Efficient remainder rule
Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest po...
Saved in:
Published in | International journal of mathematical education in science and technology Vol. 48; no. 5; pp. 756 - 762 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Taylor & Francis
04.07.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0020-739X 1464-5211 |
DOI | 10.1080/0020739X.2016.1267807 |
Cover
Abstract | Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the given conditions, one may need to understand the concept of modulo arithmetic in number theory. The Chinese Remainder Theorem is a known method to solve these types of problems using modulo arithmetic. In this paper, an efficient remainder rule has been proposed based on basic mathematical concepts. These core concepts are as follows: basic remainder rules of divisions, linear equation in slope intercept form, arithmetic progression and the use of a graphing calculator. These are easily understood by students who have taken prealgebra or intermediate algebra. |
---|---|
AbstractList | Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the given conditions, one may need to understand the concept of modulo arithmetic in number theory. The Chinese Remainder Theorem is a known method to solve these types of problems using modulo arithmetic. In this paper, an efficient remainder rule has been proposed based on basic mathematical concepts. These core concepts are as follows: basic remainder rules of divisions, linear equation in slope intercept form, arithmetic progression and the use of a graphing calculator. These are easily understood by students who have taken prealgebra or intermediate algebra. |
Author | Firozzaman, Firoz Firoz, Fahim |
Author_xml | – sequence: 1 givenname: Firoz surname: Firozzaman fullname: Firozzaman, Firoz email: mfirozz@asu.edu organization: School of Mathematical and Statistical Sciences, Arizona State University – sequence: 2 givenname: Fahim surname: Firoz fullname: Firoz, Fahim organization: Ira Fulton School of Engineering, Arizona State University |
BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1138706$$DView record in ERIC |
BookMark | eNp9kE1Lw0AQhhdRsK3evRQKnlNnspvs7k0p9YuCFwVvy2azC1vSpE5SpP_ehFSPnuYwz_sO80zZed3UnrE5whJBwR1ACpLrz2UKmC8xzaUCecYmKHKRZCniOZsMTDJAl2zatlsAQCH0hN2sQ4gu-rpbkN_ZWJeeFnSo_BW7CLZq_fVpztjH4_p99Zxs3p5eVg-bxHFQXVKKNAsOBBYys1YrxctQuOA1uiCtdKBFzvNSZ1mqSxXKQhWFtEVuIVMWJPIZux1799R8HXzbmW1zoLo_aVBpRBT9Uz01HylP0Zk9xZ2lo1m_InIlYdhn495R07bkwx-DYAZJ5leSGSSZk6Q-dz_mYh0a2tnvhqrSdPZYNRTI1i62hv9f8QNq02zi |
ContentType | Journal Article |
Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SW BJH BNH BNI BNJ BNO ERI PET REK WWN AHOVV |
DOI | 10.1080/0020739X.2016.1267807 |
DatabaseName | CrossRef ERIC ERIC (Ovid) ERIC ERIC ERIC (Legacy Platform) ERIC( SilverPlatter ) ERIC ERIC PlusText (Legacy Platform) Education Resources Information Center (ERIC) ERIC Education Research Index |
DatabaseTitle | CrossRef ERIC |
DatabaseTitleList | ERIC |
Database_xml | – sequence: 1 dbid: ERI name: ERIC url: https://eric.ed.gov/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1464-5211 |
ERIC | EJ1138706 |
EndPage | 762 |
ExternalDocumentID | 4321940285 EJ1138706 10_1080_0020739X_2016_1267807 1267807 |
Genre | Note |
GroupedDBID | -~X .7F .DC .GO .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS 85S AAENE AAHSB AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 D0L DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TWF UT5 UU3 WH7 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 07G 186 1TA 7SW AAIKQ AAKBW ACAGQ ACGEE ACTCW ADMHC AEUMN AFFNX AGCQS AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMXXU BCCOT BJH BNH BNI BNJ BNO BPLKW C06 CAG COF CRFIH DMQIW DWIFK ERI H~9 IVXBP NUSFT OHT PET QCRFL REK S10 TAQ TASJS TFMCV TOXWX UB9 UU8 V3K V4Q VH1 VJK VQP WWN ZCG AHOVV |
ID | FETCH-LOGICAL-c308t-d425fc041b75aa9883dfbcfe91cf7a7c094636d95529d8fdb8bb7ab6a058a0713 |
ISSN | 0020-739X |
IngestDate | Tue Aug 12 13:11:58 EDT 2025 Tue Sep 02 19:36:16 EDT 2025 Tue Jul 01 03:27:54 EDT 2025 Wed Dec 25 09:04:42 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | false |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-d425fc041b75aa9883dfbcfe91cf7a7c094636d95529d8fdb8bb7ab6a058a0713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1891114016 |
PQPubID | 176146 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1080_0020739X_2016_1267807 proquest_journals_1891114016 eric_primary_EJ1138706 informaworld_taylorfrancis_310_1080_0020739X_2016_1267807 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-04 |
PublicationDateYYYYMMDD | 2017-07-04 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | International journal of mathematical education in science and technology |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Richman F (cit0001) 1971 Beiler AH (cit0003) 1964 Sen MK (cit0002) 2000 |
References_xml | – volume-title: Number theory: an introduction to algebra year: 1971 ident: cit0001 – volume-title: Introduction to discrete mathematics year: 2000 ident: cit0002 – year: 1964 ident: cit0003 publication-title: Recreations in the theory of numbers |
SSID | ssj0001449 |
Score | 2.0438695 |
Snippet | Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when... |
SourceID | proquest eric crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 756 |
SubjectTerms | Algebra Arithmetic coprime (relatively prime) numbers Dividend divisor Equations (Mathematics) even numbers Fractions Integers least common multiple (LCM) for integers and fractions linear equation and arithmetic progression Mathematical analysis Mathematical Concepts Mathematics Instruction Number Concepts Number theory Numbers odd numbers Problem Solving quotient remainder Students |
Title | Efficient remainder rule |
URI | https://www.tandfonline.com/doi/abs/10.1080/0020739X.2016.1267807 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1138706 https://www.proquest.com/docview/1891114016 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1464-5211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001449 issn: 0020-739X databaseCode: AHDZW dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1464-5211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001449 issn: 0020-739X databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbW7LIehq1b0axpkUNvgwM7lvU4FkOKoEBzSoHcDMqW0AJLOrjuJb--lCyr9lKszS6GLRuELdKkSJEfCbng3DCVGRaBkTSiIFkkZQkRoHEsAVWldv1TbhZsfkuvV9nqpfbEVZfUalJsX60r-R-u4hjy1VbJ7sHZQBQH8Bz5i0fkMB7fxeOZw3-wu_mVXoMFPqx-Vk-_e9k9_ZBfByhiHQBb8Vq3eR42_tGW-rjkyp3Q-9V99bDdgo-cuqveLTcKd_frbkAhcZHKpgVwSPCPI566DrdoIhq9SBlFn9XrRa84qegISNbRgjxjHYPq1e2Orm6TG6d2s3Bls-zYJJmi8Wza4Paxsf-yWSGTMAkQpw2Z3JLJPZkD8nHKGbONLdJ4EQw0-pA-86f5zrawy0Kuv_Y2vSWLz4rv4dru2HG3OFl-IZ-9VzG-bETkK_mgN0fk8CZw-PEbOQnCMg7CMrbC8p3cXs2Wv-aRb4sRFWks6qhENWuKmCaKZwBSiLQ0qjBaJoXhwAt02FnKSpllU1kKUyqhFAfFIM4E2KDEMRlsHjb6hIzjGATXRlp4WEqNUUrGqWaATjgvlYIhmbRfnv9p0E_yf874kBzb-QkPz66TJLVb6UMiuzOW1y4eZZrmMXn6BtFRO725_00e80RYM03xsR_7vuQp-fQi9yMyqKsnfYZLy1qdO0E5d0GUZ9Lab1w |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBd9VCgQysjpIm8WNEqFUpbadW6mbZsb2ACkrThV-PLy-1IMTQNUpOupzv6bvvEHqk1BKVWIKl5TGOJSeYcy2xdM5RS2cqTbE_ZTojo0U8XibLrVkYaKuEHNqWQBGFrQblhmJ03RIHI9xwwbSEzizih31ncGGg_DABpBEY4whmjTV2CUPV5hFg-Kae4vmLzI5_qlqgd0BMfxntwhMNz1Ba81A2oLz5m1z56dcPeMf9mDxHp1Wg6j2VJ-sCHZjVJTqZNiiv6yvUGRT4E85teZl7CMCLmZdt3s01WgwH8-cRrjYt4DQKWI6101ybBnGoaCIlZyzSVqXW8DC1VNLU5YAkIponSZ9rZrViSlGpiAwSJiHPbaPW6mNlOsgLAsmosRwQR-PYWqV4EBkiXV5HtVKyi_z6_4rPElBDhA1OacmyAJZFxXIXtUEKzcuDcRhGcDvbRXxbLiIvShy23Ecion-I9mohikpp1yJkYPldwklu9iD9gI5G8-lETF5mr7fouA9hAJSD4x5q5dnG3LkgJlf3xSn9Big-4X0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQkRAMvKsWCmRgdeQ0iR8jglal0IqBSt0sO44XUKnSdOHX48tLFIQYukbJSRf7XvZ33yF0y5ilOrYUKysiHClBsRBGYeWCo1HOVabF_JTJlI5m0Xge12jCVQWrhBralkQRha8G414aWyPioIMb7pfmAMyiftB3_hb6yXcp9JlCFweZNs7Y1QsVyoNg-KZu4vlLzEZ4qhDQGxymv3x2EYiGR0jXKpT4kzd_nWs_-fzB7riVjsfosEpTvbtyX52gnXRxig4mDcfr6gx1BgX7hAtaXuYeAu1i5mXr9_QczYaD1_sRruYs4CQkPMfG2a1NSBRoFislOA-N1YlNRZBYpljiKkAaUiPiuC8Mt0ZzrZnSVJGYK6hy26i1-FikHeQRojhLrQC-0SiyVmtBwpQqV9Uxo7XqIr_-vXJZ0mnIoGEpLVWWoLKsVO6iNixC8_JgHAQh3M12kfi-LDIvDjhsOY1Ehv8I7dVrKCuTXcmAg9935Sa92EL0Ddp7eRjK58fp0yXa70MOAGfBUQ-18mydXrkMJtfXxR79AoYY4Co |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+remainder+rule&rft.jtitle=International+journal+of+mathematical+education+in+science+and+technology&rft.au=Firozzaman%2C+Firoz&rft.au=Firoz%2C+Fahim&rft.date=2017-07-04&rft.issn=0020-739X&rft.eissn=1464-5211&rft.volume=48&rft.issue=5&rft.spage=756&rft.epage=762&rft_id=info:doi/10.1080%2F0020739X.2016.1267807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0020739X_2016_1267807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-739X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-739X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-739X&client=summon |