: 13. year: 2009 ident: 2023020108351573400_btz463-B31 article-title: Megasnphunter: a learning approach to detect disease predisposition snps and high level interactions in genome wide association study publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-13 – volume: 14 start-page: 251 year: 2013 ident: 2023020108351573400_btz463-B30 article-title: Machine learning approaches for the discovery of gene–gene interactions in disease data publication-title: Brief. Bioinform doi: 10.1093/bib/bbs024 – volume: 25 start-page: 504 year: 2009 ident: 2023020108351573400_btz463-B36 article-title: Snpharvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn652 – volume: 30 start-page: 1333 year: 2009 ident: 2023020108351573400_btz463-B3 article-title: Epistasis in sporadic Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.11.027 – volume: 26 start-page: 1752 year: 2010 ident: 2023020108351573400_btz463-B24 article-title: On safari to random jungle: a fast implementation of random forests for high-dimensional data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq257 – volume: 26 start-page: i217 year: 2010 ident: 2023020108351573400_btz463-B41 article-title: Team: efficient two-locus epistasis tests in human genome-wide association study publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq186 – volume: 32 start-page: 152 year: 2008 ident: 2023020108351573400_btz463-B2 article-title: A support vector machine approach for detecting gene-gene interaction publication-title: Genet. Epidemiol doi: 10.1002/gepi.20272 – volume: 38 start-page: 93 year: 2009 ident: 2023020108351573400_btz463-B20 article-title: Ant colony algorithm for analysis of gene interaction in high-dimensional association data publication-title: Rev. Bras. Zootec doi: 10.1590/S1516-35982009001300011 – volume: 76 start-page: 53 year: 2012 ident: 2023020108351573400_btz463-B15 article-title: Trm: a powerful two-stage machine learning approach for identifying snp-snp interactions publication-title: Ann. Hum. Genet doi: 10.1111/j.1469-1809.2011.00692.x – volume: 87 start-page: 325 year: 2010 ident: 2023020108351573400_btz463-B33 article-title: Boost: a fast approach to detecting gene-gene interactions in genome-wide case-control studies publication-title: Am. J. Hum. Genet doi: 10.1016/j.ajhg.2010.07.021 – volume: 13 start-page: 298. year: 2012 ident: 2023020108351573400_btz463-B40 article-title: Improving accuracy for cancer classification with a new algorithm for genes selection publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-298 – start-page: 57 volume-title: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, UK year: 2014 ident: 2023020108351573400_btz463-B23 doi: 10.1109/BIBM.2014.6999248 – volume: 35 start-page: 2436 year: 2014 ident: 2023020108351573400_btz463-B9 article-title: Genome-wide association interaction analysis for Alzheimer’s disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.05.014 – volume: 69 start-page: 138 year: 2001 ident: 2023020108351573400_btz463-B21 article-title: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer publication-title: Am. J. Hum. Genet doi: 10.1086/321276 – volume-title: Between the Lines of Genetic Code: Genetic Interactions in Understanding Disease and Complex Phenotypes year: 2013 ident: 2023020108351573400_btz463-B18 – volume: 10 start-page: e1004324. year: 2014 ident: 2023020108351573400_btz463-B28 article-title: Genetic interactions involving five or more genes contribute to a complex trait in yeast publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004324 – start-page: 299 volume-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland year: 2011 ident: 2023020108351573400_btz463-B11 doi: 10.1145/2001576.2001618 – volume: 14 start-page: S10. year: 2013 ident: 2023020108351573400_btz463-B7 article-title: Gwis-model-free, fast and exhaustive search for epistatic interactions in case-control gwas publication-title: BMC Genomics doi: 10.1186/1471-2164-14-S3-S10 – volume: 28 start-page: 5 year: 2012 ident: 2023020108351573400_btz463-B35 article-title: Detecting genome-wide epistases based on the clustering of relatively frequent items publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr603 – start-page: 680 volume-title: European Conference on Parallel Processing year: 2014 ident: 2023020108351573400_btz463-B6 – volume: 12 start-page: 469. year: 2011 ident: 2023020108351573400_btz463-B37 article-title: Snpinterforest: a new method for detecting epistatic interactions publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-469 – volume: 10 start-page: S65. year: 2009 ident: 2023020108351573400_btz463-B12 article-title: A random forest approach to the detection of epistatic interactions in case-control studies publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-S1-S65 – start-page: 1069 year: 2019 ident: 2023020108351573400_btz463-B34 – volume: 7 start-page: 471 year: 2007 ident: 2023020108351573400_btz463-B22 article-title: Genetic programming neural networks: a powerful bioinformatics tool for human genetics publication-title: Appl. Soft Comput doi: 10.1016/j.asoc.2006.01.013 – volume: 6 start-page: 463 year: 2012 ident: 2023020108351573400_btz463-B25 article-title: Support vector machines with L1 penalty for detecting gene-gene interactions publication-title: Int. J. Data Min. Bioinform doi: 10.1504/IJDMB.2012.049300 – volume: 50 start-page: 19 year: 2014 ident: 2023020108351573400_btz463-B14 article-title: Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure publication-title: Comput. Biol. Chem doi: 10.1016/j.compbiolchem.2014.01.005 – start-page: 103 volume-title: Workshops on Applications of Evolutionary Computation year: 2006 ident: 2023020108351573400_btz463-B16 – volume: 2013 start-page: 1. year: 2013 ident: 2023020108351573400_btz463-B13 article-title: A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology publication-title: Biomed Res. Int doi: 10.1155/2013/432375 – volume: 27 start-page: 1309 year: 2011 ident: 2023020108351573400_btz463-B38 article-title: Gboost: a gpu-based tool for detecting gene–gene interactions in genome-wide case control studies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr114 – volume: 13 start-page: S2 year: 2012 ident: 2023020108351573400_btz463-B19 article-title: iloci: a snp interaction prioritization technique for detecting epistasis in genome-wide association studies publication-title: BMC Genomics doi: 10.1186/1471-2164-13-S7-S2 – volume: 119 start-page: 134 year: 2018 ident: 2023020108351573400_btz463-B29 article-title: A deep hybrid model to detect multi-locus interacting snps in the presence of noise publication-title: Int. J. Med. Informatics doi: 10.1016/j.ijmedinf.2018.09.003 – volume: 6 start-page: 8712 year: 2015 ident: 2023020108351573400_btz463-B1 article-title: Genetic interactions contribute less than additive effects to quantitative trait variation in yeast publication-title: Nat. Commun doi: 10.1038/ncomms9712 |
SSID | ssj0005056 |
Score | 2.4140131 |
Snippet | Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 5078 |
Title | New algorithms for detecting multi-effect and multi-way epistatic interactions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31168598 https://www.proquest.com/docview/2336260326 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSksupe9s-kCF3oI3tmTZ1rGUljRtc0ogNyPLUrOQ7i5Z57W_PjMeP0tCHxezyFhi9Q3DN9LMN4x9MBpYcKEgOhEGj27SItAJxDxx6oGMmDCxCgucfxwke0fx_rE67tvc1dUlVTG161vrSv4HVRgDXLFK9h-Q7SaFAfgN-MITEIbnX2GMyYnm9OcCAvwTElbYKR3eCmD8X6cKBpSvUV8R0MClud5xS2SNKNWKahFnVNuwGt3vzhaNpGot44yapFdtGnzT92N0hrCCkNtTrva-uTBlf05PvuT7bH0yG54wRHV7BKqxnDryihLF0bPGKzZuk1RGGvMQ8cAJAsXMbvXOpFxVjP4BDlTrmLzcALPlrxo0GUVJpqhR9W_C2O2r--yBSIE4ISP--q3P7wFq15Zsabk7XnWX1txkj9pZxrzkjmCjJh2HT9jjJlrgHwn6p-yemz9jD6l_6PVzdgAGwHsD4LAw7wyADw2AA2C8MwDeGQAfGsALdvTl8-GnvaBpkBFYGeoqSDIb2QI4tDUaqaUIlZHa6gxYWFYmqMaolNSRN8KFmU5DJ1NrhJfai9L4SL5kG_PF3G0xXigFbAnPA0wSl8LrIkt9GRqvUp-Wyk5Y3G5Pbhv1eGxicppTFoPMxxuc0wZP2LT7bEnyKX_64H279zk4Ory9MnO3OF_lQqJyUgjhxoS9IlC6KVsQt-9885pt9qb9hm1UZ-fuLdDJqnhXm80Nx7978g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithms+for+detecting+multi-effect+and+multi-way+epistatic+interactions&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Ansarifar%2C+Javad&rft.au=Wang%2C+Lizhi&rft.date=2019-12-15&rft.eissn=1367-4811&rft.volume=35&rft.issue=24&rft.spage=5078&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz463&rft_id=info%3Apmid%2F31168598&rft.externalDocID=31168598 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |