Multi-feature fusion stock prediction based on knowledge graph
Purpose Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable. Design/methodology/approach Thi...
Saved in:
| Published in | Electronic library Vol. 42; no. 3; pp. 455 - 482 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Emerald Publishing Limited
27.06.2024
Emerald Group Publishing Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0264-0473 0264-0473 1758-616X |
| DOI | 10.1108/EL-02-2023-0053 |
Cover
| Abstract | Purpose
Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable.
Design/methodology/approach
This study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention.
Findings
Experimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models.
Originality/value
The study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making. |
|---|---|
| AbstractList | Purpose
Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable.
Design/methodology/approach
This study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention.
Findings
Experimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models.
Originality/value
The study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making. PurposeStock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable.Design/methodology/approachThis study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention.FindingsExperimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models.Originality/valueThe study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making. |
| Author | Liu, Shenglan Liu, Zhenghao Qian, Yuxing Lv, Wenlong Fang, Yanbin |
| Author_xml | – sequence: 1 givenname: Zhenghao surname: Liu fullname: Liu, Zhenghao email: zhenghaoliu@whu.edu.cn – sequence: 2 givenname: Yuxing surname: Qian fullname: Qian, Yuxing email: 540023547@qq.com – sequence: 3 givenname: Wenlong surname: Lv fullname: Lv, Wenlong email: lvwenlong@whu.edu.cn – sequence: 4 givenname: Yanbin surname: Fang fullname: Fang, Yanbin email: yanbinfang@whu.edu.cn – sequence: 5 givenname: Shenglan surname: Liu fullname: Liu, Shenglan email: 2330129869@qq.com |
| BookMark | eNp9UT1PwzAQtVCRaAszayRmt2c7TZwFCVXlQwpigdm6OHZJmybBdoT49yQqAyDEdE-ne_fuvZuRSdM2hpBLBgvGQC43OQVOOXBBAVbihEyBJzGFOBWTb_iMzLzfAQBLUpiS68e-DhW1BkPvTGR7X7VN5EOr91HnTFnpMDYK9KaMBrBv2vfalFsTbR12r-fk1GLtzcVXnZOX283z-p7mT3cP65ucagEyUBSxTUqRiWQ41cZMZnGCGZNWQlHYgnNglpeQ6TLDTHPD0gKRMSsEYlpIEHNyddzbufatNz6oXdu7ZpBUAlImAbLB25wsj1Patd47Y1XnqgO6D8VAjSGpTa6AqzEkNYY0MFa_GLoKOFoODqv6H97iyDMH47Au_xD68Q3xCR1yeWg |
| CitedBy_id | crossref_primary_10_4018_IJKM_369121 |
| Cites_doi | 10.1016/j.eswa.2023.121710 10.1016/j.dss.2018.11.004 10.1016/j.iswa.2022.200111 10.1007/s10844-022-00707-7 10.48550/arXiv.1412.6980 10.28945/1739 10.1007/s00521-020-05532-z 10.1007/s11390-016-1651-5 10.1016/S0169-2070(98)00053-3 10.1016/j.omega.2004.07.024 10.1109/TKDE.2017.2754499 10.1007/s00521-019-04504-2 10.1086/338206 10.1111/j.1540-6261.1994.tb00083.x 10.1111/j.1540-6261.2009.01493.x 10.1016/j.jocs.2017.10.013 10.2991/iccia-19.2019.72 10.1007/s00521-021-06328-5 10.1016/j.irfa.2020.101573 10.1086/294743 10.1109/ICIS46139.2019.8940265 10.25300/MISQ/2018/14268 10.1007/978-3-030-37439-6_1 10.1016/j.eswa.2021.115019 10.1016/j.ins.2014.03.096 10.1145/3297156.3297173 10.1016/S1574-0102(03)01027-6 10.1111/j.1540-6261.2007.01232.x 10.1142/S0219622019500160 10.1016/j.neucom.2022.06.106 10.1145/2939672.2939754 10.1016/j.im.2019.103181 10.1016/j.eswa.2022.118128 10.1109/ICACCI.2017.8126078 10.1162/neco.1997.9.8.1735 10.18653/v1/N16-1041 10.1007/s41060-021-00306-9 10.1016/j.eswa.2005.09.002 10.1109/10.554763 10.1016/S0169-2070(01)00093-0 10.1145/2539150.2539190 10.1016/j.eswa.2013.04.013 10.1007/3-540-47887-6_48 10.1155/2019/9202457 10.1155/2019/4324878 10.1007/s12559-021-09819-8 10.1016/j.asoc.2019.105747 10.1186/s40537-017-0111-6 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 0-V 7RV 7SC 7XB 8FD 8FE 8FG 8FI ABUWG AFKRA ALSLI ARAPS AZQEC BEC BENPR BGLVJ CCPQU CJNVE CNYFK DWQXO E3H F2A FYUFA GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M0P M1O M2O MBDVC NAPCQ P5Z P62 PHGZM PHGZT PKEHL PPXIY PQEDU PQEST PQGLB PQQKQ PQUKI PRINS PRQQA Q9U |
| DOI | 10.1108/EL-02-2023-0053 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection Nursing & Allied Health Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection ProQuest Central (Alumni) ProQuest Central Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials eLibrary ProQuest Central ProQuest Technology Collection (LUT) ProQuest One Community College Education Collection Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Health Research Premium Collection ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Education Database Library Science Database Research Library Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest One Education Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection elibrary Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Library Science Health Research Premium Collection ProQuest Central Korea Library & Information Science Collection ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Education |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science Computer Science |
| EISSN | 0264-0473 1758-616X |
| EndPage | 482 |
| ExternalDocumentID | 10_1108_EL_02_2023_0053 10.1108/EL-02-2023-0053 |
| GroupedDBID | .X0 0R~ 29G 3FY 4.4 5GY 5VS 70U 77K 7RV 9F- AAGBP AAMCF AAOWE AAPSD AAUDR AAWTL ABEAN ABHCV ABIJV ABJNI ABSDC ABYQI ACGFS ACHQT ACKOT ADBBV ADFRT ADOMW AEBZA AEDOK AEMMR AETHF AFNZV AGZLY AIAFM AJEBP AJFKA ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AODMV APPLU ARAPS ASMFL ASUFR ATGMP AUCOK BENPR BVLZF CS3 DU5 EBS FNNZZ GEA GEC GEI GMM GMN GQ. H13 HCIFZ HZ~ IJT IPNFZ J1Y JI- JL0 KLENG M0P M1O M2O M42 O9- RIG TDX TEM TET TGG TMD TMF TMT TN5 WH7 Z11 Z21 0-V 1XV 77I 8FE 8FG 8FI 8FW 8R4 8R5 AAYXX ABUWG ABXQL ACXJU ADMHG AFKRA AHAFT AHMHQ ARALO AZQEC BCU BEC BGLVJ BKEYQ BPHCQ BVXVI CCPQU CITATION CJNVE CNYFK DWQXO EX3 FYUFA GNUQQ GUQSH K6V K7- NAPCQ P62 PCD PHGZM PHGZT PPXIY PQEDU PQGLB PQQKQ PRG PROAC PRQQA PUEGO Q2X SJFOW UKHRP WOW 7SC 7XB 8FD AFNTC E3H F2A JQ2 L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c308t-a34f6d3936110f418946a918f80bbfb2201f2d09cd9a9c2e17baa11f33aa7b803 |
| IEDL.DBID | M1O |
| ISSN | 0264-0473 |
| IngestDate | Sat Aug 23 13:33:52 EDT 2025 Wed Oct 01 05:43:25 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Thu Aug 22 06:15:23 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Knowledge graph embedding Sentiment analysis Muti-feature fusion Stock prediction Knowledge graph Relevant stocks |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c308t-a34f6d3936110f418946a918f80bbfb2201f2d09cd9a9c2e17baa11f33aa7b803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3071800947 |
| PQPubID | 32127 |
| PageCount | 28 |
| ParticipantIDs | crossref_primary_10_1108_EL_02_2023_0053 crossref_citationtrail_10_1108_EL_02_2023_0053 proquest_journals_3071800947 emerald_primary_10_1108_EL-02-2023-0053 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-27 |
| PublicationDateYYYYMMDD | 2024-06-27 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Electronic library |
| PublicationYear | 2024 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2024062511251468100_ref002) 2013 (key2024062511251468100_ref047) 2022; 208 (key2024062511251468100_ref032) 2022; 14 (key2024062511251468100_ref049) 2002; 28 (key2024062511251468100_ref038) 2019; 2019 (key2024062511251468100_ref045) 2006; 31 (key2024062511251468100_ref001) 2003 (key2024062511251468100_ref020) 2021; 178 (key2024062511251468100_ref052) 2019; 84 (key2024062511251468100_ref050) 2018; 28 (key2024062511251468100_ref022) 2014; 278 (key2024062511251468100_ref019) 2020; 32 (key2024062511251468100_ref009) 2012; 15 (key2024062511251468100_ref008) 2020; 72 (key2024062511251468100_ref031) 2021; 33 (key2024062511251468100_ref033) 2001; 17 (key2024062511251468100_ref037) 2022 (key2024062511251468100_ref015) 2016 (key2024062511251468100_ref010) 1965; 38 (key2024062511251468100_ref026) 1994; 49 (key2024062511251468100_ref035) 2022; 16 (key2024062511251468100_ref043) 2016; 31 (key2024062511251468100_ref016) 2022; 59 (key2024062511251468100_ref017) 1997; 9 (key2024062511251468100_ref044) 2013; 40 (key2024062511251468100_ref018) 2019 (key2024062511251468100_ref023) 2019; 2019 (key2024062511251468100_ref024) 2019 (key2024062511251468100_ref013) 1999; 15 (key2024062511251468100_ref011) 2009; 64 (key2024062511251468100_ref051) 2019; 18 (key2024062511251468100_ref007) 2015 (key2024062511251468100_ref042) 2007; 62 (key2024062511251468100_ref025) 2021; 33 (key2024062511251468100_ref034) 2017 (key2024062511251468100_ref048) 2017; 29 key2024062511251468100_ref036 (key2024062511251468100_ref029) 2005; 33 (key2024062511251468100_ref041) 2013 (key2024062511251468100_ref021) 2017 (key2024062511251468100_ref027) 2019; 117 (key2024062511251468100_ref012) 2020 (key2024062511251468100_ref004) 1997; 44 (key2024062511251468100_ref003) 2022; 504 (key2024062511251468100_ref005) 2018; 42 (key2024062511251468100_ref030) 2016 (key2024062511251468100_ref014) 2002 (key2024062511251468100_ref006) 2024; 238 (key2024062511251468100_ref039) 2018; 5 (key2024062511251468100_ref028) 2018 (key2024062511251468100_ref046) 2022; 14 (key2024062511251468100_ref040) 2020; 57 |
| References_xml | – start-page: 2787 year: 2013 ident: key2024062511251468100_ref002 article-title: Translating embeddings for modeling multi-relational data – volume: 238 start-page: 121710 year: 2024 ident: key2024062511251468100_ref006 article-title: An integrated approach of ensemble learning methods for stock index prediction using investor sentiments publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.121710 – volume: 117 start-page: 100 year: 2019 ident: key2024062511251468100_ref027 article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market publication-title: Decision Support Systems doi: 10.1016/j.dss.2018.11.004 – volume: 16 start-page: 200111 year: 2022 ident: key2024062511251468100_ref035 article-title: A comprehensive review on multiple hybrid deep learning approaches for stock prediction publication-title: Intelligent Systems with Applications doi: 10.1016/j.iswa.2022.200111 – volume: 59 start-page: 367 issue: 2 year: 2022 ident: key2024062511251468100_ref016 article-title: Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-022-00707-7 – year: 2017 ident: key2024062511251468100_ref021 article-title: Adam: a method for stochastic optimization doi: 10.48550/arXiv.1412.6980 – volume: 15 start-page: 247 year: 2012 ident: key2024062511251468100_ref009 article-title: The dual micro/macro informing role of social network sites: can twitter macro messages help predict stock prices? publication-title: Informing Science: The International Journal of an Emerging Transdiscipline doi: 10.28945/1739 – volume: 33 start-page: 4741 issue: 10 year: 2021 ident: key2024062511251468100_ref025 article-title: A CNN-BiLSTM-AM method for stock price prediction publication-title: Neural Computing and Applications doi: 10.1007/s00521-020-05532-z – volume: 31 start-page: 624 issue: 3 year: 2016 ident: key2024062511251468100_ref043 article-title: Learning better word embedding by asymmetric low-rank projection of knowledge graph publication-title: Journal of Computer Science and Technology doi: 10.1007/s11390-016-1651-5 – volume: 15 start-page: 1 issue: 1 year: 1999 ident: key2024062511251468100_ref013 article-title: Additive outliers, GARCH and forecasting volatility publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(98)00053-3 – volume: 33 start-page: 497 issue: 6 year: 2005 ident: key2024062511251468100_ref029 article-title: A hybrid ARIMA and support vector machines model in stock price forecasting publication-title: Omega doi: 10.1016/j.omega.2004.07.024 – volume: 29 start-page: 2724 issue: 12 year: 2017 ident: key2024062511251468100_ref048 article-title: Knowledge graph embedding: a survey of approaches and applications publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2754499 – volume: 32 start-page: 9713 issue: 13 year: 2020 ident: key2024062511251468100_ref019 article-title: Stock closing price prediction based on sentiment analysis and LSTM publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04504-2 – volume: 28 start-page: 636 issue: 4 year: 2002 ident: key2024062511251468100_ref049 article-title: Can mixed emotions peacefully coexist? publication-title: Journal of Consumer Research doi: 10.1086/338206 – volume: 49 start-page: 923 issue: 3 year: 1994 ident: key2024062511251468100_ref026 article-title: The impact of public information on the stock market publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1994.tb00083.x – volume: 64 start-page: 2023 issue: 5 year: 2009 ident: key2024062511251468100_ref011 article-title: Media coverage and the cross-section of stock returns publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2009.01493.x – volume: 28 start-page: 294 year: 2018 ident: key2024062511251468100_ref050 article-title: Exploiting investors social network for stock prediction in China’s market publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.10.013 – start-page: 467 year: 2019 ident: key2024062511251468100_ref018 article-title: Analysis and research on stock price of LSTM and bidirectional LSTM neural network doi: 10.2991/iccia-19.2019.72 – volume: 33 start-page: 17425 issue: 24 year: 2021 ident: key2024062511251468100_ref031 article-title: An attention-based CNN-LSTM model for subjectivity detection in opinion-mining publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06328-5 – volume: 72 start-page: 101573 year: 2020 ident: key2024062511251468100_ref008 article-title: Sentiment stocks publication-title: International Review of Financial Analysis doi: 10.1016/j.irfa.2020.101573 – volume: 38 start-page: 34 issue: 1 year: 1965 ident: key2024062511251468100_ref010 article-title: The behavior of stock-market prices publication-title: The Journal of Business doi: 10.1086/294743 – start-page: 300 year: 2019 ident: key2024062511251468100_ref024 article-title: Time series prediction based on temporal convolutional network doi: 10.1109/ICIS46139.2019.8940265 – volume: 42 start-page: 895 issue: 3 year: 2018 ident: key2024062511251468100_ref005 article-title: The interaction between microblog sentiment and stock returns: an empirical examination publication-title: MIS Quarterly doi: 10.25300/MISQ/2018/14268 – start-page: 2327 year: 2015 ident: key2024062511251468100_ref007 article-title: Deep learning for event-driven stock prediction – start-page: 1 volume-title: Knowledge Graphs: Methodology, Tools and Selected Use Cases year: 2020 ident: key2024062511251468100_ref012 article-title: Introduction: what is a knowledge graph doi: 10.1007/978-3-030-37439-6_1 – volume: 178 start-page: 115019 year: 2021 ident: key2024062511251468100_ref020 article-title: A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115019 – volume: 278 start-page: 826 year: 2014 ident: key2024062511251468100_ref022 article-title: The effect of news and public mood on stock movements publication-title: Information Sciences doi: 10.1016/j.ins.2014.03.096 – start-page: 556 year: 2018 ident: key2024062511251468100_ref028 article-title: Deep learning using risk-reward function for stock market prediction doi: 10.1145/3297156.3297173 – start-page: 1053 volume-title: Handbook of the Economics of Finance year: 2003 ident: key2024062511251468100_ref001 article-title: Chapter 18 a survey of behavioral finance doi: 10.1016/S1574-0102(03)01027-6 – volume: 62 start-page: 1139 issue: 3 year: 2007 ident: key2024062511251468100_ref042 article-title: Giving content to investor sentiment: the role of media in the stock market publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.2007.01232.x – volume: 18 start-page: 953 issue: 3 year: 2019 ident: key2024062511251468100_ref051 article-title: Research on knowledge discovery and stock forecasting of financial news based on domain ontology publication-title: International Journal of Information Technology and Decision Making doi: 10.1142/S0219622019500160 – volume: 504 start-page: 1 year: 2022 ident: key2024062511251468100_ref003 article-title: A hierarchical attention network for stock prediction based on attentive multi-view news learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.106 – start-page: 855 year: 2016 ident: key2024062511251468100_ref015 article-title: Node2vec: scalable feature learning for networks doi: 10.1145/2939672.2939754 – volume: 57 start-page: 103181 issue: 5 year: 2020 ident: key2024062511251468100_ref040 article-title: How mood affects the stock market: empirical evidence from microblogs publication-title: Information and Management doi: 10.1016/j.im.2019.103181 – volume: 208 start-page: 118128 year: 2022 ident: key2024062511251468100_ref047 article-title: Stock market index prediction using deep transformer model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.118128 – start-page: 1643 year: 2017 ident: key2024062511251468100_ref034 article-title: Stock price prediction using LSTM, RNN and CNN-sliding window model doi: 10.1109/ICACCI.2017.8126078 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: key2024062511251468100_ref017 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – start-page: 374 year: 2016 ident: key2024062511251468100_ref030 article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks doi: 10.18653/v1/N16-1041 – ident: key2024062511251468100_ref036 – volume: 14 start-page: 1 issue: 1 year: 2022 ident: key2024062511251468100_ref032 article-title: A survey of the application of graph-based approaches in stock market analysis and prediction publication-title: International Journal of Data Science and Analytics doi: 10.1007/s41060-021-00306-9 – volume: 31 start-page: 41 issue: 1 year: 2006 ident: key2024062511251468100_ref045 article-title: Comparison of four different time series methods to forecast hepatitis a virus infection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.002 – volume: 44 start-page: 168 issue: 3 year: 1997 ident: key2024062511251468100_ref004 article-title: Linear and nonlinear ARMA model parameter estimation using an artificial neural network publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.554763 – year: 2022 ident: key2024062511251468100_ref037 article-title: Artificial intelligence in financial technology – volume: 17 start-page: 459 issue: 3 year: 2001 ident: key2024062511251468100_ref033 article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(01)00093-0 – start-page: 53 year: 2013 ident: key2024062511251468100_ref041 article-title: Automatic domain-specific sentiment lexicon generation with label propagation doi: 10.1145/2539150.2539190 – volume: 40 start-page: 5501 issue: 14 year: 2013 ident: key2024062511251468100_ref044 article-title: A Bayesian regularized artificial neural network for stock market forecasting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.04.013 – start-page: 481 volume-title: Advances in Knowledge Discovery and Data Mining year: 2002 ident: key2024062511251468100_ref014 article-title: News sensitive stock trend prediction doi: 10.1007/3-540-47887-6_48 – volume: 2019 year: 2019 ident: key2024062511251468100_ref023 article-title: Anticipating stock market of the renowned companies: a knowledge graph approach publication-title: Complexity doi: 10.1155/2019/9202457 – volume: 2019 start-page: e4324878 year: 2019 ident: key2024062511251468100_ref038 article-title: Is deep learning for image recognition applicable to stock market prediction? publication-title: Complexity doi: 10.1155/2019/4324878 – volume: 14 start-page: 372 issue: 1 year: 2022 ident: key2024062511251468100_ref046 article-title: Does twitter affect stock market decisions? Financial sentiment analysis during pandemics: a comparative study of the H1N1 and the COVID-19 periods publication-title: Cognitive Computation doi: 10.1007/s12559-021-09819-8 – volume: 84 start-page: 105747 year: 2019 ident: key2024062511251468100_ref052 article-title: Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105747 – volume: 5 start-page: 3 issue: 1 year: 2018 ident: key2024062511251468100_ref039 article-title: Big data: deep learning for financial sentiment analysis publication-title: Journal of Big Data doi: 10.1186/s40537-017-0111-6 |
| SSID | ssj0001670 |
| Score | 2.3404179 |
| Snippet | Purpose
Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a... PurposeStock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 455 |
| SubjectTerms | Algorithms Artificial intelligence Bank technology Behavior Behavioral economics Deep learning Efficient markets Forecasting Graphical representations Internet stocks Investments Investors Knowledge Knowledge representation Neural networks News Researchers Resistance (Psychology) Securities markets Semantics Semiotics Sentiment analysis Short Term Memory Social Media Social networks Stock exchanges Stock prices Teaching Methods Time series Volatility |
| Title | Multi-feature fusion stock prediction based on knowledge graph |
| URI | https://www.emerald.com/insight/content/doi/10.1108/EL-02-2023-0053/full/html https://www.proquest.com/docview/3071800947 |
| Volume | 42 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 0264-0473 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: M1O dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 0264-0473 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: BENPR dateStart: 19980601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 0264-0473 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0001670 issn: 0264-0473 databaseCode: 8FG dateStart: 19980601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWFh4I8qj8oCAxSWOU8dZQIBaEOIlBBKb5Tj2UlQKtAu_Hp_rFIGAgSFSIjtRku98d74nwI7ACjBGW9o2gtOsEI7KKjPUGl167VlUbYnZyFfX4vwhu3hsP0aD21sMq6x5YmDU1bNBG_mBp0UmMQ4uPxq8UOwahd7V2EJjGmbR-YgdDK7YzYQTM5FHGwsGW-Q8lvbBzjedy5CX7CUWRTr8IpW-peZ-sucgc7oLoOq3HYea9FqjYdky798KOf7_cxZhPqqj5HhMP0swZfvLsFC3eiBx5S_DdsxvILskJjAhoPX4ChyGRF7qbKgTStwIjXDEK5amRwav6AwK81FmVsSfTEx5JFTMXoWHbuf-9JzG1gzU8EQOqeaZExUvuPB_02VMFpnQBZNOJmXpytSrFS6tksJUhS5Malleas2Y41zrvJQJX4OZ_nPfrgNhNi38gXLRb21E219Iy6V1PEuMcaIBrRoaZWLdcmyf8aTC_iWRqnOpklQhlgqxbMD-5IbBuGTH71P3ItY_zPxCIA3YqnFUcZW_qU8QN_4e3oQ5_6QMQ8zSfAtmhq8ju-2VmWHZhGnZPWvC7Enn-vauGej3Awmc8kk |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tl0N76QNasS1QHyjl4pLEXsc-bCsKi5ayrFAFEjfjOPal1bLdh6r-uf62eoyziKrlxiFSIjs5zEzmmxnPA2BbYAcYaxztWsEoV8JTWXNLnTVVsJ5F3ZVYjXw6EoML_uWye9mC300tDKZVNjoxKur62mKMfC_IYi4xD678NPlBcWoUnq42IzRMGq1Q92KLsVTYceJ-_Qwu3Kx3fBj4_a4ojvrnBwOapgxQyzI5p4ZxL2qmmAhI6HkuFRdG5dLLrKp8VQSE9EWdKVsro2zh8rIyJs89Y8aUlcxY-O4jWOGMq-D8rXzuj86-LrEgF2WK8mC6R8lScyGcvdMfxsrogJkU_4Q7uPhXcfAtQETUO3oOT5O5SvZv5OsFtNx4FZ41oyBI0gyrsJnqH8gOSQVOyPBmfQ0-xkJf6l3sI0r8AoN0JBie9huZTPGwKO5HTK1JuFmG-kjsqP0SLh6EqK-gPb4eu3UguStUuBA3g-sjuuFBOiadZzyz1osOfGgIp23qa47jNb7r6N9kUveHOis0UlojpTuwu3xhctPS4_9b3ydO_GPnHfZ1YKPhlE5aYKZvZfb1_ctv4fHg_HSoh8ejkzfwJHyVYzpaUW5Aez5duM1g-MyrrSRdBK4eWqD_AJhKD_4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9iIKFdYMAmymD4sI1d3MZx6jiHbZqgFYzycRgSN-M49gVUOmiF4E_jX-Gfwc91ikCwG4cdIiXyi6U4P78vvw-AzwIrwBhtadsITrNCOCqrzFBrdOm1Z1G1JWYj7-2L7aPs93H7eApu61wYDKuseWJg1NW5QR95y2ORSYyDy1suhkUcbnV_Dv5S7CCFJ611O40xRHbt9ZU33y6_72z5f_0lTbudP5vbNHYYoIYnckg1z5yoeMGFl4IuY7LIhC6YdDIpS1emXjq6tEoKUxW6MKlleak1Y45zrfNSJtzP-wZmcjQjMGyQHUykABN59O9goEfOY1kh7LrT6YWcaC8tKe6BRxLxSVrwg2gI8q47D3f1So3DXE6bo2HZNDdPikj-n0v5DuaiGk5-jffNAkzZ_iLM1y0uSOR4i7AW8zrIVxITtxDI9fgS_AgJzNTZUB-VuBE6H4lXqM0pGVzgIVigR12hIv5m4sIkoVL4ezh6la_8ANP9875dBsJsWvgL9QFv0om2f5CWS-t4lhjjRAOaNSyUifXasW3ImQp2WyJVp6eSVCGOFOKoAd8mLwzGpUpeJt2IOHuG8hE4G7BaY0hF7napHgC08u_hdZj1yFK9nf3dj_DWT5phlF2ar8L08GJk17w-Nyw_hY1D4OS14XUPjiVU6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-feature+fusion+stock+prediction+based+on+knowledge+graph&rft.jtitle=Electronic+library&rft.au=Liu%2C+Zhenghao&rft.au=Qian%2C+Yuxing&rft.au=Lv%2C+Wenlong&rft.au=Fang%2C+Yanbin&rft.date=2024-06-27&rft.issn=0264-0473&rft.eissn=0264-0473&rft.volume=42&rft.issue=3&rft.spage=455&rft.epage=482&rft_id=info:doi/10.1108%2FEL-02-2023-0053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EL_02_2023_0053 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-0473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-0473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-0473&client=summon |