INTEGRATING OPTIMAL DEEP LEARNING WITH NATURAL LANGUAGE PROCESSING FOR ARABIC SPAM AND HAM TWEETS RECOGNITION

Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-d...

Full description

Saved in:
Bibliographic Details
Published inFractals (Singapore) Vol. 32; no. 9n10
Main Authors AL-SHATHRY, NAJLA I., ALGHAMDI, MOHAMMED, AL-DOBAIAN, ABDULLAH SAAD, DAREM, ABDULBASIT A., ALOTAIBI, SHOAYEE DLAIM, ALMANEA, MANAR, ALGHAMDI, BANDAR M., SOROUR, SHAYMAA
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-348X
1793-6543
1793-6543
DOI10.1142/S0218348X25400523

Cover

Abstract Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-driven tweets recognition, to mechanically differentiate between spam and ham messages dependent upon content semantics, linguistic patterns, and contextual data within the Arabic text. This study presents an optimal deep learning with natural language processing for Arabic spam and ham tweets recognition (ODLNLP-ASHTR) technique in various complex systems platforms. In the ODLNLP-ASHTR technique, the data pre-processing is initially performed to alter the input tweets into a compatible format, and a BERT word embedding process is used. For Arabic ham and spam tweet recognition, the ODLNLP-ASHTR technique makes use of the self-attention bidirectional gated recurrent unit (SA-BiGRU) model. At last, the detection performance of the SA-BiGRU model can be boosted by the design of an improved salp swarm algorithm (ISSA). The experimental evaluation of the ODLNLP-ASHTR technique takes place using the Arabic tweets dataset. The experimental results pointed out the improved performance of the ODLNLP-ASHTR model compared to recent approaches with a maximum accuracy of 98.11%.
AbstractList Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-driven tweets recognition, to mechanically differentiate between spam and ham messages dependent upon content semantics, linguistic patterns, and contextual data within the Arabic text. This study presents an optimal deep learning with natural language processing for Arabic spam and ham tweets recognition (ODLNLP-ASHTR) technique in various complex systems platforms. In the ODLNLP-ASHTR technique, the data pre-processing is initially performed to alter the input tweets into a compatible format, and a BERT word embedding process is used. For Arabic ham and spam tweet recognition, the ODLNLP-ASHTR technique makes use of the self-attention bidirectional gated recurrent unit (SA-BiGRU) model. At last, the detection performance of the SA-BiGRU model can be boosted by the design of an improved salp swarm algorithm (ISSA). The experimental evaluation of the ODLNLP-ASHTR technique takes place using the Arabic tweets dataset. The experimental results pointed out the improved performance of the ODLNLP-ASHTR model compared to recent approaches with a maximum accuracy of 98.11%.
Author ALGHAMDI, MOHAMMED
DAREM, ABDULBASIT A.
ALMANEA, MANAR
ALOTAIBI, SHOAYEE DLAIM
AL-DOBAIAN, ABDULLAH SAAD
ALGHAMDI, BANDAR M.
AL-SHATHRY, NAJLA I.
SOROUR, SHAYMAA
Author_xml – sequence: 1
  givenname: NAJLA I.
  surname: AL-SHATHRY
  fullname: AL-SHATHRY, NAJLA I.
– sequence: 2
  givenname: MOHAMMED
  surname: ALGHAMDI
  fullname: ALGHAMDI, MOHAMMED
– sequence: 3
  givenname: ABDULLAH SAAD
  surname: AL-DOBAIAN
  fullname: AL-DOBAIAN, ABDULLAH SAAD
– sequence: 4
  givenname: ABDULBASIT A.
  surname: DAREM
  fullname: DAREM, ABDULBASIT A.
– sequence: 5
  givenname: SHOAYEE DLAIM
  surname: ALOTAIBI
  fullname: ALOTAIBI, SHOAYEE DLAIM
– sequence: 6
  givenname: MANAR
  surname: ALMANEA
  fullname: ALMANEA, MANAR
– sequence: 7
  givenname: BANDAR M.
  surname: ALGHAMDI
  fullname: ALGHAMDI, BANDAR M.
– sequence: 8
  givenname: SHAYMAA
  surname: SOROUR
  fullname: SOROUR, SHAYMAA
BookMark eNplkVFvgjAUhZvFJVO3H7C3Jnt2a2kL-NhhRRIEAzXujdRCE42CA43z3w-i24tPN7nnfPfenDsAvbIqCwBeMXrHmFofKbKwS6j7ZTGKELPIA-hjZ0xGNqOkB_qdPOr0JzBomi1CiFJM-2AfRFL4CZdB5MN4IYM5D-FEiAUMBU-irrsK5AxGXC6TVgp55C-5L-AiiT2Rpp1hGieQJ_wz8GC64HPIowmctVWuhJApTIQX-1Eggzh6Bo9G7Zri5VaHYDkV0puNwtgPPB6ONEHtzaygxDCjKXGNcbVhxHbaVj6mrnKZsrVtGCrWY2PnjqI20lrl2KaOMmy9NmxMhsC6zj2VB3U5q90uO9SbvaovGUZZF1jW3AL7-Qushd6u0KGuvk9Fc8y21aku2zszgm3GSLupc-GrS9dV09SFuZt894qWQVfmXNW7vNGbojxuzEb_o_fIL3ZsgZg
Cites_doi 10.1016/j.tcs.2022.06.020
10.3390/make5010003
10.1109/ACCESS.2022.3153675
10.1109/ACCESS.2024.3365193
10.1109/ICoICT52021.2021.9527420
10.1007/s42979-023-02518-1
10.1109/ACCESS.2024.3354165
10.3390/app13148209
10.1016/j.cose.2019.101710
10.1109/ACCESS.2021.3118537
10.1016/j.dib.2023.109904
10.1007/s10586-021-03483-1
10.1016/j.ipm.2023.103325
10.3390/s23083861
10.1016/j.ipm.2024.103688
10.1016/j.ipm.2024.103644
10.1016/j.ipm.2024.103695
10.1038/s41598-024-52232-y
10.3390/app14062254
10.1007/s00500-021-06370-4
ContentType Journal Article
Copyright 2024, The Author(s)
2024. The Author(s). This is an Open Access article in the “Special Issue on Application of Brain-like Computing to the Modeling and Simulation of Complex Systems — Part I”, edited by Shadi Mahmoud Faleh AlZu’bi (Al-Zaytoonah University of Jordan, Jordan), Maysam Abbod (Brunel University London, UK) & Ashraf Darwish (Helwan University, Cairo, Egypt), published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License, which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Copyright_xml – notice: 2024, The Author(s)
– notice: 2024. The Author(s). This is an Open Access article in the “Special Issue on Application of Brain-like Computing to the Modeling and Simulation of Complex Systems — Part I”, edited by Shadi Mahmoud Faleh AlZu’bi (Al-Zaytoonah University of Jordan, Jordan), Maysam Abbod (Brunel University London, UK) & Ashraf Darwish (Helwan University, Cairo, Egypt), published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License, which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
DBID ADCHV
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1142/S0218348X25400523
DatabaseName World Scientific Open
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1793-6543
ExternalDocumentID 10.1142/s0218348x25400523
10_1142_S0218348X25400523
S0218348X25400523
GroupedDBID -~X
0R~
4.4
5GY
ADCHV
ADSJI
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
EBS
EJD
ESX
F5P
HZ~
O9-
P71
RWJ
WSN
AAYXX
AMVHM
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c3093-5e43f5fc438ff8cf5367e43d948a85a6c6f50eb9f6d7a460ccad1647af5bbf593
IEDL.DBID UNPAY
ISSN 0218-348X
1793-6543
IngestDate Sun Sep 07 11:08:00 EDT 2025
Mon Jun 30 12:50:15 EDT 2025
Tue Jul 01 04:11:52 EDT 2025
Sun Jan 12 10:48:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9n10
Keywords Arabic Tweets
Social Networks
Complex Systems
Natural Language Processing
Salp Swarm Algorithm
Word Embedding
Deep Learning
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3093-5e43f5fc438ff8cf5367e43d948a85a6c6f50eb9f6d7a460ccad1647af5bbf593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8891-6421
0009-0005-4809-0193
0000-0002-3615-2394
0000-0003-2042-9958
0000-0002-5650-1838
0000-0003-0805-2705
0000-0002-2051-2105
0000-0002-0873-7985
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1142/s0218348x25400523
PQID 3165534603
PQPubID 2049864
ParticipantIDs unpaywall_primary_10_1142_s0218348x25400523
crossref_primary_10_1142_S0218348X25400523
worldscientific_primary_S0218348X25400523
proquest_journals_3165534603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Fractals (Singapore)
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0218348X25400523BIB009
Aljohani A. (S0218348X25400523BIB013) 2024
Asgari-Chenaghlu M. (S0218348X25400523BIB011) 2022
Lakshmi S. D. (S0218348X25400523BIB015) 2023; 5
S0218348X25400523BIB010
S0218348X25400523BIB021
S0218348X25400523BIB020
S0218348X25400523BIB003
S0218348X25400523BIB014
S0218348X25400523BIB025
S0218348X25400523BIB004
S0218348X25400523BIB026
S0218348X25400523BIB001
S0218348X25400523BIB012
S0218348X25400523BIB023
S0218348X25400523BIB002
S0218348X25400523BIB024
S0218348X25400523BIB007
S0218348X25400523BIB018
S0218348X25400523BIB008
S0218348X25400523BIB019
S0218348X25400523BIB006
S0218348X25400523BIB017
References_xml – start-page: 101961
  year: 2024
  ident: S0218348X25400523BIB013
  publication-title: J. King Saud Univ.: Comput. Inf. Sci.
– ident: S0218348X25400523BIB017
  doi: 10.1016/j.tcs.2022.06.020
– ident: S0218348X25400523BIB004
  doi: 10.3390/make5010003
– ident: S0218348X25400523BIB010
  doi: 10.1109/ACCESS.2022.3153675
– ident: S0218348X25400523BIB006
  doi: 10.1109/ACCESS.2024.3365193
– ident: S0218348X25400523BIB001
  doi: 10.1109/ICoICT52021.2021.9527420
– ident: S0218348X25400523BIB008
  doi: 10.1007/s42979-023-02518-1
– ident: S0218348X25400523BIB007
  doi: 10.1109/ACCESS.2024.3354165
– ident: S0218348X25400523BIB012
  doi: 10.3390/app13148209
– ident: S0218348X25400523BIB002
  doi: 10.1016/j.cose.2019.101710
– ident: S0218348X25400523BIB023
  doi: 10.1109/ACCESS.2021.3118537
– ident: S0218348X25400523BIB025
  doi: 10.1016/j.dib.2023.109904
– ident: S0218348X25400523BIB003
  doi: 10.1007/s10586-021-03483-1
– ident: S0218348X25400523BIB019
  doi: 10.1016/j.ipm.2023.103325
– ident: S0218348X25400523BIB026
  doi: 10.3390/s23083861
– ident: S0218348X25400523BIB021
  doi: 10.1016/j.ipm.2024.103688
– ident: S0218348X25400523BIB018
  doi: 10.1016/j.ipm.2024.103644
– ident: S0218348X25400523BIB020
  doi: 10.1016/j.ipm.2024.103695
– ident: S0218348X25400523BIB024
  doi: 10.1038/s41598-024-52232-y
– start-page: 1
  year: 2022
  ident: S0218348X25400523BIB011
  publication-title: Neural Comput. Appl.
– ident: S0218348X25400523BIB009
  doi: 10.3390/app14062254
– ident: S0218348X25400523BIB014
  doi: 10.1007/s00500-021-06370-4
– volume: 5
  issue: 3
  year: 2023
  ident: S0218348X25400523BIB015
  publication-title: Acta Sci. Comput. Sci.
SSID ssj0004414
Score 2.31896
Snippet Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language....
SourceID unpaywall
proquest
crossref
worldscientific
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Artificial intelligence
Complex systems
Deep learning
Machine learning
Natural language processing
Pattern recognition
Performance evaluation
Semantics
Title INTEGRATING OPTIMAL DEEP LEARNING WITH NATURAL LANGUAGE PROCESSING FOR ARABIC SPAM AND HAM TWEETS RECOGNITION
URI http://www.worldscientific.com/doi/abs/10.1142/S0218348X25400523
https://www.proquest.com/docview/3165534603
https://doi.org/10.1142/s0218348x25400523
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1793-6543
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004414
  issn: 0218-348X
  databaseCode: AMVHM
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGLegPcAO4611jMkHLoAylvoR-2i6LClq0qhNWTlFdhxfNsq0tuLx12MnaRkrBzhFsp0vib8v-d6_APAasTIIECKe1Mg6KBgFHmeUeiTggdKMY6XqAtmUxjP8cU7mLVi064W5nb_3cf_9stbhmH23jkwdwrwPupRYs7sDurM0E5_rGIrPPLtmXjc_cuS5fsk2g_lXGn_qoN-G5YP14lr--CavrvbAfo1Y2nQluqKdW1rn_FFTr7WswQpdscnlyXqlTsqfd6Ac_-mBHoP91vaEohGWJ-BetXgK9pItcOvyGfjiIHIjF7hKIzjO8mEiRvAsDDM4CsUkdaMXwzyGdbmEnRqJNJqJKITZZDxwX2a7wPqVUEzEh-EATjORQJGewdge84swzKdwEg7GUTp0obHnYHYe5oPYa__I4JUuY-qRCiNDTIkRM4aVhiAa2CHNMZOMSFpSQ04rxQ3VgcT01IqHdoBl0hClDOHoBegsvi6qAwCtGaM1NVpZQhhzX2IsA-0b699wo0vZA283PCquG-CNommi7hfTdg_nmz3sgaMNF4v2HVwWyKeEIHsXdvrdlrM7xHYY0gNv7vB-e87OhQ__i_JL8LBvbaImgnMEOqubdfXK2jQrdQy6IvkUJ8etVP8CKnjizQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7gA7jG9RGMgHLoAylvoj9tF0WVrUplGbauUU2XF8YZSJtuLjr8dO0jJWDnCKZDsvid9L3vcvAK8wL6MIYxoog52DQnAUCM5YQCMRacMF0boukE3ZYE4-LOiiBYv2vTDX8_ch6b1b1Tqc8O_OkalDmLfhgFFndnfgYJ5m8mMdQwl54NYs6uZHgQPfL9lmMP9K408d9NuwvLNZXqkf39Tl5SEc1YilTVeiL9q5pnXO7zX1WqsarNAXm3w62az1SfnzBpTjPz3QfThqbU8kG2F5ALeq5UM4HO-AW1eP4LOHyE184CpN0CTLh2M5QmdxnKFRLKepH70Y5gNUl0u4qZFMk7lMYpRNJ33_ZXYLnF-J5FS-H_bRLJNjJNMzNHDH_CKO8xmaxv1Jkg59aOwxzM_jvD8I2j8yBKXPmAa0IthSWxLMreWlpZhFbsgIwhWnipXM0tNKC8tMpAg7deJhPGCZslRrSwV-Ap3ll2X1FJAzY4xh1mhHiBARKkJUZELr_BthTam68GbLo-KqAd4omibqXjFr93Cx3cMuHG-5WLTv4KrAIaMUu7tw0293nN0jtseQLry-wfvdOXsXfvZflJ_D3Z6ziZoIzjF01l831Qtn06z1y1aafwEbweEx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INTEGRATING+OPTIMAL+DEEP+LEARNING+WITH+NATURAL+LANGUAGE+PROCESSING+FOR+ARABIC+SPAM+AND+HAM+TWEETS+RECOGNITION&rft.jtitle=Fractals+%28Singapore%29&rft.au=AL-SHATHRY%2C+NAJLA+I.&rft.au=ALGHAMDI%2C+MOHAMMED&rft.au=AL-DOBAIAN%2C+ABDULLAH+SAAD&rft.au=DAREM%2C+ABDULBASIT+A.&rft.date=2024&rft.issn=0218-348X&rft.eissn=1793-6543&rft.volume=32&rft.issue=9n10&rft_id=info:doi/10.1142%2FS0218348X25400523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218348X25400523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-348X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-348X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-348X&client=summon