Quantum Algorithms for Representation-Theoretic Multiplicities
Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give qu...
        Saved in:
      
    
          | Published in | Physical review letters Vol. 135; no. 1; p. 010602 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
        
        02.07.2025
     | 
| Online Access | Get full text | 
| ISSN | 0031-9007 1092-0145 1079-7114 1079-7114  | 
| DOI | 10.1103/k5tx-xtr3 | 
Cover
| Abstract | Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give quantum algorithms for computing these coefficients whenever the ratio of dimensions of the representations is polynomial. We show that there is an efficient classical algorithm for computing the Kostka numbers under this restriction and conjecture the existence of an analogous algorithm for the Littlewood-Richardson coefficients. We argue why such classical algorithm does not straightforwardly work for the Plethysm and Kronecker coefficients and conjecture that our quantum algorithms lead to superpolynomial speedups. The conjecture about Kronecker coefficients was disproved by Panova [Polynomial time classical versus quantum algorithms for representation theoretic multiplicities, arXiv:2502.20253] with a classical algorithm which, if optimal, points to a O(n^{4+2k}) vs Ω[over ˜](n^{4k^{2}+1}) polynomial gap in quantum vs classical computational complexity for an integer parameter k. | 
    
|---|---|
| AbstractList | Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of representations of the symmetric group that play an important role in representation theory, geometric complexity, and algebraic combinatorics. We give quantum algorithms for computing these coefficients whenever the ratio of dimensions of the representations is polynomial. We show that there is an efficient classical algorithm for computing the Kostka numbers under this restriction and conjecture the existence of an analogous algorithm for the Littlewood-Richardson coefficients. We argue why such classical algorithm does not straightforwardly work for the Plethysm and Kronecker coefficients and conjecture that our quantum algorithms lead to superpolynomial speedups. The conjecture about Kronecker coefficients was disproved by Panova [Polynomial time classical versus quantum algorithms for representation theoretic multiplicities, arXiv:2502.20253] with a classical algorithm which, if optimal, points to a O(n^{4+2k}) vs Ω[over ˜](n^{4k^{2}+1}) polynomial gap in quantum vs classical computational complexity for an integer parameter k. | 
    
| Author | Larocca, Martín Havlicek, Vojtech  | 
    
| Author_xml | – sequence: 1 givenname: Martín surname: Larocca fullname: Larocca, Martín organization: Los Alamos National Laboratory, Los Alamos, New Mexico, USA – sequence: 2 givenname: Vojtech surname: Havlicek fullname: Havlicek, Vojtech organization: IBM T.J. Watson Research Center, IBM Quantum, New York, New York, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40743104$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNo9kEtLw0AURgep2Icu_AOStTB6b-8kk2yEUnxBRZS6DnncsaN5MZlg---1VF19m8MH50zFqGkbFuIc4QoR6Poz9Fu59Y6OxARBJ1IjqpGYABDKBECPxbTvPwAA51F8IsYKtCIENRE3L0PW-KEOFtV766zf1H1gWhe8cue458Zn3raNXG-4dextETwNlbddZQvrLfen4thkVc9nvzsTb3e36-WDXD3fPy4XK1kQJF6GMeaJgjLCElRIptRGR6qkaI7IGkuVYBxrThA15XMdGjSGkNEQ5HlBTDNxefgdmi7bfWVVlXbO1pnbpQjpPkK6j5DuI_zAFwe4G_Kay3_yz5q-AV9GWu0 | 
    
| ContentType | Journal Article | 
    
| DBID | NPM ADTOC UNPAY  | 
    
| DOI | 10.1103/k5tx-xtr3 | 
    
| DatabaseName | PubMed Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | PubMed | 
    
| DatabaseTitleList | PubMed | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1079-7114 | 
    
| ExternalDocumentID | 10.1103/k5tx-xtr3 40743104  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ABSSX ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM OK1 P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 186 3O- 41~ 6TJ 8NH 8WZ 9M8 A6W AAYJJ ACKIV ADTOC ADXHL AETEA H~9 NEJ NHB OHT P0- RNS T9H UBC UNPAY VOH XJT XOL YYP ZCG ZY4  | 
    
| ID | FETCH-LOGICAL-c309t-581b940d61d0453fd7f764d36211e71d491887e91173b275f1ff31e1f30bbc3e3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0031-9007 1092-0145 1079-7114  | 
    
| IngestDate | Tue Aug 19 23:24:59 EDT 2025 Sat Aug 02 01:41:32 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c309t-581b940d61d0453fd7f764d36211e71d491887e91173b275f1ff31e1f30bbc3e3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1103/k5tx-xtr3 | 
    
| PMID | 40743104 | 
    
| ParticipantIDs | unpaywall_primary_10_1103_k5tx_xtr3 pubmed_primary_40743104  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-02 | 
    
| PublicationDateYYYYMMDD | 2025-07-02 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Physical review letters | 
    
| PublicationTitleAlternate | Phys Rev Lett | 
    
| PublicationYear | 2025 | 
    
| SSID | ssj0001268 | 
    
| Score | 2.501666 | 
    
| Snippet | Kostka, Littlewood-Richardson, Plethysm, and Kronecker coefficients are the multiplicities of irreducible representations in the decomposition of... | 
    
| SourceID | unpaywall pubmed  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| StartPage | 010602 | 
    
| Title | Quantum Algorithms for Representation-Theoretic Multiplicities | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40743104 https://doi.org/10.1103/k5tx-xtr3  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 135 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGP3YBdEX75d5GRV97UyatFlfhCGOIWxM2WA-lSZNdWzrxtbi9NebpnVOH8TnlBIO4fvO155zAnBNmY8cWXdN1xdCDShIqjqI6qYOewtCHyOeeofbHafVpw8De1CAyy8vzPr_e4zIzciOl-YynpMilB1b0e0SlPudbuM5i1tM5QXaEq2mGNdkWGd5Y5QqKjG18yShH-9Z6zSbSTTz39_88XitpTR3vo05mZJkVEtiXhMfv3Ia_9ztLmznhNJoZCdgDwoy2ocNLewUiwO4fUwUdsnEaIxfpvNh_DpZGIqnGk9aAZsbjyKz9-VnNNqZwnAodNTqIfSb9727lpnfmWAKgtzYtBUNdSkKHBwoskbCgIXMoYFqUxhLhgPqYlVWpCpxjHCL2SEOQ4IlDgniXBBJjqAUTSN5AoYj1aKiN0igkBIiXCYYtgNU5zalFpcVOM6Q9GZZMIZHNR9BtAJXK2hXi3raQMRLMfJSjE7_9dQZbFnplbvpF1XrHErxPJEXigfEvArFTrddzc_DJ8cHsIE | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG0QYvTF-wVvmdHXYru2K3sxIUZCTCBqIMEnsnatEmAQ2CL66-26geiD8bnL0pw033e-7ZxTAK4pD5Cnqj70AynNgIKUqYOoCm3YW6gDjETqHW62vEaHPnRZtwAuF16Y1f_3GJGbAYvncB5PyRooeczQ7SIodVqPtZcsbjGVF1hLtJlifMixzfLGKFVUYsryJKEf71npNBtJNAk-3oPhcKWl1Le_jTmZkmRQSWJRkZ-_chr_3O0O2MoJpVPLTsAuKKhoD6xbYaec7YPbp8Rgl4yc2vB1PO3Hb6OZY3iq82wVsLnxKILthZ_RaWYKw760UasHoFO_b981YH5nApQE-TFkhob6FIUeDg1ZIzrkmns0NG0KY8VxSH1syooyJY4T4XKmsdYEK6wJEkISRQ5BMRpH6hg4njKLht4giTQlRPpccsxCVBWMUleoMjjKkOxNsmCMHrV8BNEyuFpCu1y00wYivRSjXorRyb-eOgWbbnrlbvpF1T0DxXiaqHPDA2JxkZ-EL6k2r3U | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Algorithms+for+Representation-Theoretic+Multiplicities&rft.jtitle=Physical+review+letters&rft.date=2025-07-02&rft.issn=0031-9007&rft_id=info:doi/10.1103%2Fk5tx-xtr3&rft.externalDocID=10.1103%2Fk5tx-xtr3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |