Three-Dimensional ISAR Imaging Based on Antenna Array

In this paper, a 3D inverse synthetic aperture radar (ISAR) imaging method based on an antenna array configuration is proposed. The performance of conventional interferometric ISAR imaging system using three antennas is poor, as the positions of scatterers, which have the same range-Doppler value an...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 46; no. 2; pp. 504 - 515
Main Authors Ma, Changzheng, Yeo, Tat Soon, Zhang, Qun, Tan, Hwee Siang, Wang, Jun
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
1558-0644
DOI10.1109/TGRS.2007.909946

Cover

More Information
Summary:In this paper, a 3D inverse synthetic aperture radar (ISAR) imaging method based on an antenna array configuration is proposed. The performance of conventional interferometric ISAR imaging system using three antennas is poor, as the positions of scatterers, which have the same range-Doppler value and projected onto the ISAR plane as a synthesis scatterer, cannot be correctly estimated. However, by using two antenna arrays perpendicular to each other, the system's ability to separate these scatterers can be improved. The criterion for the selection of a range unit that contains an isolated scatterer in the 2-D array domain for doing motion compensation is discussed. If there is no range unit which contains only an isolated scatterer, then radial and cross-range motion compensation has to be carried out by motion parameter estimation. Two cross-range motion parameters measurement algorithms, one based on array processing of the range profile and another based on correlation of ISAR images of different antennas, are proposed. The coordinates registration problem for the scatterers of a synthesis scatterer is also discussed. Simulation results have shown the effectiveness of the proposed methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0196-2892
1558-0644
1558-0644
DOI:10.1109/TGRS.2007.909946