Enhanced LSTM‐DQN algorithm for a two‐player zero‐sum game in three‐dimensional space
To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation...
Saved in:
| Published in | IET control theory & applications Vol. 18; no. 18; pp. 2798 - 2812 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1751-8644 1751-8652 1751-8652 |
| DOI | 10.1049/cth2.12677 |
Cover
| Abstract | To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space.
The LSTM‐DQN‐HER algorithm is proposed by modelling the MDP and POMDP of a two‐player zero‐sum game problem in three‐dimensional space, and the effectiveness of the proposed algorithm in solving the three‐dimensional two‐player zero‐sum game problem is verified by training and adversarial simulation of the Agent. |
|---|---|
| AbstractList | To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space.
The LSTM‐DQN‐HER algorithm is proposed by modelling the MDP and POMDP of a two‐player zero‐sum game problem in three‐dimensional space, and the effectiveness of the proposed algorithm in solving the three‐dimensional two‐player zero‐sum game problem is verified by training and adversarial simulation of the Agent. To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space. |
| Author | Ru, Le Hu, Shiguang Lv, Maolong Zhao, Zilong Zhang, Hongguo Lu, Bo |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0009-0007-8285-776X surname: Lu fullname: Lu, Bo organization: Air Force Engineering University – sequence: 2 givenname: Le surname: Ru fullname: Ru, Le email: ru-le@163.com organization: Air Force Engineering University – sequence: 3 givenname: Maolong surname: Lv fullname: Lv, Maolong organization: Air Force Engineering University – sequence: 4 givenname: Shiguang orcidid: 0000-0001-6819-4700 surname: Hu fullname: Hu, Shiguang organization: Air Force Engineering University – sequence: 5 givenname: Hongguo surname: Zhang fullname: Zhang, Hongguo organization: Northwestern Polytechnical University – sequence: 6 givenname: Zilong surname: Zhao fullname: Zhao, Zilong organization: Technical University of Munich |
| BookMark | eNp9kN9KwzAUxoNMcJve-AS5VjaTNk3aS5nTCVMR56WU0zRdI2la0o5Rr3wEn9EnsbPihciuzr_f98H5RmhgS6sQOqVkSgmLLmSTe1PqcSEO0JCKgE5CHniD356xIzSq61dCgoCzYIhe5jYHK1WKl0-ru8_3j6vHewxmXTrd5AXOSocBN9uyu1QGWuXwm3K7qd4UeA2FwtriJndKdbtUF8rWurRgcF2BVMfoMANTq5OfOkbP1_PVbDFZPtzczi6XE-mTSExSShPGE86iLPKoT8LQ80MaciC-DzxkQpEkkVIIwjLiB1nHiwiilBBPJJHk_hid974bW0G7BWPiyukCXBtTEu-SiXfJxN_JdPRZT0tX1rVT2X6Y_IGlbqDpnmwcaPO_hPaSrTaq3WMez1YLr9d8AcxRiO8 |
| CitedBy_id | crossref_primary_10_1049_cth2_12781 |
| Cites_doi | 10.1155/2014/183401 10.1038/nature14236 10.1162/jmlr.2003.4.6.1039 10.1162/neco.1997.9.8.1735 10.1007/SpringerReference_179341 10.2514/6.2008-6796 10.1561/2200000071 10.1038/nature24270 10.33965/ihci_get2020_202010L016 10.18653/v1/D15-1001 10.1609/aaai.v34i04.6144 10.1109/tnn.1998.712192 10.1109/DASC.1992.282166 10.1016/b978‐1‐55860‐335‐6.50027‐1 10.2514/1.3960 10.1016/j.swevo.2012.03.003 10.1109/TSMCC.2007.913919 10.1126/science.aar6404 10.1609/aaai.v36i4.20394 10.2514/1.17168 10.1109/ICIT.2019.8755032 10.1007/bf02204836 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1049/cth2.12677 |
| DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8652 |
| EndPage | 2812 |
| ExternalDocumentID | 10.1049/cth2.12677 10_1049_cth2_12677 CTH212677 |
| Genre | article |
| GrantInformation_xml | – fundername: Postdoctoral Science Foundation Special Funding funderid: 2023T160790 – fundername: Postdoctoral International Exchange Project funderid: YJ20220347 – fundername: National Natural Science Foundation of China funderid: 62303489 – fundername: Postdoctoral Science Foundation General Program funderid: 2022M723877 – fundername: Young Talent Fund of Association for Science and Technology in Shaanxi funderid: 20220101 – fundername: Project for Science and Technology funderid: 2022‐JCJQ‐QT‐018 |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 3V. 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADEYR AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU CS3 DU5 DWQXO EBS EJD ESX F8P GNUQQ GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G K6V K7- L6V LAI M0N M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P62 PQQKQ PROAC PTHSS QWB RIE RNS ROL RUI U5U UNMZH ZL0 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA IGS PHGZM PHGZT PQGLB WIN ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c3097-d11b46b649f9213088238186a033a6847e0bbcc7704f035fd1179a9d0027b9c63 |
| IEDL.DBID | 24P |
| ISSN | 1751-8644 1751-8652 |
| IngestDate | Sun Sep 07 11:17:56 EDT 2025 Thu Apr 24 23:14:11 EDT 2025 Wed Oct 29 21:15:02 EDT 2025 Wed Jan 22 17:11:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3097-d11b46b649f9213088238186a033a6847e0bbcc7704f035fd1179a9d0027b9c63 |
| ORCID | 0009-0007-8285-776X 0000-0001-6819-4700 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12677 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1049_cth2_12677 crossref_primary_10_1049_cth2_12677 crossref_citationtrail_10_1049_cth2_12677 wiley_primary_10_1049_cth2_12677_CTH212677 |
| PublicationCentury | 2000 |
| PublicationDate | December 2024 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | IET control theory & applications |
| PublicationYear | 2024 |
| References | 2018; 362 1991; 32 2020 2008; 38 1994; 1994 2003; 3 2019 2008 2006; 29 2018 2022; 36 2003; 4 2015; 518 575 2017 2014; 2014 2020; 34 2015 2001; 17 2017; 550 2012; 6 2018; 11 1997; 9 1998; 9 e_1_2_11_10_1 Greenwald A. (e_1_2_11_18_1) 2003; 3 e_1_2_11_14_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Vinyals O. (e_1_2_11_13_1); 575 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_19_1 |
| References_xml | – year: 2019 article-title: Multi‐agent deep reinforcement learning with human strategies – volume: 550 start-page: 354 issue: 7676 year: 2017 end-page: 359 article-title: Mastering the game of Go without human knowledge publication-title: Nature – year: 2008 article-title: Air combat strategy using approximate dynamic programming – volume: 1994 start-page: 157 year: 1994 end-page: 163 article-title: Markov games as a framework for multi‐agent reinforcement learning publication-title: Mach. Learning Proc. – volume: 32 start-page: 215 issue: 1 year: 1991 end-page: 230 article-title: A survey of solution techniques for the partially observed Markov decision process publication-title: Ann. Oper. Res. – volume: 29 start-page: 1080 issue: 5 year: 2006 end-page: 1091 article-title: Modeling air combat by a moving horizon influence diagram game publication-title: J. Guid. Control Dyn. – volume: 29 start-page: 105 issue: 1 year: 2006 end-page: 112 article-title: Optimal fighter pursuit‐evasion maneuvers found via two‐sided optimization publication-title: J. Guid. Control Dyn. – volume: 3 start-page: 242 year: 2003 end-page: 249 article-title: Correlated Q‐learning publication-title: ICML – volume: 17 start-page: 1021 issue: 1 year: 2001 end-page: 1026 article-title: Rational and convergent learning in stochastic games – volume: 11 start-page: 219 issue: 3‐4 year: 2018 end-page: 354 article-title: An introduction to deep reinforcement learning publication-title: Found. Trends Mach. Learn. – volume: 9 start-page: 1054 issue: 5 year: 1998 end-page: 1054 article-title: Reinforcement learning: An introduction publication-title: IEEE Trans. Neural Networks – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – volume: 4 start-page: 1039 year: 2003 end-page: 1069 article-title: Nash Q‐learning for general‐sum stochastic games publication-title: J. Mach. Learn Res. – year: 2020 article-title: Towards playing full MOBA games with deep reinforcement learning – volume: 34 start-page: 6672 issue: 04 year: 2020 end-page: 6679 article-title: Mastering complex control in MOBA games with deep reinforcement learning publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 36 start-page: 4689 issue: 4 year: 2022 end-page: 4697 article-title: AlphaHoldem: High‐performance artificial intelligence for heads‐up no‐limit poker via end‐to‐end reinforcement learning publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 362 start-page: 1140 issue: 6419 year: 2018 end-page: 1144 article-title: A general reinforcement learning algorithm that masters Chess, Shogi, and Go through self‐play publication-title: Science – start-page: 1 year: 2015 end-page: 11 article-title: Language understanding for text‐based games using deep reinforcement learning – volume: 6 start-page: 39 year: 2012 end-page: 46 article-title: A new approach to multi‐aircraft air combat assignments publication-title: Swarm Evol. Comput. – start-page: 155 end-page: 160 article-title: Knowledge‐based reasoning in the paladin tactical decision generation system – volume: 38 start-page: 156 issue: 2 year: 2008 end-page: 172 article-title: A comprehensive survey of multi‐agent reinforcement learning publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. – year: 2018 article-title: A preliminary study of the U.S. Army's artificial intelligence air combat system Alpha – volume: 518 start-page: 529 issue: 7540 year: 2015 end-page: 533 article-title: Human‐level control through deep reinforcement learning publication-title: Nature – volume: 2014 start-page: 1 year: 2014 end-page: 10 article-title: A case study on air combat decision using approximated dynamic programming publication-title: Math. Probl. Eng. – volume: 575 start-page: 350 issue: 2019 end-page: 354 article-title: Grandmaster level in StarCraft II using multi‐agent reinforcement learning publication-title: Nature – year: 2017 – start-page: 5055 year: 2017 end-page: 5065 article-title: Hindsight experience replay – ident: e_1_2_11_10_1 doi: 10.1155/2014/183401 – ident: e_1_2_11_19_1 – volume: 3 start-page: 242 year: 2003 ident: e_1_2_11_18_1 article-title: Correlated Q‐learning publication-title: ICML – volume: 575 start-page: 350 issue: 2019 ident: e_1_2_11_13_1 article-title: Grandmaster level in StarCraft II using multi‐agent reinforcement learning publication-title: Nature – ident: e_1_2_11_27_1 doi: 10.1038/nature14236 – ident: e_1_2_11_17_1 doi: 10.1162/jmlr.2003.4.6.1039 – ident: e_1_2_11_28_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_11_24_1 doi: 10.1007/SpringerReference_179341 – ident: e_1_2_11_26_1 doi: 10.2514/6.2008-6796 – ident: e_1_2_11_9_1 doi: 10.1561/2200000071 – ident: e_1_2_11_8_1 doi: 10.1038/nature24270 – ident: e_1_2_11_15_1 doi: 10.33965/ihci_get2020_202010L016 – ident: e_1_2_11_21_1 doi: 10.18653/v1/D15-1001 – ident: e_1_2_11_14_1 doi: 10.1609/aaai.v34i04.6144 – ident: e_1_2_11_6_1 doi: 10.1109/tnn.1998.712192 – ident: e_1_2_11_3_1 doi: 10.1109/DASC.1992.282166 – ident: e_1_2_11_16_1 doi: 10.1016/b978‐1‐55860‐335‐6.50027‐1 – ident: e_1_2_11_29_1 – ident: e_1_2_11_4_1 doi: 10.2514/1.3960 – ident: e_1_2_11_5_1 doi: 10.1016/j.swevo.2012.03.003 – ident: e_1_2_11_7_1 – ident: e_1_2_11_20_1 doi: 10.1109/TSMCC.2007.913919 – ident: e_1_2_11_11_1 doi: 10.1126/science.aar6404 – ident: e_1_2_11_12_1 doi: 10.1609/aaai.v36i4.20394 – ident: e_1_2_11_2_1 doi: 10.2514/1.17168 – ident: e_1_2_11_25_1 doi: 10.1109/ICIT.2019.8755032 – ident: e_1_2_11_23_1 doi: 10.1007/bf02204836 – ident: e_1_2_11_22_1 |
| SSID | ssj0055645 |
| Score | 2.4405484 |
| Snippet | To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN)... |
| SourceID | unpaywall crossref wiley |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 2798 |
| SubjectTerms | deep reinforcement learning hindsight experience replay long short term memory‐deep Q‐learning manoeuvre decision‐making three‐dimensional space two‐player zero‐sum game |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA9zPogP_hcnKkH3otDZNmnaPI65McQNxQ3mg5QkTbdh143RMdyTH8HP6Ccx6brhRIZvaXttw91x9yvX-x0ARS9wmEe185o4NLAIbYOjgBo0CB1pSiEJ0w3OjSapt_F9x-nkwOWiF2alfo_prUh6dsmyietugE3iKLydB5vt5mP5Je10dCzDI-nE1mzt2AsO0pWbV7LO1iQesfcpi6JVRJqmlNouqCw2M_-T5K00SXhJzH7xNK7f7R7YyRAlLM9dYB_kZHwAtn_wDB6C12rcSyv98OG51fj6-Lx7akIWdYfjftIbQIVbIYPJdKiujCKmQDicybE-Um4Ku2wgYT-GibK6VOcCPQ9gzuUBVTgS8gi0a9VWpW5kcxUMgUzqGoFlcUw4wTSktsphCmTrvE2YiRAjKl1Jk3MhXFeZz0ROGGjaOEYD_QnLqSDoGOTjYSxPAFSRHknkcRU1JNazPgXmRL3EEw4SzBMFcL3Quy8y0nE9-yLy0-I3pr5WmZ-qrACulrKjOdXGn1LFpfnWit2kll0j4ldadTtdnf7vmWcgn4wn8lyhkIRfZG74Dcrx23U priority: 102 providerName: Unpaywall |
| Title | Enhanced LSTM‐DQN algorithm for a two‐player zero‐sum game in three‐dimensional space |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12677 https://doi.org/10.1049/cth2.12677 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8652 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: IDLOA dateStart: 20130103 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1751-8652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6qHtSD-MRnWdCLQjTJbjZZ8CJaKWKLYgt6kLC72bRCTEtJET35E_yN_hJnN221IIK3PCYEZmZnvslmvkHoIEoCEXHjvC5NHapS35Ek4Q5P0kC7WmkmTINzo8nqbXp1H9xX0Om4F6bkh5h8cDMrw8Zrs8CFLKeQAKgFI6qi6x97PgvDGTTnAZAx_u3Tm3EcDgxPim2HDDwngrQ_Jiel_OT72al0ND_M--L1RWTZNFS1ueZyGS2NQCI-K626gio6X0WLP6gD19BjLe_azXt8fddqfL5_XNw2scg6PSj2u88YoCgWuHjpwZ1-JgBX4zc9MGfgebgjnjV-ynEBhtRwLTEU_yU9B4YIo_Q6al_WWud1ZzQqwVHE5aGTeJ6kTDLKU-5DWgLcbFIxEy4hgkEG0q6USoUhWMQlQZoYJjjBE1OVSq4Y2UCzeS_XmwhD8CaaRBICgaZmfKeiksFLIhUQJSK1hQ7HGovViEfcjLPIYrufTXlstBtb7W6h_Ylsv2TP-FXqYKL4P8WOrE3-EInPW3XfHm3_R3gHLfiAVcq_VHbRbDEY6j3AGoWsWpeq2kq9iubazZuzhy-1lNOT |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEA5eHtQHOd446jka0BeFHtsmTZtH8cKqu4viCr5ISdLUPVC7i3RZ9Mmf4G88v8SZdHdVOAi-9TKlMDOZ-SbJfCFkN8kilUh0Xp_nHjd56GmWSU9meWR9a6xQ2ODcaovGDT-_jW5He3OwF6bmh5hMuOHIcPEaBzhOSNcFJ0eSTFN1wz9BKOJ4msxyEQisvUJ-OQ7EERKluH7IKPASyPtjdlIuD96__ZSP5gZlXz0NVVF8xqou2Zz-IIsjlEgPa7MukSlbLpOFD9yBK-TupOy61XvavO60_r28Hl-1qSrue1Dtdx8oYFGqaDXswZt-oQBY02f7iHfgevRePVj6t6QVWNLCsww5_mt-DgohxthVcnN60jlqeKOzEjzDfBl7WRBoLrTgMpch5CUAzpiLhfIZUwJSkPW1NiaOwSQ-i_IMqeCUzLAs1dIItkZmyl5pfxIK0ZtZlmiIBJbj-Z2GawE_SUzEjErMOtkbayw1IyJxPM-iSN2CNpcpajd12l0nOxPZfk2f8V-p3YnivxTbdzb5QiQ96jRCd7XxHeFtMtfotJpp86x9sUnmQwAu9ZaVX2SmehzY3wA8Kr3l3OsNiWXUWg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46wcuDeMV5DeiLQrVr0rR5FHXM21DcZAhSkjTdhK4boyL65E_wN_pLPGm76UAE33o5pXBOcr4vl_MFoT0_dIXPTeO1aWRRFTmWJCG3eBi52tZKM2EKnK_rrNakFy23VezNMbUwuT7EaMLN9IwsX5sOrvthlA84qRHJVGnHOaw4zPMm0RQAuU1LaOr4vvnQHKZi10ilZBWRbsXyAfmH-qSUH31_PYZIM89JX7y-iDgeZ6sZ3FQX0HzBE_FxHthFNKGTJTT3Qz1wGT2eJZ1s_R5f3TWuP98_Tm_rWMTtHoz3O10MbBQLnL704E0_FkCt8ZsemDtofLgtuho_JTiFWGp4FhqV_1yhA0OSUXoFNatnjZOaVZyWYClic88KKxVJmWSUR9wBZALqbNCYCZsQwQCEtC2lUp4HQbGJG4VGDE7w0AxMJVeMrKJS0kv0GsKQv4kmvoRcoKk5wVNRyeAnvnKJEr4qo_2hxwJVSImbEy3iIFvSpjww3g0y75bR7si2nwto_Gq1N3L8n2YHWUz-MAlOGjUnu1r_j_EOmr45rQZX5_XLDTTrAHPJ96xsolI6eNZbwDxSuV20ry98BtWu |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA9zPogP_hcnKkH3otDZNmnaPI65McQNxQ3mg5QkTbdh143RMdyTH8HP6Ccx6brhRIZvaXttw91x9yvX-x0ARS9wmEe185o4NLAIbYOjgBo0CB1pSiEJ0w3OjSapt_F9x-nkwOWiF2alfo_prUh6dsmyietugE3iKLydB5vt5mP5Je10dCzDI-nE1mzt2AsO0pWbV7LO1iQesfcpi6JVRJqmlNouqCw2M_-T5K00SXhJzH7xNK7f7R7YyRAlLM9dYB_kZHwAtn_wDB6C12rcSyv98OG51fj6-Lx7akIWdYfjftIbQIVbIYPJdKiujCKmQDicybE-Um4Ku2wgYT-GibK6VOcCPQ9gzuUBVTgS8gi0a9VWpW5kcxUMgUzqGoFlcUw4wTSktsphCmTrvE2YiRAjKl1Jk3MhXFeZz0ROGGjaOEYD_QnLqSDoGOTjYSxPAFSRHknkcRU1JNazPgXmRL3EEw4SzBMFcL3Quy8y0nE9-yLy0-I3pr5WmZ-qrACulrKjOdXGn1LFpfnWit2kll0j4ldadTtdnf7vmWcgn4wn8lyhkIRfZG74Dcrx23U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+LSTM%E2%80%90DQN+algorithm+for+a+two%E2%80%90player+zero%E2%80%90sum+game+in+three%E2%80%90dimensional+space&rft.jtitle=IET+control+theory+%26+applications&rft.au=Lu%2C+Bo&rft.au=Ru%2C+Le&rft.au=Lv%2C+Maolong&rft.au=Hu%2C+Shiguang&rft.date=2024-12-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=18&rft.issue=18&rft.spage=2798&rft.epage=2812&rft_id=info:doi/10.1049%2Fcth2.12677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon |