Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives

This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: <disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll}...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 12; pp. 13119 - 13142
Main Authors Li, Yating, Liu, Yansheng
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021758

Cover

Abstract This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: <disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula> where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results.
AbstractList This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: $ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $ where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results.
This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives: <disp-formula> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0<t<1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula> where $ 2 < \alpha < 3 $, $ 1 < \nu < 2 $, $ \alpha-\nu-1 > 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' > 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results.
Author Li, Yating
Liu, Yansheng
Author_xml – sequence: 1
  givenname: Yating
  surname: Li
  fullname: Li, Yating
– sequence: 2
  givenname: Yansheng
  surname: Liu
  fullname: Liu, Yansheng
BookMark eNptUctqGzEUFcGBpGl2-QB9QJzqNR7Nspi0Mbh0067FtXRlK8gjV9K4pMt8ecePQihZ3dc5h3s4H8ikTz0ScsfZg-yk-rSFunkQTPC20RfkWqhWTmed1pM3_RW5LeWZsREllGjVNXn9NsQadhFpSXGoIfWF-pQpUBuhFJo8XaWhd5Bf6B7igHSX0yri9njyGeyBA5G64D1m7GsYB_w1wEnrd6gbusYeM8TwBx2dw26oiTrMYT9i9lg-kksPseDtud6Qn18ef8yfpsvvXxfzz8uplUzXqW8cMAfag-ZOcuF147sZtlJqwZgTSjbAuAXoupUQyrLRLzSeNV6vvO4aeUMWJ12X4NnsctiOpkyCYI6LlNcGcg02ohG2a3irnJ0JpYTgGiRDDugtMgTlRi1x0rI5lZLRGxvq0XLNEKLhzBxCMYdQzDmUkXT_H-nfE-_C_wKa-5QZ
CitedBy_id crossref_primary_10_3934_era_2024045
crossref_primary_10_3934_math_2023362
crossref_primary_10_3390_sym14081549
crossref_primary_10_3934_mbe_2023095
crossref_primary_10_3934_era_2023018
Cites_doi 10.1155/2017/6703860
10.22436/jnsa.010.05.27
10.1016/j.camwa.2015.11.014
10.1016/j.cjph.2020.05.026
10.1016/j.chaos.2018.10.002
10.3934/math.2021301
10.1186/s13661-017-0878-6
10.1016/j.cnsns.2014.12.014
10.22436/jnsa.008.04.07
10.1155/2021/5534872
10.1007/s10473-019-0608-5
10.22436/jnsa.010.07.52
10.11948/2156-907X.20190022
10.1155/2017/8548975
10.1016/j.amc.2011.01.103
10.3934/math.2021297
10.1016/j.cnsns.2016.09.006
10.1186/s13661-018-1114-8
10.1140/epjp/i2018-12119-6
10.5899/2012/jnaa-00164
10.1186/s13661-018-1012-0
10.1186/s13662-018-1939-6
10.1155/2013/162418
10.1080/00036811.2017.1399360
10.1155/2019/2787569
10.3390/math8050828
10.1155/2020/7652648
10.1016/j.aml.2021.107368
10.1016/j.jmaa.2012.07.062
10.3934/dcdss.2020039
10.1016/j.camwa.2019.04.003
10.1155/2013/942831
10.1016/j.jksus.2020.101275
10.1186/1687-2770-2013-79
10.1515/fca-2018-0042
10.3934/cpaa.2019023
10.1512/iumj.1979.28.28046
ContentType Journal Article
CorporateAuthor School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
CorporateAuthor_xml – name: School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, China
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021758
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13142
ExternalDocumentID oai_doaj_org_article_2c95174dc62442218a30e1aefce0ea4d
10_3934_math_2021758
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c308t-f5da0da8fa81d312f85f96e7338200d2435a01caa99b224c0988a5f05f8bf8953
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:28:46 EDT 2025
Tue Jul 01 03:56:50 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-f5da0da8fa81d312f85f96e7338200d2435a01caa99b224c0988a5f05f8bf8953
OpenAccessLink https://doaj.org/article/2c95174dc62442218a30e1aefce0ea4d
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_2c95174dc62442218a30e1aefce0ea4d
crossref_citationtrail_10_3934_math_2021758
crossref_primary_10_3934_math_2021758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021758-29
key-10.3934/math.2021758-27
key-10.3934/math.2021758-28
key-10.3934/math.2021758-25
key-10.3934/math.2021758-26
key-10.3934/math.2021758-23
key-10.3934/math.2021758-24
key-10.3934/math.2021758-21
key-10.3934/math.2021758-22
key-10.3934/math.2021758-41
key-10.3934/math.2021758-20
key-10.3934/math.2021758-42
key-10.3934/math.2021758-40
key-10.3934/math.2021758-18
key-10.3934/math.2021758-19
key-10.3934/math.2021758-16
key-10.3934/math.2021758-38
key-10.3934/math.2021758-17
key-10.3934/math.2021758-39
key-10.3934/math.2021758-14
key-10.3934/math.2021758-36
key-10.3934/math.2021758-15
key-10.3934/math.2021758-37
key-10.3934/math.2021758-12
key-10.3934/math.2021758-34
key-10.3934/math.2021758-13
key-10.3934/math.2021758-35
key-10.3934/math.2021758-9
key-10.3934/math.2021758-10
key-10.3934/math.2021758-32
key-10.3934/math.2021758-11
key-10.3934/math.2021758-33
key-10.3934/math.2021758-7
key-10.3934/math.2021758-30
key-10.3934/math.2021758-8
key-10.3934/math.2021758-31
key-10.3934/math.2021758-1
key-10.3934/math.2021758-2
key-10.3934/math.2021758-5
key-10.3934/math.2021758-6
key-10.3934/math.2021758-3
key-10.3934/math.2021758-4
References_xml – ident: key-10.3934/math.2021758-27
  doi: 10.1155/2017/6703860
– ident: key-10.3934/math.2021758-37
  doi: 10.22436/jnsa.010.05.27
– ident: key-10.3934/math.2021758-12
  doi: 10.1016/j.camwa.2015.11.014
– ident: key-10.3934/math.2021758-34
– ident: key-10.3934/math.2021758-5
  doi: 10.1016/j.cjph.2020.05.026
– ident: key-10.3934/math.2021758-7
  doi: 10.1016/j.chaos.2018.10.002
– ident: key-10.3934/math.2021758-40
  doi: 10.3934/math.2021301
– ident: key-10.3934/math.2021758-17
  doi: 10.1186/s13661-017-0878-6
– ident: key-10.3934/math.2021758-2
– ident: key-10.3934/math.2021758-6
  doi: 10.1016/j.cnsns.2014.12.014
– ident: key-10.3934/math.2021758-22
  doi: 10.22436/jnsa.008.04.07
– ident: key-10.3934/math.2021758-9
  doi: 10.1155/2021/5534872
– ident: key-10.3934/math.2021758-15
  doi: 10.1007/s10473-019-0608-5
– ident: key-10.3934/math.2021758-28
  doi: 10.22436/jnsa.010.07.52
– ident: key-10.3934/math.2021758-14
  doi: 10.11948/2156-907X.20190022
– ident: key-10.3934/math.2021758-30
  doi: 10.1155/2017/8548975
– ident: key-10.3934/math.2021758-26
  doi: 10.1016/j.amc.2011.01.103
– ident: key-10.3934/math.2021758-29
  doi: 10.3934/math.2021297
– ident: key-10.3934/math.2021758-1
  doi: 10.1016/j.cnsns.2016.09.006
– ident: key-10.3934/math.2021758-31
  doi: 10.1186/s13661-018-1114-8
– ident: key-10.3934/math.2021758-16
  doi: 10.1140/epjp/i2018-12119-6
– ident: key-10.3934/math.2021758-35
  doi: 10.5899/2012/jnaa-00164
– ident: key-10.3934/math.2021758-13
  doi: 10.1186/s13661-018-1012-0
– ident: key-10.3934/math.2021758-32
  doi: 10.1186/s13662-018-1939-6
– ident: key-10.3934/math.2021758-21
  doi: 10.1155/2013/162418
– ident: key-10.3934/math.2021758-10
  doi: 10.1080/00036811.2017.1399360
– ident: key-10.3934/math.2021758-24
  doi: 10.1155/2019/2787569
– ident: key-10.3934/math.2021758-36
  doi: 10.3390/math8050828
– ident: key-10.3934/math.2021758-19
  doi: 10.1155/2020/7652648
– ident: key-10.3934/math.2021758-39
– ident: key-10.3934/math.2021758-3
– ident: key-10.3934/math.2021758-33
  doi: 10.1016/j.aml.2021.107368
– ident: key-10.3934/math.2021758-4
  doi: 10.1016/j.jmaa.2012.07.062
– ident: key-10.3934/math.2021758-38
  doi: 10.3934/dcdss.2020039
– ident: key-10.3934/math.2021758-41
– ident: key-10.3934/math.2021758-11
  doi: 10.1016/j.camwa.2019.04.003
– ident: key-10.3934/math.2021758-23
  doi: 10.1155/2013/942831
– ident: key-10.3934/math.2021758-8
  doi: 10.1016/j.jksus.2020.101275
– ident: key-10.3934/math.2021758-20
  doi: 10.1186/1687-2770-2013-79
– ident: key-10.3934/math.2021758-25
  doi: 10.1515/fca-2018-0042
– ident: key-10.3934/math.2021758-18
  doi: 10.3934/cpaa.2019023
– ident: key-10.3934/math.2021758-42
  doi: 10.1512/iumj.1979.28.28046
SSID ssj0002124274
Score 2.1839826
Snippet This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 13119
SubjectTerms boundary value problems
fixed point theory
fractional differential equation
generalized caputo derivatives
multiple solutions
Title Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives
URI https://doaj.org/article/2c95174dc62442218a30e1aefce0ea4d
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprEdhqPUFFVSGWiUrfIT4RUtaVNkWDkl3MXp1EWxMKYxEqs8-e772znO0JutOnHmTQmYhpyVa4E-EHtAcsCcjHGMiMsLuiPn7PRhD9NxbRV6gvPhAV54GC4Xmokiilbk0EgSiEgKRa7RDlvXOwUt-h9IYy1kin0weCQOeRb4aQ7k4z3gP_h3gMwcKzu3opBLan-KqYMD8h-TQbpfejEIdlx8yOyN26UVNfH5Htcn_ijDUgo8EyqqEHeSxee6qoy0uqTonC3o3WJmOqRX4X_FuAj20ooMKNn1L0Hhe81xXVY-hq0p9--nKUDtdyUC2oBmR-VKPj6hEyGjy-DUVTXTYgMi_My8sKq2KrcKyCjLEl9LrzMXB-yUZgTNgWGpOLEKCWlhghuYpnnSvhYeBimXAp2SjrzxdydEcqs41xLnmggXpCZKQuXBkIaV4ZnPO-Su60lC1OLimNti1kByQXavUC7F7Xdu-S2ab0MYhq_tHvAQWnaoAR2dQOAUdTAKP4Cxvl_vOSC7GKfwprLJemUq427AhZS6usKcD-mKN47
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+solutions+for+a+class+of+boundary+value+problems+of+fractional+differential+equations+with+generalized+Caputo+derivatives&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Yating&rft.au=Liu%2C+Yansheng&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=12&rft.spage=13119&rft.epage=13142&rft_id=info:doi/10.3934%2Fmath.2021758&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon