Efficient remainder rule

Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest po...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mathematical education in science and technology Vol. 48; no. 5; pp. 756 - 762
Main Authors Firozzaman, Firoz, Firoz, Fahim
Format Journal Article
LanguageEnglish
Published London Taylor & Francis 04.07.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0020-739X
1464-5211
DOI10.1080/0020739X.2016.1267807

Cover

Abstract Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the given conditions, one may need to understand the concept of modulo arithmetic in number theory. The Chinese Remainder Theorem is a known method to solve these types of problems using modulo arithmetic. In this paper, an efficient remainder rule has been proposed based on basic mathematical concepts. These core concepts are as follows: basic remainder rules of divisions, linear equation in slope intercept form, arithmetic progression and the use of a graphing calculator. These are easily understood by students who have taken prealgebra or intermediate algebra.
AbstractList Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the given conditions, one may need to understand the concept of modulo arithmetic in number theory. The Chinese Remainder Theorem is a known method to solve these types of problems using modulo arithmetic. In this paper, an efficient remainder rule has been proposed based on basic mathematical concepts. These core concepts are as follows: basic remainder rules of divisions, linear equation in slope intercept form, arithmetic progression and the use of a graphing calculator. These are easily understood by students who have taken prealgebra or intermediate algebra.
Author Firozzaman, Firoz
Firoz, Fahim
Author_xml – sequence: 1
  givenname: Firoz
  surname: Firozzaman
  fullname: Firozzaman, Firoz
  email: mfirozz@asu.edu
  organization: School of Mathematical and Statistical Sciences, Arizona State University
– sequence: 2
  givenname: Fahim
  surname: Firoz
  fullname: Firoz, Fahim
  organization: Ira Fulton School of Engineering, Arizona State University
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1138706$$DView record in ERIC
BookMark eNp9kE1Lw0AQhhdRsK3evRQKnlNnspvs7k0p9YuCFwVvy2azC1vSpE5SpP_ehFSPnuYwz_sO80zZed3UnrE5whJBwR1ACpLrz2UKmC8xzaUCecYmKHKRZCniOZsMTDJAl2zatlsAQCH0hN2sQ4gu-rpbkN_ZWJeeFnSo_BW7CLZq_fVpztjH4_p99Zxs3p5eVg-bxHFQXVKKNAsOBBYys1YrxctQuOA1uiCtdKBFzvNSZ1mqSxXKQhWFtEVuIVMWJPIZux1799R8HXzbmW1zoLo_aVBpRBT9Uz01HylP0Zk9xZ2lo1m_InIlYdhn495R07bkwx-DYAZJ5leSGSSZk6Q-dz_mYh0a2tnvhqrSdPZYNRTI1i62hv9f8QNq02zi
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
AHOVV
DOI 10.1080/0020739X.2016.1267807
DatabaseName CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Education Research Index
DatabaseTitle CrossRef
ERIC
DatabaseTitleList ERIC


Database_xml – sequence: 1
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-5211
ERIC EJ1138706
EndPage 762
ExternalDocumentID 4321940285
EJ1138706
10_1080_0020739X_2016_1267807
1267807
Genre Note
GroupedDBID -~X
.7F
.DC
.GO
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
85S
AAENE
AAHSB
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
D0L
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
WH7
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
07G
186
1TA
7SW
AAIKQ
AAKBW
ACAGQ
ACGEE
ACTCW
ADMHC
AEUMN
AFFNX
AGCQS
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
BCCOT
BJH
BNH
BNI
BNJ
BNO
BPLKW
C06
CAG
COF
CRFIH
DMQIW
DWIFK
ERI
H~9
IVXBP
NUSFT
OHT
PET
QCRFL
REK
S10
TAQ
TASJS
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
VJK
VQP
WWN
ZCG
AHOVV
ID FETCH-LOGICAL-c308t-d425fc041b75aa9883dfbcfe91cf7a7c094636d95529d8fdb8bb7ab6a058a0713
ISSN 0020-739X
IngestDate Tue Aug 12 13:11:58 EDT 2025
Tue Sep 02 19:36:16 EDT 2025
Tue Jul 01 03:27:54 EDT 2025
Wed Dec 25 09:04:42 EST 2024
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-d425fc041b75aa9883dfbcfe91cf7a7c094636d95529d8fdb8bb7ab6a058a0713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1891114016
PQPubID 176146
PageCount 7
ParticipantIDs crossref_primary_10_1080_0020739X_2016_1267807
proquest_journals_1891114016
eric_primary_EJ1138706
informaworld_taylorfrancis_310_1080_0020739X_2016_1267807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-04
PublicationDateYYYYMMDD 2017-07-04
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of mathematical education in science and technology
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Richman F (cit0001) 1971
Beiler AH (cit0003) 1964
Sen MK (cit0002) 2000
References_xml – volume-title: Number theory: an introduction to algebra
  year: 1971
  ident: cit0001
– volume-title: Introduction to discrete mathematics
  year: 2000
  ident: cit0002
– year: 1964
  ident: cit0003
  publication-title: Recreations in the theory of numbers
SSID ssj0001449
Score 2.0438695
Snippet Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when...
SourceID proquest
eric
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 756
SubjectTerms Algebra
Arithmetic
coprime (relatively prime) numbers
Dividend
divisor
Equations (Mathematics)
even numbers
Fractions
Integers
least common multiple (LCM) for integers and fractions
linear equation and arithmetic progression
Mathematical analysis
Mathematical Concepts
Mathematics Instruction
Number Concepts
Number theory
Numbers
odd numbers
Problem Solving
quotient
remainder
Students
Title Efficient remainder rule
URI https://www.tandfonline.com/doi/abs/10.1080/0020739X.2016.1267807
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1138706
https://www.proquest.com/docview/1891114016
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1464-5211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001449
  issn: 0020-739X
  databaseCode: AHDZW
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1464-5211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001449
  issn: 0020-739X
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbW7LIehq1b0axpkUNvgwM7lvU4FkOKoEBzSoHcDMqW0AJLOrjuJb--lCyr9lKszS6GLRuELdKkSJEfCbng3DCVGRaBkTSiIFkkZQkRoHEsAVWldv1TbhZsfkuvV9nqpfbEVZfUalJsX60r-R-u4hjy1VbJ7sHZQBQH8Bz5i0fkMB7fxeOZw3-wu_mVXoMFPqx-Vk-_e9k9_ZBfByhiHQBb8Vq3eR42_tGW-rjkyp3Q-9V99bDdgo-cuqveLTcKd_frbkAhcZHKpgVwSPCPI566DrdoIhq9SBlFn9XrRa84qegISNbRgjxjHYPq1e2Orm6TG6d2s3Bls-zYJJmi8Wza4Paxsf-yWSGTMAkQpw2Z3JLJPZkD8nHKGbONLdJ4EQw0-pA-86f5zrawy0Kuv_Y2vSWLz4rv4dru2HG3OFl-IZ-9VzG-bETkK_mgN0fk8CZw-PEbOQnCMg7CMrbC8p3cXs2Wv-aRb4sRFWks6qhENWuKmCaKZwBSiLQ0qjBaJoXhwAt02FnKSpllU1kKUyqhFAfFIM4E2KDEMRlsHjb6hIzjGATXRlp4WEqNUUrGqWaATjgvlYIhmbRfnv9p0E_yf874kBzb-QkPz66TJLVb6UMiuzOW1y4eZZrmMXn6BtFRO725_00e80RYM03xsR_7vuQp-fQi9yMyqKsnfYZLy1qdO0E5d0GUZ9Lab1w
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBd9VCgQysjpIm8WNEqFUpbadW6mbZsb2ACkrThV-PLy-1IMTQNUpOupzv6bvvEHqk1BKVWIKl5TGOJSeYcy2xdM5RS2cqTbE_ZTojo0U8XibLrVkYaKuEHNqWQBGFrQblhmJ03RIHI9xwwbSEzizih31ncGGg_DABpBEY4whmjTV2CUPV5hFg-Kae4vmLzI5_qlqgd0BMfxntwhMNz1Ba81A2oLz5m1z56dcPeMf9mDxHp1Wg6j2VJ-sCHZjVJTqZNiiv6yvUGRT4E85teZl7CMCLmZdt3s01WgwH8-cRrjYt4DQKWI6101ybBnGoaCIlZyzSVqXW8DC1VNLU5YAkIponSZ9rZrViSlGpiAwSJiHPbaPW6mNlOsgLAsmosRwQR-PYWqV4EBkiXV5HtVKyi_z6_4rPElBDhA1OacmyAJZFxXIXtUEKzcuDcRhGcDvbRXxbLiIvShy23Ecion-I9mohikpp1yJkYPldwklu9iD9gI5G8-lETF5mr7fouA9hAJSD4x5q5dnG3LkgJlf3xSn9Big-4X0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvKsWCmRgdeQ0iR8jglal0IqBSt0sO44XUKnSdOHX48tLFIQYukbJSRf7XvZ33yF0y5ilOrYUKysiHClBsRBGYeWCo1HOVabF_JTJlI5m0Xge12jCVQWrhBralkQRha8G414aWyPioIMb7pfmAMyiftB3_hb6yXcp9JlCFweZNs7Y1QsVyoNg-KZu4vlLzEZ4qhDQGxymv3x2EYiGR0jXKpT4kzd_nWs_-fzB7riVjsfosEpTvbtyX52gnXRxig4mDcfr6gx1BgX7hAtaXuYeAu1i5mXr9_QczYaD1_sRruYs4CQkPMfG2a1NSBRoFislOA-N1YlNRZBYpljiKkAaUiPiuC8Mt0ZzrZnSVJGYK6hy26i1-FikHeQRojhLrQC-0SiyVmtBwpQqV9Uxo7XqIr_-vXJZ0mnIoGEpLVWWoLKsVO6iNixC8_JgHAQh3M12kfi-LDIvDjhsOY1Ehv8I7dVrKCuTXcmAg9935Sa92EL0Ddp7eRjK58fp0yXa70MOAGfBUQ-18mydXrkMJtfXxR79AoYY4Co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+remainder+rule&rft.jtitle=International+journal+of+mathematical+education+in+science+and+technology&rft.au=Firozzaman%2C+Firoz&rft.au=Firoz%2C+Fahim&rft.date=2017-07-04&rft.issn=0020-739X&rft.eissn=1464-5211&rft.volume=48&rft.issue=5&rft.spage=756&rft.epage=762&rft_id=info:doi/10.1080%2F0020739X.2016.1267807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0020739X_2016_1267807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-739X&client=summon