INTEGRATING OPTIMAL DEEP LEARNING WITH NATURAL LANGUAGE PROCESSING FOR ARABIC SPAM AND HAM TWEETS RECOGNITION
Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-d...
Saved in:
| Published in | Fractals (Singapore) Vol. 32; no. 9n10 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
2024
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0218-348X 1793-6543 1793-6543 |
| DOI | 10.1142/S0218348X25400523 |
Cover
| Abstract | Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-driven tweets recognition, to mechanically differentiate between spam and ham messages dependent upon content semantics, linguistic patterns, and contextual data within the Arabic text. This study presents an optimal deep learning with natural language processing for Arabic spam and ham tweets recognition (ODLNLP-ASHTR) technique in various complex systems platforms. In the ODLNLP-ASHTR technique, the data pre-processing is initially performed to alter the input tweets into a compatible format, and a BERT word embedding process is used. For Arabic ham and spam tweet recognition, the ODLNLP-ASHTR technique makes use of the self-attention bidirectional gated recurrent unit (SA-BiGRU) model. At last, the detection performance of the SA-BiGRU model can be boosted by the design of an improved salp swarm algorithm (ISSA). The experimental evaluation of the ODLNLP-ASHTR technique takes place using the Arabic tweets dataset. The experimental results pointed out the improved performance of the ODLNLP-ASHTR model compared to recent approaches with a maximum accuracy of 98.11%. |
|---|---|
| AbstractList | Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language. Detection of Arabic spam and ham tweets involves leveraging deep learning (DL) models, mainly NLP techniques such as brain-like computing and AI-driven tweets recognition, to mechanically differentiate between spam and ham messages dependent upon content semantics, linguistic patterns, and contextual data within the Arabic text. This study presents an optimal deep learning with natural language processing for Arabic spam and ham tweets recognition (ODLNLP-ASHTR) technique in various complex systems platforms. In the ODLNLP-ASHTR technique, the data pre-processing is initially performed to alter the input tweets into a compatible format, and a BERT word embedding process is used. For Arabic ham and spam tweet recognition, the ODLNLP-ASHTR technique makes use of the self-attention bidirectional gated recurrent unit (SA-BiGRU) model. At last, the detection performance of the SA-BiGRU model can be boosted by the design of an improved salp swarm algorithm (ISSA). The experimental evaluation of the ODLNLP-ASHTR technique takes place using the Arabic tweets dataset. The experimental results pointed out the improved performance of the ODLNLP-ASHTR model compared to recent approaches with a maximum accuracy of 98.11%. |
| Author | ALGHAMDI, MOHAMMED DAREM, ABDULBASIT A. ALMANEA, MANAR ALOTAIBI, SHOAYEE DLAIM AL-DOBAIAN, ABDULLAH SAAD ALGHAMDI, BANDAR M. AL-SHATHRY, NAJLA I. SOROUR, SHAYMAA |
| Author_xml | – sequence: 1 givenname: NAJLA I. surname: AL-SHATHRY fullname: AL-SHATHRY, NAJLA I. – sequence: 2 givenname: MOHAMMED surname: ALGHAMDI fullname: ALGHAMDI, MOHAMMED – sequence: 3 givenname: ABDULLAH SAAD surname: AL-DOBAIAN fullname: AL-DOBAIAN, ABDULLAH SAAD – sequence: 4 givenname: ABDULBASIT A. surname: DAREM fullname: DAREM, ABDULBASIT A. – sequence: 5 givenname: SHOAYEE DLAIM surname: ALOTAIBI fullname: ALOTAIBI, SHOAYEE DLAIM – sequence: 6 givenname: MANAR surname: ALMANEA fullname: ALMANEA, MANAR – sequence: 7 givenname: BANDAR M. surname: ALGHAMDI fullname: ALGHAMDI, BANDAR M. – sequence: 8 givenname: SHAYMAA surname: SOROUR fullname: SOROUR, SHAYMAA |
| BookMark | eNplkVFvgjAUhZvFJVO3H7C3Jnt2a2kL-NhhRRIEAzXujdRCE42CA43z3w-i24tPN7nnfPfenDsAvbIqCwBeMXrHmFofKbKwS6j7ZTGKELPIA-hjZ0xGNqOkB_qdPOr0JzBomi1CiFJM-2AfRFL4CZdB5MN4IYM5D-FEiAUMBU-irrsK5AxGXC6TVgp55C-5L-AiiT2Rpp1hGieQJ_wz8GC64HPIowmctVWuhJApTIQX-1Eggzh6Bo9G7Zri5VaHYDkV0puNwtgPPB6ONEHtzaygxDCjKXGNcbVhxHbaVj6mrnKZsrVtGCrWY2PnjqI20lrl2KaOMmy9NmxMhsC6zj2VB3U5q90uO9SbvaovGUZZF1jW3AL7-Qushd6u0KGuvk9Fc8y21aku2zszgm3GSLupc-GrS9dV09SFuZt894qWQVfmXNW7vNGbojxuzEb_o_fIL3ZsgZg |
| Cites_doi | 10.1016/j.tcs.2022.06.020 10.3390/make5010003 10.1109/ACCESS.2022.3153675 10.1109/ACCESS.2024.3365193 10.1109/ICoICT52021.2021.9527420 10.1007/s42979-023-02518-1 10.1109/ACCESS.2024.3354165 10.3390/app13148209 10.1016/j.cose.2019.101710 10.1109/ACCESS.2021.3118537 10.1016/j.dib.2023.109904 10.1007/s10586-021-03483-1 10.1016/j.ipm.2023.103325 10.3390/s23083861 10.1016/j.ipm.2024.103688 10.1016/j.ipm.2024.103644 10.1016/j.ipm.2024.103695 10.1038/s41598-024-52232-y 10.3390/app14062254 10.1007/s00500-021-06370-4 |
| ContentType | Journal Article |
| Copyright | 2024, The Author(s) 2024. The Author(s). This is an Open Access article in the “Special Issue on Application of Brain-like Computing to the Modeling and Simulation of Complex Systems — Part I”, edited by Shadi Mahmoud Faleh AlZu’bi (Al-Zaytoonah University of Jordan, Jordan), Maysam Abbod (Brunel University London, UK) & Ashraf Darwish (Helwan University, Cairo, Egypt), published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License, which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
| Copyright_xml | – notice: 2024, The Author(s) – notice: 2024. The Author(s). This is an Open Access article in the “Special Issue on Application of Brain-like Computing to the Modeling and Simulation of Complex Systems — Part I”, edited by Shadi Mahmoud Faleh AlZu’bi (Al-Zaytoonah University of Jordan, Jordan), Maysam Abbod (Brunel University London, UK) & Ashraf Darwish (Helwan University, Cairo, Egypt), published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND) License, which permits use, distribution and reproduction, provided that the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
| DBID | ADCHV AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1142/S0218348X25400523 |
| DatabaseName | World Scientific Open CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1793-6543 |
| ExternalDocumentID | 10.1142/s0218348x25400523 10_1142_S0218348X25400523 S0218348X25400523 |
| GroupedDBID | -~X 0R~ 4.4 5GY ADCHV ADSJI ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 EBS EJD ESX F5P HZ~ O9- P71 RWJ WSN AAYXX AMVHM CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3093-5e43f5fc438ff8cf5367e43d948a85a6c6f50eb9f6d7a460ccad1647af5bbf593 |
| IEDL.DBID | UNPAY |
| ISSN | 0218-348X 1793-6543 |
| IngestDate | Sun Sep 07 11:08:00 EDT 2025 Mon Jun 30 12:50:15 EDT 2025 Tue Jul 01 04:11:52 EDT 2025 Sun Jan 12 10:48:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9n10 |
| Keywords | Arabic Tweets Social Networks Complex Systems Natural Language Processing Salp Swarm Algorithm Word Embedding Deep Learning |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3093-5e43f5fc438ff8cf5367e43d948a85a6c6f50eb9f6d7a460ccad1647af5bbf593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8891-6421 0009-0005-4809-0193 0000-0002-3615-2394 0000-0003-2042-9958 0000-0002-5650-1838 0000-0003-0805-2705 0000-0002-2051-2105 0000-0002-0873-7985 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1142/s0218348x25400523 |
| PQID | 3165534603 |
| PQPubID | 2049864 |
| ParticipantIDs | unpaywall_primary_10_1142_s0218348x25400523 crossref_primary_10_1142_S0218348X25400523 worldscientific_primary_S0218348X25400523 proquest_journals_3165534603 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Fractals (Singapore) |
| PublicationYear | 2024 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | S0218348X25400523BIB009 Aljohani A. (S0218348X25400523BIB013) 2024 Asgari-Chenaghlu M. (S0218348X25400523BIB011) 2022 Lakshmi S. D. (S0218348X25400523BIB015) 2023; 5 S0218348X25400523BIB010 S0218348X25400523BIB021 S0218348X25400523BIB020 S0218348X25400523BIB003 S0218348X25400523BIB014 S0218348X25400523BIB025 S0218348X25400523BIB004 S0218348X25400523BIB026 S0218348X25400523BIB001 S0218348X25400523BIB012 S0218348X25400523BIB023 S0218348X25400523BIB002 S0218348X25400523BIB024 S0218348X25400523BIB007 S0218348X25400523BIB018 S0218348X25400523BIB008 S0218348X25400523BIB019 S0218348X25400523BIB006 S0218348X25400523BIB017 |
| References_xml | – start-page: 101961 year: 2024 ident: S0218348X25400523BIB013 publication-title: J. King Saud Univ.: Comput. Inf. Sci. – ident: S0218348X25400523BIB017 doi: 10.1016/j.tcs.2022.06.020 – ident: S0218348X25400523BIB004 doi: 10.3390/make5010003 – ident: S0218348X25400523BIB010 doi: 10.1109/ACCESS.2022.3153675 – ident: S0218348X25400523BIB006 doi: 10.1109/ACCESS.2024.3365193 – ident: S0218348X25400523BIB001 doi: 10.1109/ICoICT52021.2021.9527420 – ident: S0218348X25400523BIB008 doi: 10.1007/s42979-023-02518-1 – ident: S0218348X25400523BIB007 doi: 10.1109/ACCESS.2024.3354165 – ident: S0218348X25400523BIB012 doi: 10.3390/app13148209 – ident: S0218348X25400523BIB002 doi: 10.1016/j.cose.2019.101710 – ident: S0218348X25400523BIB023 doi: 10.1109/ACCESS.2021.3118537 – ident: S0218348X25400523BIB025 doi: 10.1016/j.dib.2023.109904 – ident: S0218348X25400523BIB003 doi: 10.1007/s10586-021-03483-1 – ident: S0218348X25400523BIB019 doi: 10.1016/j.ipm.2023.103325 – ident: S0218348X25400523BIB026 doi: 10.3390/s23083861 – ident: S0218348X25400523BIB021 doi: 10.1016/j.ipm.2024.103688 – ident: S0218348X25400523BIB018 doi: 10.1016/j.ipm.2024.103644 – ident: S0218348X25400523BIB020 doi: 10.1016/j.ipm.2024.103695 – ident: S0218348X25400523BIB024 doi: 10.1038/s41598-024-52232-y – start-page: 1 year: 2022 ident: S0218348X25400523BIB011 publication-title: Neural Comput. Appl. – ident: S0218348X25400523BIB009 doi: 10.3390/app14062254 – ident: S0218348X25400523BIB014 doi: 10.1007/s00500-021-06370-4 – volume: 5 issue: 3 year: 2023 ident: S0218348X25400523BIB015 publication-title: Acta Sci. Comput. Sci. |
| SSID | ssj0004414 |
| Score | 2.31896 |
| Snippet | Natural language processing (NLP) is a domain of artificial intelligence (AI) that concentrates on the communication between human and computer language.... |
| SourceID | unpaywall proquest crossref worldscientific |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Artificial intelligence Complex systems Deep learning Machine learning Natural language processing Pattern recognition Performance evaluation Semantics |
| Title | INTEGRATING OPTIMAL DEEP LEARNING WITH NATURAL LANGUAGE PROCESSING FOR ARABIC SPAM AND HAM TWEETS RECOGNITION |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0218348X25400523 https://www.proquest.com/docview/3165534603 https://doi.org/10.1142/s0218348x25400523 |
| UnpaywallVersion | publishedVersion |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1793-6543 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004414 issn: 0218-348X databaseCode: AMVHM dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lb9MwGLegPcAO4611jMkHLoAylvoR-2i6LClq0qhNWTlFdhxfNsq0tuLx12MnaRkrBzhFsp0vib8v-d6_APAasTIIECKe1Mg6KBgFHmeUeiTggdKMY6XqAtmUxjP8cU7mLVi064W5nb_3cf_9stbhmH23jkwdwrwPupRYs7sDurM0E5_rGIrPPLtmXjc_cuS5fsk2g_lXGn_qoN-G5YP14lr--CavrvbAfo1Y2nQluqKdW1rn_FFTr7WswQpdscnlyXqlTsqfd6Ac_-mBHoP91vaEohGWJ-BetXgK9pItcOvyGfjiIHIjF7hKIzjO8mEiRvAsDDM4CsUkdaMXwzyGdbmEnRqJNJqJKITZZDxwX2a7wPqVUEzEh-EATjORQJGewdge84swzKdwEg7GUTp0obHnYHYe5oPYa__I4JUuY-qRCiNDTIkRM4aVhiAa2CHNMZOMSFpSQ04rxQ3VgcT01IqHdoBl0hClDOHoBegsvi6qAwCtGaM1NVpZQhhzX2IsA-0b699wo0vZA283PCquG-CNommi7hfTdg_nmz3sgaMNF4v2HVwWyKeEIHsXdvrdlrM7xHYY0gNv7vB-e87OhQ__i_JL8LBvbaImgnMEOqubdfXK2jQrdQy6IvkUJ8etVP8CKnjizQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-C7gA7jG9RGMgHLoAylvoj9tF0WVrUplGbauUU2XF8YZSJtuLjr8dO0jJWDnCKZDsvid9L3vcvAK8wL6MIYxoog52DQnAUCM5YQCMRacMF0boukE3ZYE4-LOiiBYv2vTDX8_ch6b1b1Tqc8O_OkalDmLfhgFFndnfgYJ5m8mMdQwl54NYs6uZHgQPfL9lmMP9K408d9NuwvLNZXqkf39Tl5SEc1YilTVeiL9q5pnXO7zX1WqsarNAXm3w62az1SfnzBpTjPz3QfThqbU8kG2F5ALeq5UM4HO-AW1eP4LOHyE184CpN0CTLh2M5QmdxnKFRLKepH70Y5gNUl0u4qZFMk7lMYpRNJ33_ZXYLnF-J5FS-H_bRLJNjJNMzNHDH_CKO8xmaxv1Jkg59aOwxzM_jvD8I2j8yBKXPmAa0IthSWxLMreWlpZhFbsgIwhWnipXM0tNKC8tMpAg7deJhPGCZslRrSwV-Ap3ll2X1FJAzY4xh1mhHiBARKkJUZELr_BthTam68GbLo-KqAd4omibqXjFr93Cx3cMuHG-5WLTv4KrAIaMUu7tw0293nN0jtseQLry-wfvdOXsXfvZflJ_D3Z6ziZoIzjF01l831Qtn06z1y1aafwEbweEx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INTEGRATING+OPTIMAL+DEEP+LEARNING+WITH+NATURAL+LANGUAGE+PROCESSING+FOR+ARABIC+SPAM+AND+HAM+TWEETS+RECOGNITION&rft.jtitle=Fractals+%28Singapore%29&rft.au=AL-SHATHRY%2C+NAJLA+I.&rft.au=ALGHAMDI%2C+MOHAMMED&rft.au=AL-DOBAIAN%2C+ABDULLAH+SAAD&rft.au=DAREM%2C+ABDULBASIT+A.&rft.date=2024&rft.issn=0218-348X&rft.eissn=1793-6543&rft.volume=32&rft.issue=9n10&rft_id=info:doi/10.1142%2FS0218348X25400523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0218348X25400523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-348X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-348X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-348X&client=summon |