Quantum Algorithms for Representation-Theoretic Multiplicities

Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give qu...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 135; no. 1; p. 010602
Main Authors Larocca, Martín, Havlicek, Vojtech
Format Journal Article
LanguageEnglish
Published United States 02.07.2025
Online AccessGet full text
ISSN0031-9007
1092-0145
1079-7114
1079-7114
DOI10.1103/k5tx-xtr3

Cover

Abstract Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give quantum algorithms for computing these coefficients whenever the ratio of dimensions of the representations is polynomial. We show that there is an efficient classical algorithm for computing the Kostka numbers under this restriction and conjecture the existence of an analogous algorithm for the Littlewood-Richardson coefficients. We argue why such classical algorithm does not straightforwardly work for the Plethysm and Kronecker coefficients and conjecture that our quantum algorithms lead to superpolynomial speedups. The conjecture about Kronecker coefficients was disproved by Panova [Polynomial time classical versus quantum algorithms for representation theoretic multiplicities, arXiv:2502.20253] with a classical algorithm which, if optimal, points to a O(n^{4+2k}) vs Ω[over ˜](n^{4k^{2}+1}) polynomial gap in quantum vs classical computational complexity for an integer parameter k.
AbstractList Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give quantum algorithms for computing these coefficients whenever the ratio of dimensions of the representations is polynomial. We show that there is an efficient classical algorithm for computing the Kostka numbers under this restriction and conjecture the existence of an analogous algorithm for the Littlewood-Richardson coefficients. We argue why such classical algorithm does not straightforwardly work for the Plethysm and Kronecker coefficients and conjecture that our quantum algorithms lead to superpolynomial speedups. The conjecture about Kronecker coefficients was disproved by Panova [Polynomial time classical versus quantum algorithms for representation theoretic multiplicities, arXiv:2502.20253] with a classical algorithm which, if optimal, points to a O(n^{4+2k}) vs Ω[over ˜](n^{4k^{2}+1}) polynomial gap in quantum vs classical computational complexity for an integer parameter k.
Author Larocca, Martín
Havlicek, Vojtech
Author_xml – sequence: 1
  givenname: Martín
  surname: Larocca
  fullname: Larocca, Martín
  organization: Los Alamos National Laboratory, Los Alamos, New Mexico, USA
– sequence: 2
  givenname: Vojtech
  surname: Havlicek
  fullname: Havlicek, Vojtech
  organization: IBM T.J. Watson Research Center, IBM Quantum, New York, New York, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40743104$$D View this record in MEDLINE/PubMed
BookMark eNo9kEtLw0AURgep2Icu_AOStTB6b-8kk2yEUnxBRZS6DnncsaN5MZlg---1VF19m8MH50zFqGkbFuIc4QoR6Poz9Fu59Y6OxARBJ1IjqpGYABDKBECPxbTvPwAA51F8IsYKtCIENRE3L0PW-KEOFtV766zf1H1gWhe8cue458Zn3raNXG-4dextETwNlbddZQvrLfen4thkVc9nvzsTb3e36-WDXD3fPy4XK1kQJF6GMeaJgjLCElRIptRGR6qkaI7IGkuVYBxrThA15XMdGjSGkNEQ5HlBTDNxefgdmi7bfWVVlXbO1pnbpQjpPkK6j5DuI_zAFwe4G_Kay3_yz5q-AV9GWu0
ContentType Journal Article
DBID NPM
ADTOC
UNPAY
DOI 10.1103/k5tx-xtr3
DatabaseName PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 10.1103/k5tx-xtr3
40743104
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ABSSX
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
OK1
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8NH
8WZ
9M8
A6W
AAYJJ
ACKIV
ADTOC
ADXHL
AETEA
H~9
NEJ
NHB
OHT
P0-
RNS
T9H
UBC
UNPAY
VOH
XJT
XOL
YYP
ZCG
ZY4
ID FETCH-LOGICAL-c309t-581b940d61d0453fd7f764d36211e71d491887e91173b275f1ff31e1f30bbc3e3
IEDL.DBID UNPAY
ISSN 0031-9007
1092-0145
1079-7114
IngestDate Tue Aug 19 23:24:59 EDT 2025
Sat Aug 02 01:41:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-581b940d61d0453fd7f764d36211e71d491887e91173b275f1ff31e1f30bbc3e3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1103/k5tx-xtr3
PMID 40743104
ParticipantIDs unpaywall_primary_10_1103_k5tx_xtr3
pubmed_primary_40743104
PublicationCentury 2000
PublicationDate 2025-07-02
PublicationDateYYYYMMDD 2025-07-02
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2025
SSID ssj0001268
Score 2.501666
Snippet Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 010602
Title Quantum Algorithms for Representation-Theoretic Multiplicities
URI https://www.ncbi.nlm.nih.gov/pubmed/40743104
https://doi.org/10.1103/k5tx-xtr3
UnpaywallVersion publishedVersion
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGP3YBdEX75d5GRV97UyatFlfhCGOIWxM2WA-lSZNdWzrxtbi9NebpnVOH8TnlBIO4fvO155zAnBNmY8cWXdN1xdCDShIqjqI6qYOewtCHyOeeofbHafVpw8De1CAyy8vzPr_e4zIzciOl-YynpMilB1b0e0SlPudbuM5i1tM5QXaEq2mGNdkWGd5Y5QqKjG18yShH-9Z6zSbSTTz39_88XitpTR3vo05mZJkVEtiXhMfv3Ia_9ztLmznhNJoZCdgDwoy2ocNLewUiwO4fUwUdsnEaIxfpvNh_DpZGIqnGk9aAZsbjyKz9-VnNNqZwnAodNTqIfSb9727lpnfmWAKgtzYtBUNdSkKHBwoskbCgIXMoYFqUxhLhgPqYlVWpCpxjHCL2SEOQ4IlDgniXBBJjqAUTSN5AoYj1aKiN0igkBIiXCYYtgNU5zalFpcVOM6Q9GZZMIZHNR9BtAJXK2hXi3raQMRLMfJSjE7_9dQZbFnplbvpF1XrHErxPJEXigfEvArFTrddzc_DJ8cHsIE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0QYvTF-wVvmdHXYru2K3sxIUZCTCBqIMEnsnatEmAQ2CL66-26geiD8bnL0pw033e-7ZxTAK4pD5Cnqj70AynNgIKUqYOoCm3YW6gDjETqHW62vEaHPnRZtwAuF16Y1f_3GJGbAYvncB5PyRooeczQ7SIodVqPtZcsbjGVF1hLtJlifMixzfLGKFVUYsryJKEf71npNBtJNAk-3oPhcKWl1Le_jTmZkmRQSWJRkZ-_chr_3O0O2MoJpVPLTsAuKKhoD6xbYaec7YPbp8Rgl4yc2vB1PO3Hb6OZY3iq82wVsLnxKILthZ_RaWYKw760UasHoFO_b981YH5nApQE-TFkhob6FIUeDg1ZIzrkmns0NG0KY8VxSH1syooyJY4T4XKmsdYEK6wJEkISRQ5BMRpH6hg4njKLht4giTQlRPpccsxCVBWMUleoMjjKkOxNsmCMHrV8BNEyuFpCu1y00wYivRSjXorRyb-eOgWbbnrlbvpF1T0DxXiaqHPDA2JxkZ-EL6k2r3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Algorithms+for+Representation-Theoretic+Multiplicities&rft.jtitle=Physical+review+letters&rft.date=2025-07-02&rft.issn=0031-9007&rft_id=info:doi/10.1103%2Fk5tx-xtr3&rft.externalDocID=10.1103%2Fk5tx-xtr3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon