Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model
•Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior therma...
        Saved in:
      
    
          | Published in | Energy and buildings Vol. 127; pp. 859 - 869 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.09.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-7788 | 
| DOI | 10.1016/j.enbuild.2016.06.046 | 
Cover
| Abstract | •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior thermal comfort or energy efficiency.
The objective of this study was to develop an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building and to suggest an algorithm employing the developed ANN model to enhance indoor thermal comfort and building energy efficiency. To achieve this objective, three major steps were undertaken: the development of the initial ANN model, optimization of the initial model, and development of control algorithms and performance tests. The development and performance testing of the model and algorithm were conducted by employing numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. The results of the development and tests revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature were the three major variables predicting the optimal start moment of the setback temperature. Thus, these variables were used as input neurons in the ANN model. In addition, the optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. Comparative performance testing of a conventional algorithm and two ANN-based predictive algorithms demonstrated that the ANN-based algorithms were superior in advancing indoor thermal comfort or building energy efficiency. | 
    
|---|---|
| AbstractList | •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior thermal comfort or energy efficiency.
The objective of this study was to develop an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building and to suggest an algorithm employing the developed ANN model to enhance indoor thermal comfort and building energy efficiency. To achieve this objective, three major steps were undertaken: the development of the initial ANN model, optimization of the initial model, and development of control algorithms and performance tests. The development and performance testing of the model and algorithm were conducted by employing numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. The results of the development and tests revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature were the three major variables predicting the optimal start moment of the setback temperature. Thus, these variables were used as input neurons in the ANN model. In addition, the optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. Comparative performance testing of a conventional algorithm and two ANN-based predictive algorithms demonstrated that the ANN-based algorithms were superior in advancing indoor thermal comfort or building energy efficiency. | 
    
| Author | Jung, Sung Kwon Moon, Jin Woo  | 
    
| Author_xml | – sequence: 1 givenname: Jin Woo surname: Moon fullname: Moon, Jin Woo email: gilerbert73@cau.ac.kr organization: School of Architecture and Building Science, Chung-Ang University, Seoul, South Korea – sequence: 2 givenname: Sung Kwon surname: Jung fullname: Jung, Sung Kwon email: jskstrm@umich.edu organization: Department of Architecture and Design, Jordan University of Science and Technology, Jordan  | 
    
| BookMark | eNqFkMtqwzAQRbVIoUnaTyjoB5yObPlFFyWEvqDQTbsWsjxOlNpSkJSU_n3lJKtuAgPDnZlzYe6MTIw1SMgdgwUDVtxvF2iave7bRRrlAmLxYkKmkJVVUpZVdU1m3m8BoMhLNiWHZb-2TofNQDvrqN0FPcieyt2u10oGbQ21HQ0bpB5DI9U3HeyAJlBtjtMNxiOzjlvp4-3ej0IaKl3QnVY6ehncu2MLP9aNfIv9DbnqZO_x9tzn5Ov56XP1mrx_vLytlu-JyqAOCW8qpTgHVbGSc9VAU4DqUsmgrvMUOevqVuZS5SgVk02WQpUXOYeUyypqzObk4eSrnPXeYSeUDse3gpO6FwzEGJvYinNsYoxNQCxeRDr_R-9cjMf9XuQeTxzG1w4anfBKo1HYaocqiNbqCw5_9OyRyw | 
    
| CitedBy_id | crossref_primary_10_1002_er_4706 crossref_primary_10_1016_j_future_2018_10_007 crossref_primary_10_1016_j_applthermaleng_2016_11_087 crossref_primary_10_3390_en9121090 crossref_primary_10_1016_j_enbuild_2024_114769 crossref_primary_10_1016_j_heliyon_2024_e40644 crossref_primary_10_1016_j_rser_2020_110436 crossref_primary_10_1016_j_buildenv_2023_110009 crossref_primary_10_1016_j_neucom_2019_02_040 crossref_primary_10_1016_j_enbuild_2019_109542 crossref_primary_10_3390_en17174401 crossref_primary_10_1080_23744731_2022_2058262 crossref_primary_10_1016_j_buildenv_2023_110551 crossref_primary_10_1016_j_rser_2021_110969 crossref_primary_10_1016_j_enbuild_2021_111692 crossref_primary_10_1016_j_enbuild_2017_06_027 crossref_primary_10_1016_j_rser_2017_05_175 crossref_primary_10_1016_j_enbuild_2021_110836 crossref_primary_10_3390_su132111855 crossref_primary_10_3390_su16093627 crossref_primary_10_1080_14484846_2019_1605685 crossref_primary_10_3390_buildings14113519 crossref_primary_10_3390_buildings13112795 crossref_primary_10_1016_j_indenv_2024_100044 crossref_primary_10_3390_su132212784 crossref_primary_10_1016_j_enbuild_2022_112233 crossref_primary_10_1016_j_enbuild_2020_109807 crossref_primary_10_1016_j_energy_2022_125703 crossref_primary_10_1016_j_scico_2023_102987 crossref_primary_10_3390_en11071643  | 
    
| Cites_doi | 10.1007/BF02478259 10.1016/j.applthermaleng.2011.04.006 10.3130/jaabe.11.169 10.1080/01425910108914370 10.1016/S0196-8904(03)00044-X 10.1016/S0360-5442(99)00086-9 10.1016/j.buildenv.2010.01.009 10.1016/0378-7788(85)90012-X 10.3390/en81010775 10.1016/j.enbuild.2010.09.024 10.1016/j.buildenv.2003.08.003 10.1016/j.enbuild.2013.10.016 10.1016/0378-7788(77)90020-2 10.1016/j.applthermaleng.2005.04.006 10.1016/j.buildenv.2011.06.005 10.1016/j.enbuild.2005.09.007 10.1016/j.neunet.2003.07.001 10.1016/S0306-2619(02)00027-2  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.enbuild.2016.06.046 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EndPage | 869 | 
    
| ExternalDocumentID | 10_1016_j_enbuild_2016_06_046 S0378778816305357  | 
    
| GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW WUQ ZMT ZY4 ~HD  | 
    
| ID | FETCH-LOGICAL-c309t-4b8cc440c81744cb0b60cf2a109952e41f9da5ac5eac1ab32085654024a81abe3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-7788 | 
    
| IngestDate | Thu Oct 16 04:27:41 EDT 2025 Thu Apr 24 23:16:20 EDT 2025 Fri Feb 23 02:30:46 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Thermal comfort Artificial neural network Optimal controls Setback temperature Heating energy  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c309t-4b8cc440c81744cb0b60cf2a109952e41f9da5ac5eac1ab32085654024a81abe3 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_enbuild_2016_06_046 crossref_primary_10_1016_j_enbuild_2016_06_046 elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_06_046  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-09-01 2016-09-00  | 
    
| PublicationDateYYYYMMDD | 2016-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Energy and buildings | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | (accessed 2014-01-03-08:00). Moon, Han (bib0005) 2011; 43 (accessed 2012-05-09-13:30). Yang, Yeo, Kim (bib0050) 2003; 44 Moon, Han (bib0115) 2012; 11 University of Wisconsin, 2012. TRNSYS16.1, Available from Kalogirou, Neocleous, Schizas (bib0070) 2003 MathWorks, 2013. MATLAB 14, vol. 26, Available from Argiriou, Bellas-Velidis, Kummert, Andre (bib0095) 2004; 17 Morel, Bauer, El-Khoury, Krauss (bib0090) 2001; 21 Abbassi, Bahar (bib0105) 2005; 25 Moon, Jung, Kim, Han (bib0065) 2011; 31 Moon (bib0085) 2011; 48 Manning, Swinton, Szadkowski, Gusdorf, Ruest (bib0015) 2007; 113 Kalogirou, Bojic (bib0140) 2000; 25 Rosenfeld (bib0040) 1977; 1 Nelson, MacArthur (bib0035) 1977; 83 Beckey, Nelson (bib0025) 1981; 23 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook-Fundamentals, SI, Edition, ASHRAE, 2009. McCulloch, Pitts (bib0055) 1943; 5 Ingersoll, Huang (bib0020) 1985; 8 Shin, Lee (bib0075) 2003; 11 Moon, Lee, Yoon, Kim (bib0135) 2014; 69 Ministry of Knowledge Economy, 2009. A law for rationalization of energy consumption, Ministry of Knowledge Economy, Available from Moon, Kim, Min (bib0130) 2015; 8 Nelson, Ward (bib0030) 1978; 9 Nelson (bib0045) 1973; 15 (accessed 2013-10-01-12:00). Kim, Kim (bib0080) 2000 Ben-Nakhi, Mahmoud (bib0100) 2002; 73 Ruano, Crispim, Conceicao, Lucio (bib0110) 2006; 38 Yang, Kim (bib0125) 2004; 39 Moon, Kim (bib0060) 2010; 45 Moon (10.1016/j.enbuild.2016.06.046_bib0130) 2015; 8 Manning (10.1016/j.enbuild.2016.06.046_bib0015) 2007; 113 Ben-Nakhi (10.1016/j.enbuild.2016.06.046_bib0100) 2002; 73 Moon (10.1016/j.enbuild.2016.06.046_bib0065) 2011; 31 Moon (10.1016/j.enbuild.2016.06.046_bib0115) 2012; 11 Moon (10.1016/j.enbuild.2016.06.046_bib0005) 2011; 43 Yang (10.1016/j.enbuild.2016.06.046_bib0125) 2004; 39 Abbassi (10.1016/j.enbuild.2016.06.046_bib0105) 2005; 25 Moon (10.1016/j.enbuild.2016.06.046_bib0135) 2014; 69 10.1016/j.enbuild.2016.06.046_bib0145 10.1016/j.enbuild.2016.06.046_bib0120 McCulloch (10.1016/j.enbuild.2016.06.046_bib0055) 1943; 5 Yang (10.1016/j.enbuild.2016.06.046_bib0050) 2003; 44 Kalogirou (10.1016/j.enbuild.2016.06.046_bib0070) 2003 Argiriou (10.1016/j.enbuild.2016.06.046_bib0095) 2004; 17 Ruano (10.1016/j.enbuild.2016.06.046_bib0110) 2006; 38 Morel (10.1016/j.enbuild.2016.06.046_bib0090) 2001; 21 Rosenfeld (10.1016/j.enbuild.2016.06.046_bib0040) 1977; 1 Shin (10.1016/j.enbuild.2016.06.046_bib0075) 2003; 11 Kalogirou (10.1016/j.enbuild.2016.06.046_bib0140) 2000; 25 Ingersoll (10.1016/j.enbuild.2016.06.046_bib0020) 1985; 8 Moon (10.1016/j.enbuild.2016.06.046_bib0060) 2010; 45 Nelson (10.1016/j.enbuild.2016.06.046_bib0030) 1978; 9 Kim (10.1016/j.enbuild.2016.06.046_bib0080) 2000 Moon (10.1016/j.enbuild.2016.06.046_bib0085) 2011; 48 10.1016/j.enbuild.2016.06.046_bib0150 Beckey (10.1016/j.enbuild.2016.06.046_bib0025) 1981; 23 10.1016/j.enbuild.2016.06.046_bib0010 Nelson (10.1016/j.enbuild.2016.06.046_bib0045) 1973; 15 Nelson (10.1016/j.enbuild.2016.06.046_bib0035) 1977; 83  | 
    
| References_xml | – start-page: 604 year: 2000 end-page: 612 ident: bib0080 article-title: Building load prediction using artificial neural networks in office renovation publication-title: Proceeding of 3rd International Symposium on Architectural Interchanges in Asia – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: bib0055 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bull. Math. Biophys. – volume: 23 start-page: 67 year: 1981 end-page: 70 ident: bib0025 article-title: Field test of energy savings with thermostat setback publication-title: ASHRAE J. – volume: 21 start-page: 161 year: 2001 end-page: 201 ident: bib0090 article-title: NEUROBAT, a predictive and adaptive heating control system using artificial neural networks publication-title: Int. J. Sol. Energy – reference: MathWorks, 2013. MATLAB 14, vol. 26, Available from: – volume: 31 start-page: 2422 year: 2011 end-page: 2429 ident: bib0065 article-title: Comparative study of artificial intelligence-based building thermal control methods—application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network publication-title: Appl. Therm. Eng. – volume: 25 start-page: 479 year: 2000 end-page: 491 ident: bib0140 article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building publication-title: Energy – volume: 11 start-page: 169 year: 2012 end-page: 176 ident: bib0115 article-title: A comparative study between thermostat/hygrometer-based conventional and artificial neural network-based predictive/adaptive thermal controls in residential buildings publication-title: J. Asian Archit. Build Eng. – reference: University of Wisconsin, 2012. TRNSYS16.1, Available from: – volume: 9 start-page: 49 year: 1978 end-page: 54 ident: bib0030 article-title: Energy savings through thermostat setback publication-title: ASHRAE J. – volume: 15 start-page: 41 year: 1973 end-page: 49 ident: bib0045 article-title: Reducing fuel consumption with night setback publication-title: ASHRAE J. – reference: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook-Fundamentals, SI, Edition, ASHRAE, 2009. – volume: 69 start-page: 175 year: 2014 end-page: 183 ident: bib0135 article-title: Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network publication-title: Energy Build. – volume: 8 start-page: 27 year: 1985 end-page: 35 ident: bib0020 article-title: Heating energy use management in residential buildings by temperature control publication-title: Energy Build. – volume: 48 start-page: 15 year: 2011 end-page: 26 ident: bib0085 article-title: Performance of ANN-based predictive and adaptive thermal control methods for disturbances in and around residential buildings publication-title: Build. Environ. – reference: (accessed 2012-05-09-13:30). – volume: 45 start-page: 1612 year: 2010 end-page: 1625 ident: bib0060 article-title: ANN-based thermal control methods for residential buildings publication-title: Build. Environ. – volume: 11 start-page: 170 year: 2003 end-page: 177 ident: bib0075 article-title: The study on cooling load forecast of an unit building using neural networks publication-title: Int. J. Air-Cond. Refrig. – reference: Ministry of Knowledge Economy, 2009. A law for rationalization of energy consumption, Ministry of Knowledge Economy, Available from: – volume: 39 start-page: 19 year: 2004 end-page: 29 ident: bib0125 article-title: Prediction of the time of room air temperature descending for heating systems in buildings publication-title: Build. Environ. – volume: 38 start-page: 682 year: 2006 end-page: 694 ident: bib0110 article-title: Prediction of building’s temperature using neural networks models publication-title: Energy Build. – volume: 83 start-page: 319 year: 1977 end-page: 334 ident: bib0035 article-title: Energy savings through thermostat set-back publication-title: ASHRAE Trans. – volume: 73 start-page: 5 year: 2002 end-page: 23 ident: bib0100 article-title: Energy conservation in buildings through efficient A/C control using neural networks publication-title: Appl. Energy – volume: 25 start-page: 3176 year: 2005 end-page: 3186 ident: bib0105 article-title: Application of neural network for the modeling and control of evaporative condenser cooling load publication-title: Appl. Therm. Eng. – volume: 43 start-page: 338 year: 2011 end-page: 346 ident: bib0005 article-title: Thermostat strategies impact on energy consumption in residential buildings publication-title: Energy Build. – volume: 1 start-page: 99 year: 1977 end-page: 101 ident: bib0040 article-title: Notes on residential fuel use: thermostat and window management publication-title: Energy Build. – reference: (accessed 2013-10-01-12:00). – volume: 8 start-page: 10775 year: 2015 end-page: 10795 ident: bib0130 article-title: ANN-based prediction and optimization of cooling system in hotel rooms publication-title: Energies – volume: 17 start-page: 424 year: 2004 end-page: 440 ident: bib0095 article-title: A neural network controller for hydronic heating systems of solar buildings publication-title: Neural Netw. – reference: (accessed 2014-01-03-08:00). – volume: 44 start-page: 2791 year: 2003 end-page: 2809 ident: bib0050 article-title: Application of artificial neural network to predict the optimal start time for heating system in building publication-title: Energy Convers. Manag. – start-page: 1 year: 2003 end-page: 8 ident: bib0070 article-title: Building heating load estimation using artificial neural networks publication-title: Proceedings of the International Conference CLIMA 2000 – volume: 113 start-page: 1 year: 2007 end-page: 12 ident: bib0015 article-title: The effect of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House Facility publication-title: ASHRAE Trans. – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.enbuild.2016.06.046_bib0055 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 31 start-page: 2422 year: 2011 ident: 10.1016/j.enbuild.2016.06.046_bib0065 article-title: Comparative study of artificial intelligence-based building thermal control methods—application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.04.006 – volume: 11 start-page: 169 year: 2012 ident: 10.1016/j.enbuild.2016.06.046_bib0115 article-title: A comparative study between thermostat/hygrometer-based conventional and artificial neural network-based predictive/adaptive thermal controls in residential buildings publication-title: J. Asian Archit. Build Eng. doi: 10.3130/jaabe.11.169 – volume: 21 start-page: 161 year: 2001 ident: 10.1016/j.enbuild.2016.06.046_bib0090 article-title: NEUROBAT, a predictive and adaptive heating control system using artificial neural networks publication-title: Int. J. Sol. Energy doi: 10.1080/01425910108914370 – volume: 44 start-page: 2791 year: 2003 ident: 10.1016/j.enbuild.2016.06.046_bib0050 article-title: Application of artificial neural network to predict the optimal start time for heating system in building publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(03)00044-X – volume: 25 start-page: 479 year: 2000 ident: 10.1016/j.enbuild.2016.06.046_bib0140 article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building publication-title: Energy doi: 10.1016/S0360-5442(99)00086-9 – volume: 45 start-page: 1612 year: 2010 ident: 10.1016/j.enbuild.2016.06.046_bib0060 article-title: ANN-based thermal control methods for residential buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.01.009 – volume: 8 start-page: 27 year: 1985 ident: 10.1016/j.enbuild.2016.06.046_bib0020 article-title: Heating energy use management in residential buildings by temperature control publication-title: Energy Build. doi: 10.1016/0378-7788(85)90012-X – start-page: 1 year: 2003 ident: 10.1016/j.enbuild.2016.06.046_bib0070 article-title: Building heating load estimation using artificial neural networks – volume: 8 start-page: 10775 year: 2015 ident: 10.1016/j.enbuild.2016.06.046_bib0130 article-title: ANN-based prediction and optimization of cooling system in hotel rooms publication-title: Energies doi: 10.3390/en81010775 – volume: 11 start-page: 170 year: 2003 ident: 10.1016/j.enbuild.2016.06.046_bib0075 article-title: The study on cooling load forecast of an unit building using neural networks publication-title: Int. J. Air-Cond. Refrig. – ident: 10.1016/j.enbuild.2016.06.046_bib0010 – volume: 15 start-page: 41 year: 1973 ident: 10.1016/j.enbuild.2016.06.046_bib0045 article-title: Reducing fuel consumption with night setback publication-title: ASHRAE J. – volume: 83 start-page: 319 year: 1977 ident: 10.1016/j.enbuild.2016.06.046_bib0035 article-title: Energy savings through thermostat set-back publication-title: ASHRAE Trans. – volume: 43 start-page: 338 year: 2011 ident: 10.1016/j.enbuild.2016.06.046_bib0005 article-title: Thermostat strategies impact on energy consumption in residential buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.09.024 – volume: 9 start-page: 49 year: 1978 ident: 10.1016/j.enbuild.2016.06.046_bib0030 article-title: Energy savings through thermostat setback publication-title: ASHRAE J. – volume: 39 start-page: 19 year: 2004 ident: 10.1016/j.enbuild.2016.06.046_bib0125 article-title: Prediction of the time of room air temperature descending for heating systems in buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2003.08.003 – volume: 69 start-page: 175 year: 2014 ident: 10.1016/j.enbuild.2016.06.046_bib0135 article-title: Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.10.016 – volume: 113 start-page: 1 year: 2007 ident: 10.1016/j.enbuild.2016.06.046_bib0015 article-title: The effect of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House Facility publication-title: ASHRAE Trans. – volume: 1 start-page: 99 year: 1977 ident: 10.1016/j.enbuild.2016.06.046_bib0040 article-title: Notes on residential fuel use: thermostat and window management publication-title: Energy Build. doi: 10.1016/0378-7788(77)90020-2 – start-page: 604 year: 2000 ident: 10.1016/j.enbuild.2016.06.046_bib0080 article-title: Building load prediction using artificial neural networks in office renovation – volume: 25 start-page: 3176 year: 2005 ident: 10.1016/j.enbuild.2016.06.046_bib0105 article-title: Application of neural network for the modeling and control of evaporative condenser cooling load publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.04.006 – ident: 10.1016/j.enbuild.2016.06.046_bib0150 – volume: 48 start-page: 15 year: 2011 ident: 10.1016/j.enbuild.2016.06.046_bib0085 article-title: Performance of ANN-based predictive and adaptive thermal control methods for disturbances in and around residential buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.06.005 – ident: 10.1016/j.enbuild.2016.06.046_bib0120 – volume: 23 start-page: 67 year: 1981 ident: 10.1016/j.enbuild.2016.06.046_bib0025 article-title: Field test of energy savings with thermostat setback publication-title: ASHRAE J. – volume: 38 start-page: 682 year: 2006 ident: 10.1016/j.enbuild.2016.06.046_bib0110 article-title: Prediction of building’s temperature using neural networks models publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.09.007 – ident: 10.1016/j.enbuild.2016.06.046_bib0145 – volume: 17 start-page: 424 year: 2004 ident: 10.1016/j.enbuild.2016.06.046_bib0095 article-title: A neural network controller for hydronic heating systems of solar buildings publication-title: Neural Netw. doi: 10.1016/j.neunet.2003.07.001 – volume: 73 start-page: 5 year: 2002 ident: 10.1016/j.enbuild.2016.06.046_bib0100 article-title: Energy conservation in buildings through efficient A/C control using neural networks publication-title: Appl. Energy doi: 10.1016/S0306-2619(02)00027-2  | 
    
| SSID | ssj0006571 | 
    
| Score | 2.3427355 | 
    
| Snippet | •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 859 | 
    
| SubjectTerms | Artificial neural network Heating energy Optimal controls Setback temperature Thermal comfort  | 
    
| Title | Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model | 
    
| URI | https://dx.doi.org/10.1016/j.enbuild.2016.06.046 | 
    
| Volume | 127 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0378-7788 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006571 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0378-7788 databaseCode: ACRLP dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006571 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0378-7788 databaseCode: AIKHN dateStart: 19950301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006571 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0378-7788 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006571 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0378-7788 databaseCode: AKRWK dateStart: 19770501 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006571 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEZ8kB68Lvtot5QjIRJ8EaOScNu0pYsgLERXj_52Z_YhmBhNPDVtOs1m2ky_7sx8Q8i55ys4B0w5TWuEw0PLHIVOXk-0DGtKzXyNycm3fdEb8KthOKyQTpkLg2GVhe3PbXpmrYsRt9Cmu5xM3AcP1moiG7pgSFKCGeWcN7GKQeNjFeYhwuzRhZMdnL3K4nGnDaQXmMyQMNQXGY0n4uCf7qe1O6e7Q7YLsEjb-ffskopN9sjWGoXgPnlvz8YLeOA_zSnAT7oACzAHkTW_NF3EFFAefbWpVuaZzpFzIaWTJBtFWwwLUfxXCHMxDH5MVUJRBzm5BEXKy6zJAsZpVjvngAy6F4-dnlPUUnAM81qpw7U0hnPPSHiCcKM9LTwTBwodY2FguR-3RipUJgRD7CvNsHSnADQXcCWhb9khqSaLxB4RymN_pKQJLGwvwBkhVTCSADuM1q3YSFYjvNRgZAqicax3MYvKiLJpVCg-QsVHGFnHRY00vsSWOdPGXwKy3J7o25GJ4Db4XfT4_6InZBN7eZjZKammL2_2DHBJquvZwauTjXbn_uYO28vrXv8TN53mwg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68Dra168qREAkqcBESbktbOgRhEJ0e_dt9bxuKidHE07Ktr1lem9fvrV-_R8i16ymYB0w5oTXC4YFljsJNXlfUDQulZp7Gw8ndnmgP-N0wGJZIc3UWBmmVRezPY3oWrYsntcKbteVkUntwoa8Q1dAFQ5GScINs8sAPMQOrvn_xPESQZV3Y2sHmX8d4atMq6gtMZqgY6olMxxOB8E8L1Nqi09ojuwVapI38g_ZJySYHZGdNQ_CQvDVm4wVk-I9zCviTLiAEzMFkbWOaLmIKMI--2FQr80TnKLqQ0kmSPcVgDB1R_FkIbZEHP6YqoeiEXF2CouZldskY4zQrnnNEBq2bfrPtFMUUHMPceupwLY3h3DUSchButKuFa2Jf4c5Y4FvuxfWRCpQJIBJ7SjOs3SkAzvlcSbi37JiUk0ViTwjlsTdS0vgWxhfwjJDKH0nAHUbremwkqxC-8mBkCqVxLHgxi1aUsmlUOD5Cx0dIreOiQqqfZstcauMvA7kanujbnIlgOfjd9PT_pldkq93vdqLObe_-jGzjm5xzdk7K6fOrvQCQkurLbBJ-AGdQ5sI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+optimal+application+of+the+setback+moment+in+the+heating+season+using+an+artificial+neural+network+model&rft.jtitle=Energy+and+buildings&rft.au=Moon%2C+Jin+Woo&rft.au=Jung%2C+Sung+Kwon&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=127&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1016%2Fj.enbuild.2016.06.046&rft.externalDocID=S0378778816305357 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |