Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model

•Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior therma...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 127; pp. 859 - 869
Main Authors Moon, Jin Woo, Jung, Sung Kwon
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2016
Subjects
Online AccessGet full text
ISSN0378-7788
DOI10.1016/j.enbuild.2016.06.046

Cover

Abstract •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior thermal comfort or energy efficiency. The objective of this study was to develop an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building and to suggest an algorithm employing the developed ANN model to enhance indoor thermal comfort and building energy efficiency. To achieve this objective, three major steps were undertaken: the development of the initial ANN model, optimization of the initial model, and development of control algorithms and performance tests. The development and performance testing of the model and algorithm were conducted by employing numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. The results of the development and tests revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature were the three major variables predicting the optimal start moment of the setback temperature. Thus, these variables were used as input neurons in the ANN model. In addition, the optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. Comparative performance testing of a conventional algorithm and two ANN-based predictive algorithms demonstrated that the ANN-based algorithms were superior in advancing indoor thermal comfort or building energy efficiency.
AbstractList •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model proved its prediction accuracy.•ANN-based algorithms were developed and tested their performance.•ANN-based algorithms presented superior thermal comfort or energy efficiency. The objective of this study was to develop an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building and to suggest an algorithm employing the developed ANN model to enhance indoor thermal comfort and building energy efficiency. To achieve this objective, three major steps were undertaken: the development of the initial ANN model, optimization of the initial model, and development of control algorithms and performance tests. The development and performance testing of the model and algorithm were conducted by employing numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. The results of the development and tests revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature were the three major variables predicting the optimal start moment of the setback temperature. Thus, these variables were used as input neurons in the ANN model. In addition, the optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. Comparative performance testing of a conventional algorithm and two ANN-based predictive algorithms demonstrated that the ANN-based algorithms were superior in advancing indoor thermal comfort or building energy efficiency.
Author Jung, Sung Kwon
Moon, Jin Woo
Author_xml – sequence: 1
  givenname: Jin Woo
  surname: Moon
  fullname: Moon, Jin Woo
  email: gilerbert73@cau.ac.kr
  organization: School of Architecture and Building Science, Chung-Ang University, Seoul, South Korea
– sequence: 2
  givenname: Sung Kwon
  surname: Jung
  fullname: Jung, Sung Kwon
  email: jskstrm@umich.edu
  organization: Department of Architecture and Design, Jordan University of Science and Technology, Jordan
BookMark eNqFkMtqwzAQRbVIoUnaTyjoB5yObPlFFyWEvqDQTbsWsjxOlNpSkJSU_n3lJKtuAgPDnZlzYe6MTIw1SMgdgwUDVtxvF2iave7bRRrlAmLxYkKmkJVVUpZVdU1m3m8BoMhLNiWHZb-2TofNQDvrqN0FPcieyt2u10oGbQ21HQ0bpB5DI9U3HeyAJlBtjtMNxiOzjlvp4-3ej0IaKl3QnVY6ehncu2MLP9aNfIv9DbnqZO_x9tzn5Ov56XP1mrx_vLytlu-JyqAOCW8qpTgHVbGSc9VAU4DqUsmgrvMUOevqVuZS5SgVk02WQpUXOYeUyypqzObk4eSrnPXeYSeUDse3gpO6FwzEGJvYinNsYoxNQCxeRDr_R-9cjMf9XuQeTxzG1w4anfBKo1HYaocqiNbqCw5_9OyRyw
CitedBy_id crossref_primary_10_1002_er_4706
crossref_primary_10_1016_j_future_2018_10_007
crossref_primary_10_1016_j_applthermaleng_2016_11_087
crossref_primary_10_3390_en9121090
crossref_primary_10_1016_j_enbuild_2024_114769
crossref_primary_10_1016_j_heliyon_2024_e40644
crossref_primary_10_1016_j_rser_2020_110436
crossref_primary_10_1016_j_buildenv_2023_110009
crossref_primary_10_1016_j_neucom_2019_02_040
crossref_primary_10_1016_j_enbuild_2019_109542
crossref_primary_10_3390_en17174401
crossref_primary_10_1080_23744731_2022_2058262
crossref_primary_10_1016_j_buildenv_2023_110551
crossref_primary_10_1016_j_rser_2021_110969
crossref_primary_10_1016_j_enbuild_2021_111692
crossref_primary_10_1016_j_enbuild_2017_06_027
crossref_primary_10_1016_j_rser_2017_05_175
crossref_primary_10_1016_j_enbuild_2021_110836
crossref_primary_10_3390_su132111855
crossref_primary_10_3390_su16093627
crossref_primary_10_1080_14484846_2019_1605685
crossref_primary_10_3390_buildings14113519
crossref_primary_10_3390_buildings13112795
crossref_primary_10_1016_j_indenv_2024_100044
crossref_primary_10_3390_su132212784
crossref_primary_10_1016_j_enbuild_2022_112233
crossref_primary_10_1016_j_enbuild_2020_109807
crossref_primary_10_1016_j_energy_2022_125703
crossref_primary_10_1016_j_scico_2023_102987
crossref_primary_10_3390_en11071643
Cites_doi 10.1007/BF02478259
10.1016/j.applthermaleng.2011.04.006
10.3130/jaabe.11.169
10.1080/01425910108914370
10.1016/S0196-8904(03)00044-X
10.1016/S0360-5442(99)00086-9
10.1016/j.buildenv.2010.01.009
10.1016/0378-7788(85)90012-X
10.3390/en81010775
10.1016/j.enbuild.2010.09.024
10.1016/j.buildenv.2003.08.003
10.1016/j.enbuild.2013.10.016
10.1016/0378-7788(77)90020-2
10.1016/j.applthermaleng.2005.04.006
10.1016/j.buildenv.2011.06.005
10.1016/j.enbuild.2005.09.007
10.1016/j.neunet.2003.07.001
10.1016/S0306-2619(02)00027-2
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.enbuild.2016.06.046
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 869
ExternalDocumentID 10_1016_j_enbuild_2016_06_046
S0378778816305357
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
ID FETCH-LOGICAL-c309t-4b8cc440c81744cb0b60cf2a109952e41f9da5ac5eac1ab32085654024a81abe3
IEDL.DBID .~1
ISSN 0378-7788
IngestDate Thu Oct 16 04:27:41 EDT 2025
Thu Apr 24 23:16:20 EDT 2025
Fri Feb 23 02:30:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal comfort
Artificial neural network
Optimal controls
Setback temperature
Heating energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c309t-4b8cc440c81744cb0b60cf2a109952e41f9da5ac5eac1ab32085654024a81abe3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_enbuild_2016_06_046
crossref_primary_10_1016_j_enbuild_2016_06_046
elsevier_sciencedirect_doi_10_1016_j_enbuild_2016_06_046
PublicationCentury 2000
PublicationDate 2016-09-01
2016-09-00
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy and buildings
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (accessed 2014-01-03-08:00).
Moon, Han (bib0005) 2011; 43
(accessed 2012-05-09-13:30).
Yang, Yeo, Kim (bib0050) 2003; 44
Moon, Han (bib0115) 2012; 11
University of Wisconsin, 2012. TRNSYS16.1, Available from
Kalogirou, Neocleous, Schizas (bib0070) 2003
MathWorks, 2013. MATLAB 14, vol. 26, Available from
Argiriou, Bellas-Velidis, Kummert, Andre (bib0095) 2004; 17
Morel, Bauer, El-Khoury, Krauss (bib0090) 2001; 21
Abbassi, Bahar (bib0105) 2005; 25
Moon, Jung, Kim, Han (bib0065) 2011; 31
Moon (bib0085) 2011; 48
Manning, Swinton, Szadkowski, Gusdorf, Ruest (bib0015) 2007; 113
Kalogirou, Bojic (bib0140) 2000; 25
Rosenfeld (bib0040) 1977; 1
Nelson, MacArthur (bib0035) 1977; 83
Beckey, Nelson (bib0025) 1981; 23
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook-Fundamentals, SI, Edition, ASHRAE, 2009.
McCulloch, Pitts (bib0055) 1943; 5
Ingersoll, Huang (bib0020) 1985; 8
Shin, Lee (bib0075) 2003; 11
Moon, Lee, Yoon, Kim (bib0135) 2014; 69
Ministry of Knowledge Economy, 2009. A law for rationalization of energy consumption, Ministry of Knowledge Economy, Available from
Moon, Kim, Min (bib0130) 2015; 8
Nelson, Ward (bib0030) 1978; 9
Nelson (bib0045) 1973; 15
(accessed 2013-10-01-12:00).
Kim, Kim (bib0080) 2000
Ben-Nakhi, Mahmoud (bib0100) 2002; 73
Ruano, Crispim, Conceicao, Lucio (bib0110) 2006; 38
Yang, Kim (bib0125) 2004; 39
Moon, Kim (bib0060) 2010; 45
Moon (10.1016/j.enbuild.2016.06.046_bib0130) 2015; 8
Manning (10.1016/j.enbuild.2016.06.046_bib0015) 2007; 113
Ben-Nakhi (10.1016/j.enbuild.2016.06.046_bib0100) 2002; 73
Moon (10.1016/j.enbuild.2016.06.046_bib0065) 2011; 31
Moon (10.1016/j.enbuild.2016.06.046_bib0115) 2012; 11
Moon (10.1016/j.enbuild.2016.06.046_bib0005) 2011; 43
Yang (10.1016/j.enbuild.2016.06.046_bib0125) 2004; 39
Abbassi (10.1016/j.enbuild.2016.06.046_bib0105) 2005; 25
Moon (10.1016/j.enbuild.2016.06.046_bib0135) 2014; 69
10.1016/j.enbuild.2016.06.046_bib0145
10.1016/j.enbuild.2016.06.046_bib0120
McCulloch (10.1016/j.enbuild.2016.06.046_bib0055) 1943; 5
Yang (10.1016/j.enbuild.2016.06.046_bib0050) 2003; 44
Kalogirou (10.1016/j.enbuild.2016.06.046_bib0070) 2003
Argiriou (10.1016/j.enbuild.2016.06.046_bib0095) 2004; 17
Ruano (10.1016/j.enbuild.2016.06.046_bib0110) 2006; 38
Morel (10.1016/j.enbuild.2016.06.046_bib0090) 2001; 21
Rosenfeld (10.1016/j.enbuild.2016.06.046_bib0040) 1977; 1
Shin (10.1016/j.enbuild.2016.06.046_bib0075) 2003; 11
Kalogirou (10.1016/j.enbuild.2016.06.046_bib0140) 2000; 25
Ingersoll (10.1016/j.enbuild.2016.06.046_bib0020) 1985; 8
Moon (10.1016/j.enbuild.2016.06.046_bib0060) 2010; 45
Nelson (10.1016/j.enbuild.2016.06.046_bib0030) 1978; 9
Kim (10.1016/j.enbuild.2016.06.046_bib0080) 2000
Moon (10.1016/j.enbuild.2016.06.046_bib0085) 2011; 48
10.1016/j.enbuild.2016.06.046_bib0150
Beckey (10.1016/j.enbuild.2016.06.046_bib0025) 1981; 23
10.1016/j.enbuild.2016.06.046_bib0010
Nelson (10.1016/j.enbuild.2016.06.046_bib0045) 1973; 15
Nelson (10.1016/j.enbuild.2016.06.046_bib0035) 1977; 83
References_xml – start-page: 604
  year: 2000
  end-page: 612
  ident: bib0080
  article-title: Building load prediction using artificial neural networks in office renovation
  publication-title: Proceeding of 3rd International Symposium on Architectural Interchanges in Asia
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: bib0055
  article-title: A logical calculus of ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 23
  start-page: 67
  year: 1981
  end-page: 70
  ident: bib0025
  article-title: Field test of energy savings with thermostat setback
  publication-title: ASHRAE J.
– volume: 21
  start-page: 161
  year: 2001
  end-page: 201
  ident: bib0090
  article-title: NEUROBAT, a predictive and adaptive heating control system using artificial neural networks
  publication-title: Int. J. Sol. Energy
– reference: MathWorks, 2013. MATLAB 14, vol. 26, Available from:
– volume: 31
  start-page: 2422
  year: 2011
  end-page: 2429
  ident: bib0065
  article-title: Comparative study of artificial intelligence-based building thermal control methods—application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network
  publication-title: Appl. Therm. Eng.
– volume: 25
  start-page: 479
  year: 2000
  end-page: 491
  ident: bib0140
  article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building
  publication-title: Energy
– volume: 11
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib0115
  article-title: A comparative study between thermostat/hygrometer-based conventional and artificial neural network-based predictive/adaptive thermal controls in residential buildings
  publication-title: J. Asian Archit. Build Eng.
– reference: University of Wisconsin, 2012. TRNSYS16.1, Available from:
– volume: 9
  start-page: 49
  year: 1978
  end-page: 54
  ident: bib0030
  article-title: Energy savings through thermostat setback
  publication-title: ASHRAE J.
– volume: 15
  start-page: 41
  year: 1973
  end-page: 49
  ident: bib0045
  article-title: Reducing fuel consumption with night setback
  publication-title: ASHRAE J.
– reference: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook-Fundamentals, SI, Edition, ASHRAE, 2009.
– volume: 69
  start-page: 175
  year: 2014
  end-page: 183
  ident: bib0135
  article-title: Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network
  publication-title: Energy Build.
– volume: 8
  start-page: 27
  year: 1985
  end-page: 35
  ident: bib0020
  article-title: Heating energy use management in residential buildings by temperature control
  publication-title: Energy Build.
– volume: 48
  start-page: 15
  year: 2011
  end-page: 26
  ident: bib0085
  article-title: Performance of ANN-based predictive and adaptive thermal control methods for disturbances in and around residential buildings
  publication-title: Build. Environ.
– reference: (accessed 2012-05-09-13:30).
– volume: 45
  start-page: 1612
  year: 2010
  end-page: 1625
  ident: bib0060
  article-title: ANN-based thermal control methods for residential buildings
  publication-title: Build. Environ.
– volume: 11
  start-page: 170
  year: 2003
  end-page: 177
  ident: bib0075
  article-title: The study on cooling load forecast of an unit building using neural networks
  publication-title: Int. J. Air-Cond. Refrig.
– reference: Ministry of Knowledge Economy, 2009. A law for rationalization of energy consumption, Ministry of Knowledge Economy, Available from:
– volume: 39
  start-page: 19
  year: 2004
  end-page: 29
  ident: bib0125
  article-title: Prediction of the time of room air temperature descending for heating systems in buildings
  publication-title: Build. Environ.
– volume: 38
  start-page: 682
  year: 2006
  end-page: 694
  ident: bib0110
  article-title: Prediction of building’s temperature using neural networks models
  publication-title: Energy Build.
– volume: 83
  start-page: 319
  year: 1977
  end-page: 334
  ident: bib0035
  article-title: Energy savings through thermostat set-back
  publication-title: ASHRAE Trans.
– volume: 73
  start-page: 5
  year: 2002
  end-page: 23
  ident: bib0100
  article-title: Energy conservation in buildings through efficient A/C control using neural networks
  publication-title: Appl. Energy
– volume: 25
  start-page: 3176
  year: 2005
  end-page: 3186
  ident: bib0105
  article-title: Application of neural network for the modeling and control of evaporative condenser cooling load
  publication-title: Appl. Therm. Eng.
– volume: 43
  start-page: 338
  year: 2011
  end-page: 346
  ident: bib0005
  article-title: Thermostat strategies impact on energy consumption in residential buildings
  publication-title: Energy Build.
– volume: 1
  start-page: 99
  year: 1977
  end-page: 101
  ident: bib0040
  article-title: Notes on residential fuel use: thermostat and window management
  publication-title: Energy Build.
– reference: (accessed 2013-10-01-12:00).
– volume: 8
  start-page: 10775
  year: 2015
  end-page: 10795
  ident: bib0130
  article-title: ANN-based prediction and optimization of cooling system in hotel rooms
  publication-title: Energies
– volume: 17
  start-page: 424
  year: 2004
  end-page: 440
  ident: bib0095
  article-title: A neural network controller for hydronic heating systems of solar buildings
  publication-title: Neural Netw.
– reference: (accessed 2014-01-03-08:00).
– volume: 44
  start-page: 2791
  year: 2003
  end-page: 2809
  ident: bib0050
  article-title: Application of artificial neural network to predict the optimal start time for heating system in building
  publication-title: Energy Convers. Manag.
– start-page: 1
  year: 2003
  end-page: 8
  ident: bib0070
  article-title: Building heating load estimation using artificial neural networks
  publication-title: Proceedings of the International Conference CLIMA 2000
– volume: 113
  start-page: 1
  year: 2007
  end-page: 12
  ident: bib0015
  article-title: The effect of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House Facility
  publication-title: ASHRAE Trans.
– volume: 5
  start-page: 115
  year: 1943
  ident: 10.1016/j.enbuild.2016.06.046_bib0055
  article-title: A logical calculus of ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 31
  start-page: 2422
  year: 2011
  ident: 10.1016/j.enbuild.2016.06.046_bib0065
  article-title: Comparative study of artificial intelligence-based building thermal control methods—application of fuzzy, adaptive neuro-fuzzy inference system, and artificial neural network
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.04.006
– volume: 11
  start-page: 169
  year: 2012
  ident: 10.1016/j.enbuild.2016.06.046_bib0115
  article-title: A comparative study between thermostat/hygrometer-based conventional and artificial neural network-based predictive/adaptive thermal controls in residential buildings
  publication-title: J. Asian Archit. Build Eng.
  doi: 10.3130/jaabe.11.169
– volume: 21
  start-page: 161
  year: 2001
  ident: 10.1016/j.enbuild.2016.06.046_bib0090
  article-title: NEUROBAT, a predictive and adaptive heating control system using artificial neural networks
  publication-title: Int. J. Sol. Energy
  doi: 10.1080/01425910108914370
– volume: 44
  start-page: 2791
  year: 2003
  ident: 10.1016/j.enbuild.2016.06.046_bib0050
  article-title: Application of artificial neural network to predict the optimal start time for heating system in building
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(03)00044-X
– volume: 25
  start-page: 479
  year: 2000
  ident: 10.1016/j.enbuild.2016.06.046_bib0140
  article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00086-9
– volume: 45
  start-page: 1612
  year: 2010
  ident: 10.1016/j.enbuild.2016.06.046_bib0060
  article-title: ANN-based thermal control methods for residential buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.01.009
– volume: 8
  start-page: 27
  year: 1985
  ident: 10.1016/j.enbuild.2016.06.046_bib0020
  article-title: Heating energy use management in residential buildings by temperature control
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(85)90012-X
– start-page: 1
  year: 2003
  ident: 10.1016/j.enbuild.2016.06.046_bib0070
  article-title: Building heating load estimation using artificial neural networks
– volume: 8
  start-page: 10775
  year: 2015
  ident: 10.1016/j.enbuild.2016.06.046_bib0130
  article-title: ANN-based prediction and optimization of cooling system in hotel rooms
  publication-title: Energies
  doi: 10.3390/en81010775
– volume: 11
  start-page: 170
  year: 2003
  ident: 10.1016/j.enbuild.2016.06.046_bib0075
  article-title: The study on cooling load forecast of an unit building using neural networks
  publication-title: Int. J. Air-Cond. Refrig.
– ident: 10.1016/j.enbuild.2016.06.046_bib0010
– volume: 15
  start-page: 41
  year: 1973
  ident: 10.1016/j.enbuild.2016.06.046_bib0045
  article-title: Reducing fuel consumption with night setback
  publication-title: ASHRAE J.
– volume: 83
  start-page: 319
  year: 1977
  ident: 10.1016/j.enbuild.2016.06.046_bib0035
  article-title: Energy savings through thermostat set-back
  publication-title: ASHRAE Trans.
– volume: 43
  start-page: 338
  year: 2011
  ident: 10.1016/j.enbuild.2016.06.046_bib0005
  article-title: Thermostat strategies impact on energy consumption in residential buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.09.024
– volume: 9
  start-page: 49
  year: 1978
  ident: 10.1016/j.enbuild.2016.06.046_bib0030
  article-title: Energy savings through thermostat setback
  publication-title: ASHRAE J.
– volume: 39
  start-page: 19
  year: 2004
  ident: 10.1016/j.enbuild.2016.06.046_bib0125
  article-title: Prediction of the time of room air temperature descending for heating systems in buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2003.08.003
– volume: 69
  start-page: 175
  year: 2014
  ident: 10.1016/j.enbuild.2016.06.046_bib0135
  article-title: Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.10.016
– volume: 113
  start-page: 1
  year: 2007
  ident: 10.1016/j.enbuild.2016.06.046_bib0015
  article-title: The effect of thermostat set-back and set-up on seasonal energy consumption, surface temperatures and recovery times at the CCHT Twin House Facility
  publication-title: ASHRAE Trans.
– volume: 1
  start-page: 99
  year: 1977
  ident: 10.1016/j.enbuild.2016.06.046_bib0040
  article-title: Notes on residential fuel use: thermostat and window management
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(77)90020-2
– start-page: 604
  year: 2000
  ident: 10.1016/j.enbuild.2016.06.046_bib0080
  article-title: Building load prediction using artificial neural networks in office renovation
– volume: 25
  start-page: 3176
  year: 2005
  ident: 10.1016/j.enbuild.2016.06.046_bib0105
  article-title: Application of neural network for the modeling and control of evaporative condenser cooling load
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.04.006
– ident: 10.1016/j.enbuild.2016.06.046_bib0150
– volume: 48
  start-page: 15
  year: 2011
  ident: 10.1016/j.enbuild.2016.06.046_bib0085
  article-title: Performance of ANN-based predictive and adaptive thermal control methods for disturbances in and around residential buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.06.005
– ident: 10.1016/j.enbuild.2016.06.046_bib0120
– volume: 23
  start-page: 67
  year: 1981
  ident: 10.1016/j.enbuild.2016.06.046_bib0025
  article-title: Field test of energy savings with thermostat setback
  publication-title: ASHRAE J.
– volume: 38
  start-page: 682
  year: 2006
  ident: 10.1016/j.enbuild.2016.06.046_bib0110
  article-title: Prediction of building’s temperature using neural networks models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.09.007
– ident: 10.1016/j.enbuild.2016.06.046_bib0145
– volume: 17
  start-page: 424
  year: 2004
  ident: 10.1016/j.enbuild.2016.06.046_bib0095
  article-title: A neural network controller for hydronic heating systems of solar buildings
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2003.07.001
– volume: 73
  start-page: 5
  year: 2002
  ident: 10.1016/j.enbuild.2016.06.046_bib0100
  article-title: Energy conservation in buildings through efficient A/C control using neural networks
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(02)00027-2
SSID ssj0006571
Score 2.3427355
Snippet •Initial ANN model was developed for predicting the optimal setback application.•Initial model was optimized for producing accurate output.•Optimized model...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 859
SubjectTerms Artificial neural network
Heating energy
Optimal controls
Setback temperature
Thermal comfort
Title Algorithm for optimal application of the setback moment in the heating season using an artificial neural network model
URI https://dx.doi.org/10.1016/j.enbuild.2016.06.046
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0378-7788
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006571
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0378-7788
  databaseCode: ACRLP
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006571
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0378-7788
  databaseCode: AIKHN
  dateStart: 19950301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006571
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0378-7788
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006571
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0378-7788
  databaseCode: AKRWK
  dateStart: 19770501
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006571
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IXvRgfEZ8kB68Lvtot5QjIRJ8EaOScNu0pYsgLERXj_52Z_YhmBhNPDVtOs1m2ky_7sx8Q8i55ys4B0w5TWuEw0PLHIVOXk-0DGtKzXyNycm3fdEb8KthOKyQTpkLg2GVhe3PbXpmrYsRt9Cmu5xM3AcP1moiG7pgSFKCGeWcN7GKQeNjFeYhwuzRhZMdnL3K4nGnDaQXmMyQMNQXGY0n4uCf7qe1O6e7Q7YLsEjb-ffskopN9sjWGoXgPnlvz8YLeOA_zSnAT7oACzAHkTW_NF3EFFAefbWpVuaZzpFzIaWTJBtFWwwLUfxXCHMxDH5MVUJRBzm5BEXKy6zJAsZpVjvngAy6F4-dnlPUUnAM81qpw7U0hnPPSHiCcKM9LTwTBwodY2FguR-3RipUJgRD7CvNsHSnADQXcCWhb9khqSaLxB4RymN_pKQJLGwvwBkhVTCSADuM1q3YSFYjvNRgZAqicax3MYvKiLJpVCg-QsVHGFnHRY00vsSWOdPGXwKy3J7o25GJ4Db4XfT4_6InZBN7eZjZKammL2_2DHBJquvZwauTjXbn_uYO28vrXv8TN53mwg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rB-DPizx68Dra168qREAkqcBESbktbOgRhEJ0e_dt9bxuKidHE07Ktr1lem9fvrV-_R8i16ymYB0w5oTXC4YFljsJNXlfUDQulZp7Gw8ndnmgP-N0wGJZIc3UWBmmVRezPY3oWrYsntcKbteVkUntwoa8Q1dAFQ5GScINs8sAPMQOrvn_xPESQZV3Y2sHmX8d4atMq6gtMZqgY6olMxxOB8E8L1Nqi09ojuwVapI38g_ZJySYHZGdNQ_CQvDVm4wVk-I9zCviTLiAEzMFkbWOaLmIKMI--2FQr80TnKLqQ0kmSPcVgDB1R_FkIbZEHP6YqoeiEXF2CouZldskY4zQrnnNEBq2bfrPtFMUUHMPceupwLY3h3DUSchButKuFa2Jf4c5Y4FvuxfWRCpQJIBJ7SjOs3SkAzvlcSbi37JiUk0ViTwjlsTdS0vgWxhfwjJDKH0nAHUbremwkqxC-8mBkCqVxLHgxi1aUsmlUOD5Cx0dIreOiQqqfZstcauMvA7kanujbnIlgOfjd9PT_pldkq93vdqLObe_-jGzjm5xzdk7K6fOrvQCQkurLbBJ-AGdQ5sI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+for+optimal+application+of+the+setback+moment+in+the+heating+season+using+an+artificial+neural+network+model&rft.jtitle=Energy+and+buildings&rft.au=Moon%2C+Jin+Woo&rft.au=Jung%2C+Sung+Kwon&rft.date=2016-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=127&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1016%2Fj.enbuild.2016.06.046&rft.externalDocID=S0378778816305357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon