Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives
This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: <disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll}...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 12; pp. 13119 - 13142 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021758 |
Cover
Abstract | This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives:
<disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula>
where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results. |
---|---|
AbstractList | This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: $ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $ where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results. This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: <disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula> where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results. |
Author | Li, Yating Liu, Yansheng |
Author_xml | – sequence: 1 givenname: Yating surname: Li fullname: Li, Yating – sequence: 2 givenname: Yansheng surname: Liu fullname: Liu, Yansheng |
BookMark | eNptUctqGzEUFcGBpGl2-QB9QJzqNR7Nspi0Mbh0067FtXRlK8gjV9K4pMt8ecePQihZ3dc5h3s4H8ikTz0ScsfZg-yk-rSFunkQTPC20RfkWqhWTmed1pM3_RW5LeWZsREllGjVNXn9NsQadhFpSXGoIfWF-pQpUBuhFJo8XaWhd5Bf6B7igHSX0yri9njyGeyBA5G64D1m7GsYB_w1wEnrd6gbusYeM8TwBx2dw26oiTrMYT9i9lg-kksPseDtud6Qn18ef8yfpsvvXxfzz8uplUzXqW8cMAfag-ZOcuF147sZtlJqwZgTSjbAuAXoupUQyrLRLzSeNV6vvO4aeUMWJ12X4NnsctiOpkyCYI6LlNcGcg02ohG2a3irnJ0JpYTgGiRDDugtMgTlRi1x0rI5lZLRGxvq0XLNEKLhzBxCMYdQzDmUkXT_H-nfE-_C_wKa-5QZ |
CitedBy_id | crossref_primary_10_3934_era_2024045 crossref_primary_10_3934_math_2023362 crossref_primary_10_3390_sym14081549 crossref_primary_10_3934_mbe_2023095 crossref_primary_10_3934_era_2023018 |
Cites_doi | 10.1155/2017/6703860 10.22436/jnsa.010.05.27 10.1016/j.camwa.2015.11.014 10.1016/j.cjph.2020.05.026 10.1016/j.chaos.2018.10.002 10.3934/math.2021301 10.1186/s13661-017-0878-6 10.1016/j.cnsns.2014.12.014 10.22436/jnsa.008.04.07 10.1155/2021/5534872 10.1007/s10473-019-0608-5 10.22436/jnsa.010.07.52 10.11948/2156-907X.20190022 10.1155/2017/8548975 10.1016/j.amc.2011.01.103 10.3934/math.2021297 10.1016/j.cnsns.2016.09.006 10.1186/s13661-018-1114-8 10.1140/epjp/i2018-12119-6 10.5899/2012/jnaa-00164 10.1186/s13661-018-1012-0 10.1186/s13662-018-1939-6 10.1155/2013/162418 10.1080/00036811.2017.1399360 10.1155/2019/2787569 10.3390/math8050828 10.1155/2020/7652648 10.1016/j.aml.2021.107368 10.1016/j.jmaa.2012.07.062 10.3934/dcdss.2020039 10.1016/j.camwa.2019.04.003 10.1155/2013/942831 10.1016/j.jksus.2020.101275 10.1186/1687-2770-2013-79 10.1515/fca-2018-0042 10.3934/cpaa.2019023 10.1512/iumj.1979.28.28046 |
ContentType | Journal Article |
CorporateAuthor | School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China |
CorporateAuthor_xml | – name: School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021758 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 13142 |
ExternalDocumentID | oai_doaj_org_article_2c95174dc62442218a30e1aefce0ea4d 10_3934_math_2021758 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c308t-f5da0da8fa81d312f85f96e7338200d2435a01caa99b224c0988a5f05f8bf8953 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:28:46 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-f5da0da8fa81d312f85f96e7338200d2435a01caa99b224c0988a5f05f8bf8953 |
OpenAccessLink | https://doaj.org/article/2c95174dc62442218a30e1aefce0ea4d |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2c95174dc62442218a30e1aefce0ea4d crossref_citationtrail_10_3934_math_2021758 crossref_primary_10_3934_math_2021758 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021758-29 key-10.3934/math.2021758-27 key-10.3934/math.2021758-28 key-10.3934/math.2021758-25 key-10.3934/math.2021758-26 key-10.3934/math.2021758-23 key-10.3934/math.2021758-24 key-10.3934/math.2021758-21 key-10.3934/math.2021758-22 key-10.3934/math.2021758-41 key-10.3934/math.2021758-20 key-10.3934/math.2021758-42 key-10.3934/math.2021758-40 key-10.3934/math.2021758-18 key-10.3934/math.2021758-19 key-10.3934/math.2021758-16 key-10.3934/math.2021758-38 key-10.3934/math.2021758-17 key-10.3934/math.2021758-39 key-10.3934/math.2021758-14 key-10.3934/math.2021758-36 key-10.3934/math.2021758-15 key-10.3934/math.2021758-37 key-10.3934/math.2021758-12 key-10.3934/math.2021758-34 key-10.3934/math.2021758-13 key-10.3934/math.2021758-35 key-10.3934/math.2021758-9 key-10.3934/math.2021758-10 key-10.3934/math.2021758-32 key-10.3934/math.2021758-11 key-10.3934/math.2021758-33 key-10.3934/math.2021758-7 key-10.3934/math.2021758-30 key-10.3934/math.2021758-8 key-10.3934/math.2021758-31 key-10.3934/math.2021758-1 key-10.3934/math.2021758-2 key-10.3934/math.2021758-5 key-10.3934/math.2021758-6 key-10.3934/math.2021758-3 key-10.3934/math.2021758-4 |
References_xml | – ident: key-10.3934/math.2021758-27 doi: 10.1155/2017/6703860 – ident: key-10.3934/math.2021758-37 doi: 10.22436/jnsa.010.05.27 – ident: key-10.3934/math.2021758-12 doi: 10.1016/j.camwa.2015.11.014 – ident: key-10.3934/math.2021758-34 – ident: key-10.3934/math.2021758-5 doi: 10.1016/j.cjph.2020.05.026 – ident: key-10.3934/math.2021758-7 doi: 10.1016/j.chaos.2018.10.002 – ident: key-10.3934/math.2021758-40 doi: 10.3934/math.2021301 – ident: key-10.3934/math.2021758-17 doi: 10.1186/s13661-017-0878-6 – ident: key-10.3934/math.2021758-2 – ident: key-10.3934/math.2021758-6 doi: 10.1016/j.cnsns.2014.12.014 – ident: key-10.3934/math.2021758-22 doi: 10.22436/jnsa.008.04.07 – ident: key-10.3934/math.2021758-9 doi: 10.1155/2021/5534872 – ident: key-10.3934/math.2021758-15 doi: 10.1007/s10473-019-0608-5 – ident: key-10.3934/math.2021758-28 doi: 10.22436/jnsa.010.07.52 – ident: key-10.3934/math.2021758-14 doi: 10.11948/2156-907X.20190022 – ident: key-10.3934/math.2021758-30 doi: 10.1155/2017/8548975 – ident: key-10.3934/math.2021758-26 doi: 10.1016/j.amc.2011.01.103 – ident: key-10.3934/math.2021758-29 doi: 10.3934/math.2021297 – ident: key-10.3934/math.2021758-1 doi: 10.1016/j.cnsns.2016.09.006 – ident: key-10.3934/math.2021758-31 doi: 10.1186/s13661-018-1114-8 – ident: key-10.3934/math.2021758-16 doi: 10.1140/epjp/i2018-12119-6 – ident: key-10.3934/math.2021758-35 doi: 10.5899/2012/jnaa-00164 – ident: key-10.3934/math.2021758-13 doi: 10.1186/s13661-018-1012-0 – ident: key-10.3934/math.2021758-32 doi: 10.1186/s13662-018-1939-6 – ident: key-10.3934/math.2021758-21 doi: 10.1155/2013/162418 – ident: key-10.3934/math.2021758-10 doi: 10.1080/00036811.2017.1399360 – ident: key-10.3934/math.2021758-24 doi: 10.1155/2019/2787569 – ident: key-10.3934/math.2021758-36 doi: 10.3390/math8050828 – ident: key-10.3934/math.2021758-19 doi: 10.1155/2020/7652648 – ident: key-10.3934/math.2021758-39 – ident: key-10.3934/math.2021758-3 – ident: key-10.3934/math.2021758-33 doi: 10.1016/j.aml.2021.107368 – ident: key-10.3934/math.2021758-4 doi: 10.1016/j.jmaa.2012.07.062 – ident: key-10.3934/math.2021758-38 doi: 10.3934/dcdss.2020039 – ident: key-10.3934/math.2021758-41 – ident: key-10.3934/math.2021758-11 doi: 10.1016/j.camwa.2019.04.003 – ident: key-10.3934/math.2021758-23 doi: 10.1155/2013/942831 – ident: key-10.3934/math.2021758-8 doi: 10.1016/j.jksus.2020.101275 – ident: key-10.3934/math.2021758-20 doi: 10.1186/1687-2770-2013-79 – ident: key-10.3934/math.2021758-25 doi: 10.1515/fca-2018-0042 – ident: key-10.3934/math.2021758-18 doi: 10.3934/cpaa.2019023 – ident: key-10.3934/math.2021758-42 doi: 10.1512/iumj.1979.28.28046 |
SSID | ssj0002124274 |
Score | 2.1839826 |
Snippet | This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 13119 |
SubjectTerms | boundary value problems fixed point theory fractional differential equation generalized caputo derivatives multiple solutions |
Title | Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives |
URI | https://doaj.org/article/2c95174dc62442218a30e1aefce0ea4d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprEdhqPUFFVSGWiUrfIT4RUtaVNkWDkl3MXp1EWxMKYxEqs8-e772znO0JutOnHmTQmYhpyVa4E-EHtAcsCcjHGMiMsLuiPn7PRhD9NxbRV6gvPhAV54GC4Xmokiilbk0EgSiEgKRa7RDlvXOwUt-h9IYy1kin0weCQOeRb4aQ7k4z3gP_h3gMwcKzu3opBLan-KqYMD8h-TQbpfejEIdlx8yOyN26UVNfH5Htcn_ijDUgo8EyqqEHeSxee6qoy0uqTonC3o3WJmOqRX4X_FuAj20ooMKNn1L0Hhe81xXVY-hq0p9--nKUDtdyUC2oBmR-VKPj6hEyGjy-DUVTXTYgMi_My8sKq2KrcKyCjLEl9LrzMXB-yUZgTNgWGpOLEKCWlhghuYpnnSvhYeBimXAp2SjrzxdydEcqs41xLnmggXpCZKQuXBkIaV4ZnPO-Su60lC1OLimNti1kByQXavUC7F7Xdu-S2ab0MYhq_tHvAQWnaoAR2dQOAUdTAKP4Cxvl_vOSC7GKfwprLJemUq427AhZS6usKcD-mKN47 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+for+a+class+of+boundary+value+problems+of+fractional+differential+equations+with+generalized+Caputo+derivatives&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Yating&rft.au=Liu%2C+Yansheng&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=12&rft.spage=13119&rft.epage=13142&rft_id=info:doi/10.3934%2Fmath.2021758&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |