Enhanced LSTM‐DQN algorithm for a two‐player zero‐sum game in three‐dimensional space

To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation...

Full description

Saved in:
Bibliographic Details
Published inIET control theory & applications Vol. 18; no. 18; pp. 2798 - 2812
Main Authors Lu, Bo, Ru, Le, Lv, Maolong, Hu, Shiguang, Zhang, Hongguo, Zhao, Zilong
Format Journal Article
LanguageEnglish
Published 01.12.2024
Subjects
Online AccessGet full text
ISSN1751-8644
1751-8652
1751-8652
DOI10.1049/cth2.12677

Cover

Abstract To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space. The LSTM‐DQN‐HER algorithm is proposed by modelling the MDP and POMDP of a two‐player zero‐sum game problem in three‐dimensional space, and the effectiveness of the proposed algorithm in solving the three‐dimensional two‐player zero‐sum game problem is verified by training and adversarial simulation of the Agent.
AbstractList To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space. The LSTM‐DQN‐HER algorithm is proposed by modelling the MDP and POMDP of a two‐player zero‐sum game problem in three‐dimensional space, and the effectiveness of the proposed algorithm in solving the three‐dimensional two‐player zero‐sum game problem is verified by training and adversarial simulation of the Agent.
To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN) algorithm that utilizes long short term memory (LSTM) network. The primary objective of this algorithm is to enhance the temporal correlation of the TZSG in three‐dimensional space. Additionally, it incorporates the hindsight experience replay (HER) mechanism to improve the learning efficiency of the network and mitigate the issue of the “sparse reward” that arises from prolonged training of intelligence in solving the TZSG in the three‐dimensional. Furthermore, this method enhances the convergence and stability of the overall solution.An intelligent training environment centred around an airborne agent and its mutual pursuit interaction scenario was designed to proposed approach's effectiveness. The algorithm training and comparison results show that the LSTM‐DQN‐HER algorithm outperforms similar algorithm in solving the TZSG in three‐dimensional space. In conclusion, this paper presents an improved DQN algorithm based on LSTM and incorporates the HER mechanism to address the challenges posed by the TZSG in three‐dimensional space. The proposed algorithm enhances the solution's temporal correlation, learning efficiency, convergence, and stability. The simulation results confirm its superior performance in solving the TZSG in three‐dimensional space.
Author Ru, Le
Hu, Shiguang
Lv, Maolong
Zhao, Zilong
Zhang, Hongguo
Lu, Bo
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0009-0007-8285-776X
  surname: Lu
  fullname: Lu, Bo
  organization: Air Force Engineering University
– sequence: 2
  givenname: Le
  surname: Ru
  fullname: Ru, Le
  email: ru-le@163.com
  organization: Air Force Engineering University
– sequence: 3
  givenname: Maolong
  surname: Lv
  fullname: Lv, Maolong
  organization: Air Force Engineering University
– sequence: 4
  givenname: Shiguang
  orcidid: 0000-0001-6819-4700
  surname: Hu
  fullname: Hu, Shiguang
  organization: Air Force Engineering University
– sequence: 5
  givenname: Hongguo
  surname: Zhang
  fullname: Zhang, Hongguo
  organization: Northwestern Polytechnical University
– sequence: 6
  givenname: Zilong
  surname: Zhao
  fullname: Zhao, Zilong
  organization: Technical University of Munich
BookMark eNp9kN9KwzAUxoNMcJve-AS5VjaTNk3aS5nTCVMR56WU0zRdI2la0o5Rr3wEn9EnsbPihciuzr_f98H5RmhgS6sQOqVkSgmLLmSTe1PqcSEO0JCKgE5CHniD356xIzSq61dCgoCzYIhe5jYHK1WKl0-ru8_3j6vHewxmXTrd5AXOSocBN9uyu1QGWuXwm3K7qd4UeA2FwtriJndKdbtUF8rWurRgcF2BVMfoMANTq5OfOkbP1_PVbDFZPtzczi6XE-mTSExSShPGE86iLPKoT8LQ80MaciC-DzxkQpEkkVIIwjLiB1nHiwiilBBPJJHk_hid974bW0G7BWPiyukCXBtTEu-SiXfJxN_JdPRZT0tX1rVT2X6Y_IGlbqDpnmwcaPO_hPaSrTaq3WMez1YLr9d8AcxRiO8
CitedBy_id crossref_primary_10_1049_cth2_12781
Cites_doi 10.1155/2014/183401
10.1038/nature14236
10.1162/jmlr.2003.4.6.1039
10.1162/neco.1997.9.8.1735
10.1007/SpringerReference_179341
10.2514/6.2008-6796
10.1561/2200000071
10.1038/nature24270
10.33965/ihci_get2020_202010L016
10.18653/v1/D15-1001
10.1609/aaai.v34i04.6144
10.1109/tnn.1998.712192
10.1109/DASC.1992.282166
10.1016/b978‐1‐55860‐335‐6.50027‐1
10.2514/1.3960
10.1016/j.swevo.2012.03.003
10.1109/TSMCC.2007.913919
10.1126/science.aar6404
10.1609/aaai.v36i4.20394
10.2514/1.17168
10.1109/ICIT.2019.8755032
10.1007/bf02204836
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/cth2.12677
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8652
EndPage 2812
ExternalDocumentID 10.1049/cth2.12677
10_1049_cth2_12677
CTH212677
Genre article
GrantInformation_xml – fundername: Postdoctoral Science Foundation Special Funding
  funderid: 2023T160790
– fundername: Postdoctoral International Exchange Project
  funderid: YJ20220347
– fundername: National Natural Science Foundation of China
  funderid: 62303489
– fundername: Postdoctoral Science Foundation General Program
  funderid: 2022M723877
– fundername: Young Talent Fund of Association for Science and Technology in Shaanxi
  funderid: 20220101
– fundername: Project for Science and Technology
  funderid: 2022‐JCJQ‐QT‐018
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
3V.
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ABUWG
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
DU5
DWQXO
EBS
EJD
ESX
F8P
GNUQQ
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
K6V
K7-
L6V
LAI
M0N
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PQQKQ
PROAC
PTHSS
QWB
RIE
RNS
ROL
RUI
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IGS
PHGZM
PHGZT
PQGLB
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c3097-d11b46b649f9213088238186a033a6847e0bbcc7704f035fd1179a9d0027b9c63
IEDL.DBID 24P
ISSN 1751-8644
1751-8652
IngestDate Sun Sep 07 11:17:56 EDT 2025
Thu Apr 24 23:14:11 EDT 2025
Wed Oct 29 21:15:02 EDT 2025
Wed Jan 22 17:11:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3097-d11b46b649f9213088238186a033a6847e0bbcc7704f035fd1179a9d0027b9c63
ORCID 0009-0007-8285-776X
0000-0001-6819-4700
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12677
PageCount 15
ParticipantIDs unpaywall_primary_10_1049_cth2_12677
crossref_primary_10_1049_cth2_12677
crossref_citationtrail_10_1049_cth2_12677
wiley_primary_10_1049_cth2_12677_CTH212677
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle IET control theory & applications
PublicationYear 2024
References 2018; 362
1991; 32
2020
2008; 38
1994; 1994
2003; 3
2019
2008
2006; 29
2018
2022; 36
2003; 4
2015; 518
575
2017
2014; 2014
2020; 34
2015
2001; 17
2017; 550
2012; 6
2018; 11
1997; 9
1998; 9
e_1_2_11_10_1
Greenwald A. (e_1_2_11_18_1) 2003; 3
e_1_2_11_14_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Vinyals O. (e_1_2_11_13_1); 575
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – year: 2019
  article-title: Multi‐agent deep reinforcement learning with human strategies
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  end-page: 359
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nature
– year: 2008
  article-title: Air combat strategy using approximate dynamic programming
– volume: 1994
  start-page: 157
  year: 1994
  end-page: 163
  article-title: Markov games as a framework for multi‐agent reinforcement learning
  publication-title: Mach. Learning Proc.
– volume: 32
  start-page: 215
  issue: 1
  year: 1991
  end-page: 230
  article-title: A survey of solution techniques for the partially observed Markov decision process
  publication-title: Ann. Oper. Res.
– volume: 29
  start-page: 1080
  issue: 5
  year: 2006
  end-page: 1091
  article-title: Modeling air combat by a moving horizon influence diagram game
  publication-title: J. Guid. Control Dyn.
– volume: 29
  start-page: 105
  issue: 1
  year: 2006
  end-page: 112
  article-title: Optimal fighter pursuit‐evasion maneuvers found via two‐sided optimization
  publication-title: J. Guid. Control Dyn.
– volume: 3
  start-page: 242
  year: 2003
  end-page: 249
  article-title: Correlated Q‐learning
  publication-title: ICML
– volume: 17
  start-page: 1021
  issue: 1
  year: 2001
  end-page: 1026
  article-title: Rational and convergent learning in stochastic games
– volume: 11
  start-page: 219
  issue: 3‐4
  year: 2018
  end-page: 354
  article-title: An introduction to deep reinforcement learning
  publication-title: Found. Trends Mach. Learn.
– volume: 9
  start-page: 1054
  issue: 5
  year: 1998
  end-page: 1054
  article-title: Reinforcement learning: An introduction
  publication-title: IEEE Trans. Neural Networks
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– volume: 4
  start-page: 1039
  year: 2003
  end-page: 1069
  article-title: Nash Q‐learning for general‐sum stochastic games
  publication-title: J. Mach. Learn Res.
– year: 2020
  article-title: Towards playing full MOBA games with deep reinforcement learning
– volume: 34
  start-page: 6672
  issue: 04
  year: 2020
  end-page: 6679
  article-title: Mastering complex control in MOBA games with deep reinforcement learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 36
  start-page: 4689
  issue: 4
  year: 2022
  end-page: 4697
  article-title: AlphaHoldem: High‐performance artificial intelligence for heads‐up no‐limit poker via end‐to‐end reinforcement learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 362
  start-page: 1140
  issue: 6419
  year: 2018
  end-page: 1144
  article-title: A general reinforcement learning algorithm that masters Chess, Shogi, and Go through self‐play
  publication-title: Science
– start-page: 1
  year: 2015
  end-page: 11
  article-title: Language understanding for text‐based games using deep reinforcement learning
– volume: 6
  start-page: 39
  year: 2012
  end-page: 46
  article-title: A new approach to multi‐aircraft air combat assignments
  publication-title: Swarm Evol. Comput.
– start-page: 155
  end-page: 160
  article-title: Knowledge‐based reasoning in the paladin tactical decision generation system
– volume: 38
  start-page: 156
  issue: 2
  year: 2008
  end-page: 172
  article-title: A comprehensive survey of multi‐agent reinforcement learning
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
– year: 2018
  article-title: A preliminary study of the U.S. Army's artificial intelligence air combat system Alpha
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  end-page: 533
  article-title: Human‐level control through deep reinforcement learning
  publication-title: Nature
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  article-title: A case study on air combat decision using approximated dynamic programming
  publication-title: Math. Probl. Eng.
– volume: 575
  start-page: 350
  issue: 2019
  end-page: 354
  article-title: Grandmaster level in StarCraft II using multi‐agent reinforcement learning
  publication-title: Nature
– year: 2017
– start-page: 5055
  year: 2017
  end-page: 5065
  article-title: Hindsight experience replay
– ident: e_1_2_11_10_1
  doi: 10.1155/2014/183401
– ident: e_1_2_11_19_1
– volume: 3
  start-page: 242
  year: 2003
  ident: e_1_2_11_18_1
  article-title: Correlated Q‐learning
  publication-title: ICML
– volume: 575
  start-page: 350
  issue: 2019
  ident: e_1_2_11_13_1
  article-title: Grandmaster level in StarCraft II using multi‐agent reinforcement learning
  publication-title: Nature
– ident: e_1_2_11_27_1
  doi: 10.1038/nature14236
– ident: e_1_2_11_17_1
  doi: 10.1162/jmlr.2003.4.6.1039
– ident: e_1_2_11_28_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_11_24_1
  doi: 10.1007/SpringerReference_179341
– ident: e_1_2_11_26_1
  doi: 10.2514/6.2008-6796
– ident: e_1_2_11_9_1
  doi: 10.1561/2200000071
– ident: e_1_2_11_8_1
  doi: 10.1038/nature24270
– ident: e_1_2_11_15_1
  doi: 10.33965/ihci_get2020_202010L016
– ident: e_1_2_11_21_1
  doi: 10.18653/v1/D15-1001
– ident: e_1_2_11_14_1
  doi: 10.1609/aaai.v34i04.6144
– ident: e_1_2_11_6_1
  doi: 10.1109/tnn.1998.712192
– ident: e_1_2_11_3_1
  doi: 10.1109/DASC.1992.282166
– ident: e_1_2_11_16_1
  doi: 10.1016/b978‐1‐55860‐335‐6.50027‐1
– ident: e_1_2_11_29_1
– ident: e_1_2_11_4_1
  doi: 10.2514/1.3960
– ident: e_1_2_11_5_1
  doi: 10.1016/j.swevo.2012.03.003
– ident: e_1_2_11_7_1
– ident: e_1_2_11_20_1
  doi: 10.1109/TSMCC.2007.913919
– ident: e_1_2_11_11_1
  doi: 10.1126/science.aar6404
– ident: e_1_2_11_12_1
  doi: 10.1609/aaai.v36i4.20394
– ident: e_1_2_11_2_1
  doi: 10.2514/1.17168
– ident: e_1_2_11_25_1
  doi: 10.1109/ICIT.2019.8755032
– ident: e_1_2_11_23_1
  doi: 10.1007/bf02204836
– ident: e_1_2_11_22_1
SSID ssj0055645
Score 2.4405484
Snippet To tackle the challenges presented by the two‐player zero sum game (TZSG) in three‐dimensional space, this study introduces an enhanced deep Q‐learning (DQN)...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2798
SubjectTerms deep reinforcement learning
hindsight experience replay
long short term memory‐deep Q‐learning
manoeuvre decision‐making
three‐dimensional space
two‐player zero‐sum game
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA9zPogP_hcnKkH3otDZNmnaPI65McQNxQ3mg5QkTbdh143RMdyTH8HP6Ccx6brhRIZvaXttw91x9yvX-x0ARS9wmEe185o4NLAIbYOjgBo0CB1pSiEJ0w3OjSapt_F9x-nkwOWiF2alfo_prUh6dsmyietugE3iKLydB5vt5mP5Je10dCzDI-nE1mzt2AsO0pWbV7LO1iQesfcpi6JVRJqmlNouqCw2M_-T5K00SXhJzH7xNK7f7R7YyRAlLM9dYB_kZHwAtn_wDB6C12rcSyv98OG51fj6-Lx7akIWdYfjftIbQIVbIYPJdKiujCKmQDicybE-Um4Ku2wgYT-GibK6VOcCPQ9gzuUBVTgS8gi0a9VWpW5kcxUMgUzqGoFlcUw4wTSktsphCmTrvE2YiRAjKl1Jk3MhXFeZz0ROGGjaOEYD_QnLqSDoGOTjYSxPAFSRHknkcRU1JNazPgXmRL3EEw4SzBMFcL3Quy8y0nE9-yLy0-I3pr5WmZ-qrACulrKjOdXGn1LFpfnWit2kll0j4ldadTtdnf7vmWcgn4wn8lyhkIRfZG74Dcrx23U
  priority: 102
  providerName: Unpaywall
Title Enhanced LSTM‐DQN algorithm for a two‐player zero‐sum game in three‐dimensional space
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcth2.12677
https://doi.org/10.1049/cth2.12677
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: IDLOA
  dateStart: 20130103
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8652
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055645
  issn: 1751-8644
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6qHtSD-MRnWdCLQjTJbjZZ8CJaKWKLYgt6kLC72bRCTEtJET35E_yN_hJnN221IIK3PCYEZmZnvslmvkHoIEoCEXHjvC5NHapS35Ek4Q5P0kC7WmkmTINzo8nqbXp1H9xX0Om4F6bkh5h8cDMrw8Zrs8CFLKeQAKgFI6qi6x97PgvDGTTnAZAx_u3Tm3EcDgxPim2HDDwngrQ_Jiel_OT72al0ND_M--L1RWTZNFS1ueZyGS2NQCI-K626gio6X0WLP6gD19BjLe_azXt8fddqfL5_XNw2scg6PSj2u88YoCgWuHjpwZ1-JgBX4zc9MGfgebgjnjV-ynEBhtRwLTEU_yU9B4YIo_Q6al_WWud1ZzQqwVHE5aGTeJ6kTDLKU-5DWgLcbFIxEy4hgkEG0q6USoUhWMQlQZoYJjjBE1OVSq4Y2UCzeS_XmwhD8CaaRBICgaZmfKeiksFLIhUQJSK1hQ7HGovViEfcjLPIYrufTXlstBtb7W6h_Ylsv2TP-FXqYKL4P8WOrE3-EInPW3XfHm3_R3gHLfiAVcq_VHbRbDEY6j3AGoWsWpeq2kq9iubazZuzhy-1lNOT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-wwEA5eHtQHOd446jka0BeFHtsmTZtH8cKqu4viCr5ISdLUPVC7i3RZ9Mmf4G88v8SZdHdVOAi-9TKlMDOZ-SbJfCFkN8kilUh0Xp_nHjd56GmWSU9meWR9a6xQ2ODcaovGDT-_jW5He3OwF6bmh5hMuOHIcPEaBzhOSNcFJ0eSTFN1wz9BKOJ4msxyEQisvUJ-OQ7EERKluH7IKPASyPtjdlIuD96__ZSP5gZlXz0NVVF8xqou2Zz-IIsjlEgPa7MukSlbLpOFD9yBK-TupOy61XvavO60_r28Hl-1qSrue1Dtdx8oYFGqaDXswZt-oQBY02f7iHfgevRePVj6t6QVWNLCsww5_mt-DgohxthVcnN60jlqeKOzEjzDfBl7WRBoLrTgMpch5CUAzpiLhfIZUwJSkPW1NiaOwSQ-i_IMqeCUzLAs1dIItkZmyl5pfxIK0ZtZlmiIBJbj-Z2GawE_SUzEjErMOtkbayw1IyJxPM-iSN2CNpcpajd12l0nOxPZfk2f8V-p3YnivxTbdzb5QiQ96jRCd7XxHeFtMtfotJpp86x9sUnmQwAu9ZaVX2SmehzY3wA8Kr3l3OsNiWXUWg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46wcuDeMV5DeiLQrVr0rR5FHXM21DcZAhSkjTdhK4boyL65E_wN_pLPGm76UAE33o5pXBOcr4vl_MFoT0_dIXPTeO1aWRRFTmWJCG3eBi52tZKM2EKnK_rrNakFy23VezNMbUwuT7EaMLN9IwsX5sOrvthlA84qRHJVGnHOaw4zPMm0RQAuU1LaOr4vvnQHKZi10ilZBWRbsXyAfmH-qSUH31_PYZIM89JX7y-iDgeZ6sZ3FQX0HzBE_FxHthFNKGTJTT3Qz1wGT2eJZ1s_R5f3TWuP98_Tm_rWMTtHoz3O10MbBQLnL704E0_FkCt8ZsemDtofLgtuho_JTiFWGp4FhqV_1yhA0OSUXoFNatnjZOaVZyWYClic88KKxVJmWSUR9wBZALqbNCYCZsQwQCEtC2lUp4HQbGJG4VGDE7w0AxMJVeMrKJS0kv0GsKQv4kmvoRcoKk5wVNRyeAnvnKJEr4qo_2hxwJVSImbEy3iIFvSpjww3g0y75bR7si2nwto_Gq1N3L8n2YHWUz-MAlOGjUnu1r_j_EOmr45rQZX5_XLDTTrAHPJ96xsolI6eNZbwDxSuV20ry98BtWu
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fS8MwEA9zPogP_hcnKkH3otDZNmnaPI65McQNxQ3mg5QkTbdh143RMdyTH8HP6Ccx6brhRIZvaXttw91x9yvX-x0ARS9wmEe185o4NLAIbYOjgBo0CB1pSiEJ0w3OjSapt_F9x-nkwOWiF2alfo_prUh6dsmyietugE3iKLydB5vt5mP5Je10dCzDI-nE1mzt2AsO0pWbV7LO1iQesfcpi6JVRJqmlNouqCw2M_-T5K00SXhJzH7xNK7f7R7YyRAlLM9dYB_kZHwAtn_wDB6C12rcSyv98OG51fj6-Lx7akIWdYfjftIbQIVbIYPJdKiujCKmQDicybE-Um4Ku2wgYT-GibK6VOcCPQ9gzuUBVTgS8gi0a9VWpW5kcxUMgUzqGoFlcUw4wTSktsphCmTrvE2YiRAjKl1Jk3MhXFeZz0ROGGjaOEYD_QnLqSDoGOTjYSxPAFSRHknkcRU1JNazPgXmRL3EEw4SzBMFcL3Quy8y0nE9-yLy0-I3pr5WmZ-qrACulrKjOdXGn1LFpfnWit2kll0j4ldadTtdnf7vmWcgn4wn8lyhkIRfZG74Dcrx23U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+LSTM%E2%80%90DQN+algorithm+for+a+two%E2%80%90player+zero%E2%80%90sum+game+in+three%E2%80%90dimensional+space&rft.jtitle=IET+control+theory+%26+applications&rft.au=Lu%2C+Bo&rft.au=Ru%2C+Le&rft.au=Lv%2C+Maolong&rft.au=Hu%2C+Shiguang&rft.date=2024-12-01&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=18&rft.issue=18&rft.spage=2798&rft.epage=2812&rft_id=info:doi/10.1049%2Fcth2.12677&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_cth2_12677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon