Interval Quadratic Equations: A Review
In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose coefficients constitute interval variables. This study focuses on interval quadratic equations that contain only one coefficient considered as an...
Saved in:
| Published in | AppliedMath Vol. 3; no. 4; pp. 909 - 956 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
MDPI AG
01.12.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2673-9909 2673-9909 |
| DOI | 10.3390/appliedmath3040048 |
Cover
| Abstract | In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose coefficients constitute interval variables. This study focuses on interval quadratic equations that contain only one coefficient considered as an interval variable. The four methods reviewed here in order to solve this problem are: (i) the method of classic interval analysis used by Elishakoff and Daphnis, (ii) the direct method based on minimizations and maximizations also used by the same authors, (iii) the method of quantifier elimination used by Ioakimidis, and (iv) the interval parametrization method suggested by Elishakoff and Miglis and again based on minimizations and maximizations. We will also compare the results yielded by all these methods by using the computer algebra system Mathematica for computer evaluations (including quantifier eliminations) in order to conclude which method would be the most efficient way to solve problems relevant to interval quadratic equations. |
|---|---|
| AbstractList | In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose coefficients constitute interval variables. This study focuses on interval quadratic equations that contain only one coefficient considered as an interval variable. The four methods reviewed here in order to solve this problem are: (i) the method of classic interval analysis used by Elishakoff and Daphnis, (ii) the direct method based on minimizations and maximizations also used by the same authors, (iii) the method of quantifier elimination used by Ioakimidis, and (iv) the interval parametrization method suggested by Elishakoff and Miglis and again based on minimizations and maximizations. We will also compare the results yielded by all these methods by using the computer algebra system Mathematica for computer evaluations (including quantifier eliminations) in order to conclude which method would be the most efficient way to solve problems relevant to interval quadratic equations. |
| Author | Yvain, Nicolas Elishakoff, Isaac |
| Author_xml | – sequence: 1 givenname: Isaac surname: Elishakoff fullname: Elishakoff, Isaac – sequence: 2 givenname: Nicolas surname: Yvain fullname: Yvain, Nicolas |
| BookMark | eNqNkMFKw0AQhhepYK19AU85eYtOMrvdrLdSqhYKouh5mexuNCVN4iZt6du7tSKCF2HgHwa-j-E_Z4O6qR1jlwlcIyq4obatSmfX1L8jcACenbBhOpEYKwVq8Gs_Y-OuWwFAmgmJMhuyq0XdO7-lKnrakPXUlyaaf2xCNnV3G02jZ7ct3e6CnRZUdW78nSP2ejd_mT3Ey8f7xWy6jA1C1scmSbgkweUELSlUKU6sVcYRCSSlCg4cFYJ0goinwhauyB2QMEWaBy7HEVscvbahlW59uSa_1w2V-uvQ-DdNPvxYOR3oMLksuLAchMgFopTW2EMDXEBw4dG1qVva76iqfoQJ6ENz-m9zgUqPlPFN13lX_Af6BAvrdhI |
| Cites_doi | 10.1016/j.mechrescom.2012.04.004 10.1119/1.2344330 10.1137/1.9781611970906 10.3390/app122110725 10.1023/A:1014797921296 10.1137/1.9780898717716 10.1016/S0165-0114(95)00412-2 10.1016/S0747-7171(88)80004-X 10.1007/3-540-07407-4_17 10.1007/s00419-015-1086-4 10.25079/ukhjse.v5n2y2021.pp81-89 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3390/appliedmath3040048 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2673-9909 |
| EndPage | 956 |
| ExternalDocumentID | oai_doaj_org_article_5df5dfb7f45d4055b53377dcd4004450 10.3390/appliedmath3040048 10_3390_appliedmath3040048 |
| GroupedDBID | AAYXX AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS CITATION GROUPED_DOAJ MODMG M~E OK1 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c308t-c1147a54763da939236dd9ceaa53a99f40439307e5aa425dfefbe0a5cf2b7a5b3 |
| IEDL.DBID | UNPAY |
| ISSN | 2673-9909 |
| IngestDate | Fri Oct 03 12:52:02 EDT 2025 Tue Aug 19 17:55:48 EDT 2025 Thu Oct 16 04:25:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-c1147a54763da939236dd9ceaa53a99f40439307e5aa425dfefbe0a5cf2b7a5b3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2673-9909/3/4/48/pdf?version=1701409724 |
| PageCount | 48 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5df5dfb7f45d4055b53377dcd4004450 unpaywall_primary_10_3390_appliedmath3040048 crossref_primary_10_3390_appliedmath3040048 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AppliedMath |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mamehrashi (ref_4) 2021; 5 ref_14 ref_13 Wyrzykowski (ref_5) 2008; Volume 4967 Alolyan (ref_10) 2007; 1 ref_11 ref_18 ref_17 ref_16 ref_15 Landowski (ref_6) 2017; 93 Hansen (ref_9) 2002; 8 Davenport (ref_25) 1988; 5 Elishakoff (ref_19) 2016; 86 ref_24 ref_23 ref_21 Newburgh (ref_22) 1996; 34 ref_20 ref_1 Buckley (ref_3) 1997; 86 ref_2 ref_26 Elishakoff (ref_12) 2015; 271 ref_7 Elishakoff (ref_8) 2012; 44 |
| References_xml | – volume: 44 start-page: 1 year: 2012 ident: ref_8 article-title: Novel parameterized intervals may lead to sharp bounds publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.04.004 – volume: 271 start-page: 1024 year: 2015 ident: ref_12 article-title: Exact enclosures of roots of interval quadratic equations by Sridhara’s and Fagnano’s or modified Fagnano’s formulas publication-title: Appl. Math. Comput. – volume: 34 start-page: 23 year: 1996 ident: ref_22 article-title: Real, imaginary, and complex numbers: Where does the physics hide? publication-title: Phys. Teach. doi: 10.1119/1.2344330 – ident: ref_24 – ident: ref_7 doi: 10.1137/1.9781611970906 – ident: ref_26 – ident: ref_11 doi: 10.3390/app122110725 – ident: ref_16 – ident: ref_14 – ident: ref_1 – ident: ref_18 – volume: 8 start-page: 115 year: 2002 ident: ref_9 article-title: Sharp bounds on interval polynomial roots publication-title: Reliab. Comput. doi: 10.1023/A:1014797921296 – ident: ref_23 – ident: ref_21 – ident: ref_17 doi: 10.1137/1.9780898717716 – volume: 93 start-page: 65 year: 2017 ident: ref_6 article-title: RDM interval method for solving quadratic interval equation publication-title: Prz. Elektrotechniczny – volume: 86 start-page: 289 year: 1997 ident: ref_3 article-title: Neural net solutions to fuzzy problems: The quadratic equation publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(95)00412-2 – ident: ref_2 – volume: 5 start-page: 29 year: 1988 ident: ref_25 article-title: Real quantifier elimination is doubly exponential publication-title: J. Symb. Comput. doi: 10.1016/S0747-7171(88)80004-X – ident: ref_13 doi: 10.1007/3-540-07407-4_17 – ident: ref_15 – volume: 86 start-page: 1203 year: 2016 ident: ref_19 article-title: Generalized Galileo Galilei problem in interval setting for functionally related loads publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-015-1086-4 – volume: 5 start-page: 81 year: 2021 ident: ref_4 article-title: A new method for solving interval and fuzzy quadratic equations of dual form publication-title: UKH J. Sci. Eng. doi: 10.25079/ukhjse.v5n2y2021.pp81-89 – volume: Volume 4967 start-page: 1392 year: 2008 ident: ref_5 article-title: Fuzzy solution of interval linear equations publication-title: Parallel Processing and Applied Mathematics, Proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics (PPAM 2007), Gdansk, Poland, 9–12 September 2007 – ident: ref_20 – volume: 1 start-page: 1041 year: 2007 ident: ref_10 article-title: Real roots of quadratic interval polynomials publication-title: Int. J. Math. Anal. |
| SSID | ssj0002857378 |
| Score | 2.2420666 |
| SecondaryResourceType | review_article |
| Snippet | In this study, we tackle the subject of interval quadratic equations and we aim to accurately determine the root enclosures of quadratic equations, whose... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 909 |
| SubjectTerms | interval coefficients interval quadratic equations interval variables real roots uncertain variables uncertainty |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kF_Ugior1RQ7iRYO1m81mvVVpKYKCYKG3MLuzi0iJrbaI_97ZbC0VD3oQcgoJm8yD-WZ25xuAE8RCOI5sqSuI0gxzyy7l2-llYTjaoc9Rh37nu_u8P8huh3K4NOornAmL9MBRcBeSPF9G-UwSgwtpGJ8oRZaC8WUxW28VeimZeq5LRlIJVcQuGcF5fdwPdsQw8ElEw_0WiWrC_nVYnVVj_HjH0WgpyvQ2YWMOD5NO_KwtWHHVNpzWZTs2ieRhhhRUZpPuJHJ0v10lnSQW-Hdg0Os-3vTT-XyD1IpWMU0t5yIKZcYuTqgZqIicSFuHKAVq7QPxjWYfdBKRXYu888a1UFrfNvyeEbvQqF4qtweJJkYWuTAMRzhEe28syTBDI7Slole6CWdf_1qOI41FyfA_SKb8KZkmXAdxLJ4MFNT1DVZMOVdM-ZtimnC-EOYf1tz_jzUPYC2Mg4_HTQ6hMX2duSMGDVNzXNvHJ215v60 priority: 102 providerName: Directory of Open Access Journals |
| Title | Interval Quadratic Equations: A Review |
| URI | https://www.mdpi.com/2673-9909/3/4/48/pdf?version=1701409724 https://doaj.org/article/5df5dfb7f45d4055b53377dcd4004450 |
| UnpaywallVersion | publishedVersion |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2673-9909 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857378 issn: 2673-9909 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 2673-9909 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002857378 issn: 2673-9909 databaseCode: AMVHM dateStart: 20220601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2673-9909 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002857378 issn: 2673-9909 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPYgHH6hYUclBvGhM7WaTrAhSpSJCi4IFPUiYfakotWqr6MHf7mwexcdFhZBD2E12JzM73-zufAuwhpgwQ57NN4nWfoiRIpOyDX87keTt0EYoXL5zuxMddcPjc35egd0yF8Ztq6RQ_CYbpBtRzHwaLkXAgjAIk6Cv7d5zMY_kiMQdWVMjHIPxiBMSr8J4t3PSvHDnyZU18zwZRpF9viJsNAHBa5ar7hdflFH2T8LEsNfH1xe8u_vkZw6n4bJsYb695HZrOJBb6u0beeN_uzADUwUA9Zq5xsxCxfTmYD2bGCSl806HqJ1SKK_1kLOAP-14TS9fQpiH7mHr7ODIL05Q8BWrJwNfUbQTIw9pENEoCAqxSGuhDCJnKIR11DqCrNxwRDJebY2Vpo5c2YakepItQLV33zOL4AlN2CVikgAPgQBrpdLcndLhEl_RxqIGG6Us035OlJFSgOEkn_6UfA32nbhHJR3Jdfbg_vEqLWwmpfbQJWMbck24kkuCpnGslXavCHm9Bpujn_WLby79rfgyVAePQ7NCmGMgV7NYne7t99ZqoWYfrwjXhA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qexAPPlCxopKDeNG0tZtNsiJIlZYiWBQs1IOE2ZeKpa21VfTXO9ukxcdFhZzCbrKZzOx8s7vzDcAuYswMeTbfxFr7AYaKTMpW_cNYkrdDG6Jw-c4XrbDZDs47vJOD42kujDtWSaH4w2SSroYR82m6FGVWDspBXB5oe_KSrSM5InFH1lQN5qAQckLieSi0W5e1G1dPbtozzZNhFNmnO8JGExC8Z6nqfvFFE8r-BZgf9wb49ord7ic_01iC2-kI0-Mlj6XxSJbU-zfyxv9-wjIsZgDUq6UaswI501uFvcnCICmddzVG7ZRCefWnlAX8-cireekWwhq0G_Xrs6afVVDwFavEI19RtBMhD2gS0SgICrFQa6EMImcohHXUOoKs3HBEMl5tjZWmglzZqqR-kq1DvtfvmQ3whCbsEjJJgIdAgLVSae6qdLjEV7SRKML-VJbJICXKSCjAcJJPfkq-CKdO3LOWjuR6cqM_vEsym0loPHTJyAZcE67kkqBpFGml3SMCXinCwexn_eKdm39rvgX50XBstglzjOROplofpgnVXg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+Quadratic+Equations%3A+A+Review&rft.jtitle=AppliedMath&rft.au=Elishakoff%2C+Isaac&rft.au=Yvain%2C+Nicolas&rft.date=2023-12-01&rft.issn=2673-9909&rft.eissn=2673-9909&rft.volume=3&rft.issue=4&rft.spage=909&rft.epage=956&rft_id=info:doi/10.3390%2Fappliedmath3040048&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_appliedmath3040048 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-9909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-9909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-9909&client=summon |