New algorithms for detecting multi-effect and multi-way epistatic interactions

Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics (Oxford, England) Vol. 35; no. 24; pp. 5078 - 5085
Main Authors Ansarifar, Javad, Wang, Lizhi
Format Journal Article
LanguageEnglish
Published England 15.12.2019
Online AccessGet full text
ISSN1367-4803
1367-4811
1367-4811
DOI10.1093/bioinformatics/btz463

Cover

Abstract Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics. The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods. Data source was publicly available and details are provided in the text.
AbstractList Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.MOTIVATIONEpistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics.The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.RESULTSThe computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods.Data source was publicly available and details are provided in the text.AVAILABILITY AND IMPLEMENTATIONData source was publicly available and details are provided in the text.
Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of the problem, it is extremely challenging to decipher the exact combinations of genes that trigger the epistatic effects. Many existing methods only focus on two-way interactions. Some of the most effective methods used machine learning techniques, but many were designed for special case-and-control studies or suffer from overfitting. We propose three new algorithms for multi-effect and multi-way epistases detection, with one guaranteeing global optimality and the other two being local optimization oriented heuristics. The computational performance of the proposed heuristic algorithm was compared with several state-of-the-art methods using a yeast dataset. Results suggested that searching for the global optimal solution could be extremely time consuming, but the proposed heuristic algorithm was much more effective and efficient than others at finding a close-to-optimal solution. Moreover, it was able to provide biological insight on the exact configurations of epistases, besides achieving a higher prediction accuracy than the state-of-the-art methods. Data source was publicly available and details are provided in the text.
Author Wang, Lizhi
Ansarifar, Javad
Author_xml – sequence: 1
  givenname: Javad
  surname: Ansarifar
  fullname: Ansarifar, Javad
– sequence: 2
  givenname: Lizhi
  surname: Wang
  fullname: Wang, Lizhi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31168598$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtLAzEUhYNU7EN_gjJLN2OTSZNJcCXFF5S60XXIZJIamUlqkqHUX--UtoIuXN0H55zL_cZg4LzTAFwieIMgx9PKeuuMD61MVsVplb5mFJ-AEcK0zGcMocFPD_EQjGP8gBASSOgZGGKEKCOcjcByqTeZbFY-2PTexqxPzGqdtErWrbK2a5LNtTH9nElXHxYbuc302sa0u51Zl3SQvcG7eA5OjWyivjjUCXh7uH-dP-WLl8fn-d0iVxjylFOmkKoYJkpySGe4gERirjhjiLGaQlwiQjBHRhYaMl5CjUslC4O5KWppEJ6A633uOvjPTsckWhuVbhrptO-iKDCmRZ9T0F56dZB2VatrsQ62lWErjgx6we1eoIKPMWgjlN195l0K0jYCQbEjLn4TF3vivZv8cR8P_O_7BvExjRM
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108434
crossref_primary_10_1038_s41598_020_68343_1
crossref_primary_10_1038_s41598_021_90835_x
crossref_primary_10_1002_alz_13319
crossref_primary_10_1007_s42979_023_02106_3
crossref_primary_10_1038_s41598_021_97221_7
crossref_primary_10_1038_s41598_021_83567_5
crossref_primary_10_1093_bioinformatics_btaa990
crossref_primary_10_1093_bioinformatics_btaa245
crossref_primary_10_3389_fpls_2020_01120
crossref_primary_10_1111_ppl_13969
crossref_primary_10_1088_1748_9326_ab5268
crossref_primary_10_33003_fjs_2024_0801_2220
crossref_primary_10_1093_nar_gkae697
Cites_doi 10.1038/ng2110
10.1534/genetics.109.113688
10.1371/journal.pgen.0020157
10.1093/bioinformatics/btp622
10.1016/j.compbiolchem.2018.11.001
10.1093/bioinformatics/btn182
10.1186/1471-2105-15-216
10.1002/gepi.21602
10.1186/1471-2164-12-S2-S9
10.1371/journal.pgen.1000464
10.1186/1471-2105-10-13
10.1093/bib/bbs024
10.1093/bioinformatics/btn652
10.1016/j.neurobiolaging.2007.11.027
10.1093/bioinformatics/btq257
10.1093/bioinformatics/btq186
10.1002/gepi.20272
10.1590/S1516-35982009001300011
10.1111/j.1469-1809.2011.00692.x
10.1016/j.ajhg.2010.07.021
10.1186/1471-2105-13-298
10.1109/BIBM.2014.6999248
10.1016/j.neurobiolaging.2014.05.014
10.1086/321276
10.1371/journal.pgen.1004324
10.1145/2001576.2001618
10.1186/1471-2164-14-S3-S10
10.1093/bioinformatics/btr603
10.1186/1471-2105-12-469
10.1186/1471-2105-10-S1-S65
10.1016/j.asoc.2006.01.013
10.1504/IJDMB.2012.049300
10.1016/j.compbiolchem.2014.01.005
10.1155/2013/432375
10.1093/bioinformatics/btr114
10.1186/1471-2164-13-S7-S2
10.1016/j.ijmedinf.2018.09.003
10.1038/ncomms9712
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1093/bioinformatics/btz463
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1367-4811
EndPage 5085
ExternalDocumentID 31168598
10_1093_bioinformatics_btz463
Genre Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
M49
NPM
7X8
ID FETCH-LOGICAL-c309t-68c1cb835ca90643205a39c988188d6037155391fa2e08970e37ca2f39f2daf13
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 15:25:20 EDT 2025
Thu Apr 03 07:02:31 EDT 2025
Thu Apr 24 22:55:30 EDT 2025
Tue Jul 01 02:33:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c309t-68c1cb835ca90643205a39c988188d6037155391fa2e08970e37ca2f39f2daf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31168598
PQID 2336260326
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2336260326
pubmed_primary_31168598
crossref_citationtrail_10_1093_bioinformatics_btz463
crossref_primary_10_1093_bioinformatics_btz463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-15
2019-Dec-15
20191215
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics (Oxford, England)
PublicationTitleAlternate Bioinformatics
PublicationYear 2019
References Uppu (2023020108351573400_btz463-B29) 2018; 119
Zhang (2023020108351573400_btz463-B41) 2010; 26
González-Domínguez (2023020108351573400_btz463-B6) 2014
Han (2023020108351573400_btz463-B10) 2011; 12
Rekaya (2023020108351573400_btz463-B20) 2009; 38
Yurochkin (2023020108351573400_btz463-B39) 2017
Combarros (2023020108351573400_btz463-B3) 2009; 30
Schwarz (2023020108351573400_btz463-B24) 2010; 26
Jiang (2023020108351573400_btz463-B12) 2009; 10
Bloom (2023020108351573400_btz463-B1) 2015; 6
Özgür (2023020108351573400_btz463-B17) 2008; 24
Wan (2023020108351573400_btz463-B33) 2010; 87
Tang (2023020108351573400_btz463-B27) 2009; 5
Goudey (2023020108351573400_btz463-B7) 2013; 14
Fang (2023020108351573400_btz463-B5) 2012; 36
Motsinger (2023020108351573400_btz463-B16) 2006
Gusareva (2023020108351573400_btz463-B9) 2014; 35
Shen (2023020108351573400_btz463-B25) 2012; 6
Wang (2023020108351573400_btz463-B34) 2019
Zhang (2023020108351573400_btz463-B40) 2012; 13
Chen (2023020108351573400_btz463-B2) 2008; 32
Zhang (2023020108351573400_btz463-B42) 2007; 39
Piriyapongsa (2023020108351573400_btz463-B19) 2012; 13
Taylor (2023020108351573400_btz463-B28) 2014; 10
Guan (2023020108351573400_btz463-B8) 2018; 77
Ritchie (2023020108351573400_btz463-B21) 2001; 69
Koo (2023020108351573400_btz463-B13) 2013; 2013
Xie (2023020108351573400_btz463-B35) 2012; 28
Padyukov (2023020108351573400_btz463-B18) 2013
Ritchie (2023020108351573400_btz463-B22) 2007; 7
Yoshida (2023020108351573400_btz463-B37) 2011; 12
Yung (2023020108351573400_btz463-B38) 2011; 27
Upstill-Goddard (2023020108351573400_btz463-B30) 2013; 14
Zou (2023020108351573400_btz463-B43) 2010; 186
Evans (2023020108351573400_btz463-B4) 2006; 2
Wan (2023020108351573400_btz463-B32) 2010; 26
Leem (2023020108351573400_btz463-B14) 2014; 50
Wan (2023020108351573400_btz463-B31) 2009; 10
Lin (2023020108351573400_btz463-B15) 2012; 76
Yang (2023020108351573400_btz463-B36) 2009; 25
Sluga (2023020108351573400_btz463-B26) 2014; 15
Sapin (2023020108351573400_btz463-B23) 2014
Hardison (2023020108351573400_btz463-B11) 2011
References_xml – start-page: 2598
  year: 2017
  ident: 2023020108351573400_btz463-B39
  article-title: Multi-way interacting regression via factorization machines
  publication-title: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA
– volume: 39
  start-page: 1167.
  year: 2007
  ident: 2023020108351573400_btz463-B42
  article-title: Bayesian inference of epistatic interactions in case-control studies
  publication-title: Nat. Genet
  doi: 10.1038/ng2110
– volume: 186
  start-page: 385
  year: 2010
  ident: 2023020108351573400_btz463-B43
  article-title: Nonparametric Bayesian variable selection with applications to multiple quantitative trait loci mapping with epistasis and gene–environment interaction
  publication-title: Genetics
  doi: 10.1534/genetics.109.113688
– volume: 2
  start-page: e157.
  year: 2006
  ident: 2023020108351573400_btz463-B4
  article-title: Two-stage two-locus models in genome-wide association
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020157
– volume: 26
  start-page: 30
  year: 2010
  ident: 2023020108351573400_btz463-B32
  article-title: Predictive rule inference for epistatic interaction detection in genome-wide association studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp622
– volume: 77
  start-page: 354
  year: 2018
  ident: 2023020108351573400_btz463-B8
  article-title: Ant colony optimization with an automatic adjustment mechanism for detecting epistatic interactions
  publication-title: Computat. Biol. Chem
  doi: 10.1016/j.compbiolchem.2018.11.001
– volume: 24
  start-page: i277
  year: 2008
  ident: 2023020108351573400_btz463-B17
  article-title: Identifying gene-disease associations using centrality on a literature mined gene-interaction network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn182
– volume: 15
  start-page: 216.
  year: 2014
  ident: 2023020108351573400_btz463-B26
  article-title: Heterogeneous computing architecture for fast detection of snp-snp interactions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-216
– volume: 36
  start-page: 88
  year: 2012
  ident: 2023020108351573400_btz463-B5
  article-title: Svm-based generalized multifactor dimensionality reduction approaches for detecting gene-gene interactions in family studies
  publication-title: Genetic Eepidemiol
  doi: 10.1002/gepi.21602
– volume: 12
  start-page: S9
  year: 2011
  ident: 2023020108351573400_btz463-B10
  article-title: bneat: a Bayesian network method for detecting epistatic interactions in genome-wide association studies
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-S2-S9
– volume: 5
  start-page: e1000464.
  year: 2009
  ident: 2023020108351573400_btz463-B27
  article-title: Epistatic module detection for case-control studies: a Bayesian model with a gibbs sampling strategy
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000464
– volume: 10
  start-page: 13.
  year: 2009
  ident: 2023020108351573400_btz463-B31
  article-title: Megasnphunter: a learning approach to detect disease predisposition snps and high level interactions in genome wide association study
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-13
– volume: 14
  start-page: 251
  year: 2013
  ident: 2023020108351573400_btz463-B30
  article-title: Machine learning approaches for the discovery of gene–gene interactions in disease data
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbs024
– volume: 25
  start-page: 504
  year: 2009
  ident: 2023020108351573400_btz463-B36
  article-title: Snpharvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn652
– volume: 30
  start-page: 1333
  year: 2009
  ident: 2023020108351573400_btz463-B3
  article-title: Epistasis in sporadic Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.11.027
– volume: 26
  start-page: 1752
  year: 2010
  ident: 2023020108351573400_btz463-B24
  article-title: On safari to random jungle: a fast implementation of random forests for high-dimensional data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq257
– volume: 26
  start-page: i217
  year: 2010
  ident: 2023020108351573400_btz463-B41
  article-title: Team: efficient two-locus epistasis tests in human genome-wide association study
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq186
– volume: 32
  start-page: 152
  year: 2008
  ident: 2023020108351573400_btz463-B2
  article-title: A support vector machine approach for detecting gene-gene interaction
  publication-title: Genet. Epidemiol
  doi: 10.1002/gepi.20272
– volume: 38
  start-page: 93
  year: 2009
  ident: 2023020108351573400_btz463-B20
  article-title: Ant colony algorithm for analysis of gene interaction in high-dimensional association data
  publication-title: Rev. Bras. Zootec
  doi: 10.1590/S1516-35982009001300011
– volume: 76
  start-page: 53
  year: 2012
  ident: 2023020108351573400_btz463-B15
  article-title: Trm: a powerful two-stage machine learning approach for identifying snp-snp interactions
  publication-title: Ann. Hum. Genet
  doi: 10.1111/j.1469-1809.2011.00692.x
– volume: 87
  start-page: 325
  year: 2010
  ident: 2023020108351573400_btz463-B33
  article-title: Boost: a fast approach to detecting gene-gene interactions in genome-wide case-control studies
  publication-title: Am. J. Hum. Genet
  doi: 10.1016/j.ajhg.2010.07.021
– volume: 13
  start-page: 298.
  year: 2012
  ident: 2023020108351573400_btz463-B40
  article-title: Improving accuracy for cancer classification with a new algorithm for genes selection
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-298
– start-page: 57
  volume-title: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, UK
  year: 2014
  ident: 2023020108351573400_btz463-B23
  doi: 10.1109/BIBM.2014.6999248
– volume: 35
  start-page: 2436
  year: 2014
  ident: 2023020108351573400_btz463-B9
  article-title: Genome-wide association interaction analysis for Alzheimer’s disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.05.014
– volume: 69
  start-page: 138
  year: 2001
  ident: 2023020108351573400_btz463-B21
  article-title: Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/321276
– volume-title: Between the Lines of Genetic Code: Genetic Interactions in Understanding Disease and Complex Phenotypes
  year: 2013
  ident: 2023020108351573400_btz463-B18
– volume: 10
  start-page: e1004324.
  year: 2014
  ident: 2023020108351573400_btz463-B28
  article-title: Genetic interactions involving five or more genes contribute to a complex trait in yeast
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004324
– start-page: 299
  volume-title: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland
  year: 2011
  ident: 2023020108351573400_btz463-B11
  doi: 10.1145/2001576.2001618
– volume: 14
  start-page: S10.
  year: 2013
  ident: 2023020108351573400_btz463-B7
  article-title: Gwis-model-free, fast and exhaustive search for epistatic interactions in case-control gwas
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-S3-S10
– volume: 28
  start-page: 5
  year: 2012
  ident: 2023020108351573400_btz463-B35
  article-title: Detecting genome-wide epistases based on the clustering of relatively frequent items
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr603
– start-page: 680
  volume-title: European Conference on Parallel Processing
  year: 2014
  ident: 2023020108351573400_btz463-B6
– volume: 12
  start-page: 469.
  year: 2011
  ident: 2023020108351573400_btz463-B37
  article-title: Snpinterforest: a new method for detecting epistatic interactions
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-469
– volume: 10
  start-page: S65.
  year: 2009
  ident: 2023020108351573400_btz463-B12
  article-title: A random forest approach to the detection of epistatic interactions in case-control studies
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-S1-S65
– start-page: 1069
  year: 2019
  ident: 2023020108351573400_btz463-B34
– volume: 7
  start-page: 471
  year: 2007
  ident: 2023020108351573400_btz463-B22
  article-title: Genetic programming neural networks: a powerful bioinformatics tool for human genetics
  publication-title: Appl. Soft Comput
  doi: 10.1016/j.asoc.2006.01.013
– volume: 6
  start-page: 463
  year: 2012
  ident: 2023020108351573400_btz463-B25
  article-title: Support vector machines with L1 penalty for detecting gene-gene interactions
  publication-title: Int. J. Data Min. Bioinform
  doi: 10.1504/IJDMB.2012.049300
– volume: 50
  start-page: 19
  year: 2014
  ident: 2023020108351573400_btz463-B14
  article-title: Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure
  publication-title: Comput. Biol. Chem
  doi: 10.1016/j.compbiolchem.2014.01.005
– start-page: 103
  volume-title: Workshops on Applications of Evolutionary Computation
  year: 2006
  ident: 2023020108351573400_btz463-B16
– volume: 2013
  start-page: 1.
  year: 2013
  ident: 2023020108351573400_btz463-B13
  article-title: A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology
  publication-title: Biomed Res. Int
  doi: 10.1155/2013/432375
– volume: 27
  start-page: 1309
  year: 2011
  ident: 2023020108351573400_btz463-B38
  article-title: Gboost: a gpu-based tool for detecting gene–gene interactions in genome-wide case control studies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr114
– volume: 13
  start-page: S2
  year: 2012
  ident: 2023020108351573400_btz463-B19
  article-title: iloci: a snp interaction prioritization technique for detecting epistasis in genome-wide association studies
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-S7-S2
– volume: 119
  start-page: 134
  year: 2018
  ident: 2023020108351573400_btz463-B29
  article-title: A deep hybrid model to detect multi-locus interacting snps in the presence of noise
  publication-title: Int. J. Med. Informatics
  doi: 10.1016/j.ijmedinf.2018.09.003
– volume: 6
  start-page: 8712
  year: 2015
  ident: 2023020108351573400_btz463-B1
  article-title: Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
  publication-title: Nat. Commun
  doi: 10.1038/ncomms9712
SSID ssj0005056
Score 2.4140131
Snippet Epistasis, which is the phenomenon of genetic interactions, plays a central role in many scientific discoveries. However, due to the combinatorial nature of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 5078
Title New algorithms for detecting multi-effect and multi-way epistatic interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/31168598
https://www.proquest.com/docview/2336260326
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSksupe9s-kCF3oI3tmTZ1rGUljRtc0ogNyPLUrOQ7i5Z57W_PjMeP0tCHxezyFhi9Q3DN9LMN4x9MBpYcKEgOhEGj27SItAJxDxx6oGMmDCxCgucfxwke0fx_rE67tvc1dUlVTG161vrSv4HVRgDXLFK9h-Q7SaFAfgN-MITEIbnX2GMyYnm9OcCAvwTElbYKR3eCmD8X6cKBpSvUV8R0MClud5xS2SNKNWKahFnVNuwGt3vzhaNpGot44yapFdtGnzT92N0hrCCkNtTrva-uTBlf05PvuT7bH0yG54wRHV7BKqxnDryihLF0bPGKzZuk1RGGvMQ8cAJAsXMbvXOpFxVjP4BDlTrmLzcALPlrxo0GUVJpqhR9W_C2O2r--yBSIE4ISP--q3P7wFq15Zsabk7XnWX1txkj9pZxrzkjmCjJh2HT9jjJlrgHwn6p-yemz9jD6l_6PVzdgAGwHsD4LAw7wyADw2AA2C8MwDeGQAfGsALdvTl8-GnvaBpkBFYGeoqSDIb2QI4tDUaqaUIlZHa6gxYWFYmqMaolNSRN8KFmU5DJ1NrhJfai9L4SL5kG_PF3G0xXigFbAnPA0wSl8LrIkt9GRqvUp-Wyk5Y3G5Pbhv1eGxicppTFoPMxxuc0wZP2LT7bEnyKX_64H279zk4Ory9MnO3OF_lQqJyUgjhxoS9IlC6KVsQt-9885pt9qb9hm1UZ-fuLdDJqnhXm80Nx7978g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+algorithms+for+detecting+multi-effect+and+multi-way+epistatic+interactions&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Ansarifar%2C+Javad&rft.au=Wang%2C+Lizhi&rft.date=2019-12-15&rft.eissn=1367-4811&rft.volume=35&rft.issue=24&rft.spage=5078&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtz463&rft_id=info%3Apmid%2F31168598&rft.externalDocID=31168598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon