Multi-feature fusion stock prediction based on knowledge graph

Purpose Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable. Design/methodology/approach Thi...

Full description

Saved in:
Bibliographic Details
Published inElectronic library Vol. 42; no. 3; pp. 455 - 482
Main Authors Liu, Zhenghao, Qian, Yuxing, Lv, Wenlong, Fang, Yanbin, Liu, Shenglan
Format Journal Article
LanguageEnglish
Published Oxford Emerald Publishing Limited 27.06.2024
Emerald Group Publishing Limited
Subjects
Online AccessGet full text
ISSN0264-0473
0264-0473
1758-616X
DOI10.1108/EL-02-2023-0053

Cover

Abstract Purpose Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable. Design/methodology/approach This study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention. Findings Experimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models. Originality/value The study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making.
AbstractList Purpose Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable. Design/methodology/approach This study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention. Findings Experimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models. Originality/value The study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making.
PurposeStock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a knowledge graph to represent news semantics and establish connections between stocks is deemed essential and viable.Design/methodology/approachThis study presents a knowledge-driven framework for predicting stock prices. The framework integrates relevant stocks with the semantic and emotional characteristics of textual data. The authors construct a stock knowledge graph (SKG) to extract pertinent stock information and use a knowledge graph representation model to capture both the relevant stock features and the semantic features of news articles. Additionally, the authors consider the emotional characteristics of news and investor comments, drawing insights from behavioral finance theory. The authors examined the effectiveness of these features using the combined deep learning model CNN+LSTM+Attention.FindingsExperimental results demonstrate that the knowledge-driven combined feature model exhibits significantly improved predictive accuracy compared to single-feature models.Originality/valueThe study highlights the value of the SKG in uncovering potential correlations among stocks. Moreover, the knowledge-driven multi-feature fusion stock forecasting model enhances the prediction of stock trends for well-known enterprises, providing valuable guidance for investor decision-making.
Author Liu, Shenglan
Liu, Zhenghao
Qian, Yuxing
Lv, Wenlong
Fang, Yanbin
Author_xml – sequence: 1
  givenname: Zhenghao
  surname: Liu
  fullname: Liu, Zhenghao
  email: zhenghaoliu@whu.edu.cn
– sequence: 2
  givenname: Yuxing
  surname: Qian
  fullname: Qian, Yuxing
  email: 540023547@qq.com
– sequence: 3
  givenname: Wenlong
  surname: Lv
  fullname: Lv, Wenlong
  email: lvwenlong@whu.edu.cn
– sequence: 4
  givenname: Yanbin
  surname: Fang
  fullname: Fang, Yanbin
  email: yanbinfang@whu.edu.cn
– sequence: 5
  givenname: Shenglan
  surname: Liu
  fullname: Liu, Shenglan
  email: 2330129869@qq.com
BookMark eNp9UT1PwzAQtVCRaAszayRmt2c7TZwFCVXlQwpigdm6OHZJmybBdoT49yQqAyDEdE-ne_fuvZuRSdM2hpBLBgvGQC43OQVOOXBBAVbihEyBJzGFOBWTb_iMzLzfAQBLUpiS68e-DhW1BkPvTGR7X7VN5EOr91HnTFnpMDYK9KaMBrBv2vfalFsTbR12r-fk1GLtzcVXnZOX283z-p7mT3cP65ucagEyUBSxTUqRiWQ41cZMZnGCGZNWQlHYgnNglpeQ6TLDTHPD0gKRMSsEYlpIEHNyddzbufatNz6oXdu7ZpBUAlImAbLB25wsj1Patd47Y1XnqgO6D8VAjSGpTa6AqzEkNYY0MFa_GLoKOFoODqv6H97iyDMH47Au_xD68Q3xCR1yeWg
CitedBy_id crossref_primary_10_4018_IJKM_369121
Cites_doi 10.1016/j.eswa.2023.121710
10.1016/j.dss.2018.11.004
10.1016/j.iswa.2022.200111
10.1007/s10844-022-00707-7
10.48550/arXiv.1412.6980
10.28945/1739
10.1007/s00521-020-05532-z
10.1007/s11390-016-1651-5
10.1016/S0169-2070(98)00053-3
10.1016/j.omega.2004.07.024
10.1109/TKDE.2017.2754499
10.1007/s00521-019-04504-2
10.1086/338206
10.1111/j.1540-6261.1994.tb00083.x
10.1111/j.1540-6261.2009.01493.x
10.1016/j.jocs.2017.10.013
10.2991/iccia-19.2019.72
10.1007/s00521-021-06328-5
10.1016/j.irfa.2020.101573
10.1086/294743
10.1109/ICIS46139.2019.8940265
10.25300/MISQ/2018/14268
10.1007/978-3-030-37439-6_1
10.1016/j.eswa.2021.115019
10.1016/j.ins.2014.03.096
10.1145/3297156.3297173
10.1016/S1574-0102(03)01027-6
10.1111/j.1540-6261.2007.01232.x
10.1142/S0219622019500160
10.1016/j.neucom.2022.06.106
10.1145/2939672.2939754
10.1016/j.im.2019.103181
10.1016/j.eswa.2022.118128
10.1109/ICACCI.2017.8126078
10.1162/neco.1997.9.8.1735
10.18653/v1/N16-1041
10.1007/s41060-021-00306-9
10.1016/j.eswa.2005.09.002
10.1109/10.554763
10.1016/S0169-2070(01)00093-0
10.1145/2539150.2539190
10.1016/j.eswa.2013.04.013
10.1007/3-540-47887-6_48
10.1155/2019/9202457
10.1155/2019/4324878
10.1007/s12559-021-09819-8
10.1016/j.asoc.2019.105747
10.1186/s40537-017-0111-6
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0-V
7RV
7SC
7XB
8FD
8FE
8FG
8FI
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BEC
BENPR
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
FYUFA
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M0P
M1O
M2O
MBDVC
NAPCQ
P5Z
P62
PHGZM
PHGZT
PKEHL
PPXIY
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
Q9U
DOI 10.1108/EL-02-2023-0053
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection
Nursing & Allied Health Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
ProQuest Central (Alumni)
ProQuest Central
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
eLibrary
ProQuest Central
ProQuest Technology Collection (LUT)
ProQuest One Community College
Education Collection
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Health Research Premium Collection
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Education Database
Library Science Database
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Education
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
elibrary
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Library Science
Health Research Premium Collection
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Education
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 0264-0473
1758-616X
EndPage 482
ExternalDocumentID 10_1108_EL_02_2023_0053
10.1108/EL-02-2023-0053
GroupedDBID .X0
0R~
29G
3FY
4.4
5GY
5VS
70U
77K
7RV
9F-
AAGBP
AAMCF
AAOWE
AAPSD
AAUDR
AAWTL
ABEAN
ABHCV
ABIJV
ABJNI
ABSDC
ABYQI
ACGFS
ACHQT
ACKOT
ADBBV
ADFRT
ADOMW
AEBZA
AEDOK
AEMMR
AETHF
AFNZV
AGZLY
AIAFM
AJEBP
AJFKA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AODMV
APPLU
ARAPS
ASMFL
ASUFR
ATGMP
AUCOK
BENPR
BVLZF
CS3
DU5
EBS
FNNZZ
GEA
GEC
GEI
GMM
GMN
GQ.
H13
HCIFZ
HZ~
IJT
IPNFZ
J1Y
JI-
JL0
KLENG
M0P
M1O
M2O
M42
O9-
RIG
TDX
TEM
TET
TGG
TMD
TMF
TMT
TN5
WH7
Z11
Z21
0-V
1XV
77I
8FE
8FG
8FI
8FW
8R4
8R5
AAYXX
ABUWG
ABXQL
ACXJU
ADMHG
AFKRA
AHAFT
AHMHQ
ARALO
AZQEC
BCU
BEC
BGLVJ
BKEYQ
BPHCQ
BVXVI
CCPQU
CITATION
CJNVE
CNYFK
DWQXO
EX3
FYUFA
GNUQQ
GUQSH
K6V
K7-
NAPCQ
P62
PCD
PHGZM
PHGZT
PPXIY
PQEDU
PQGLB
PQQKQ
PRG
PROAC
PRQQA
PUEGO
Q2X
SJFOW
UKHRP
WOW
7SC
7XB
8FD
AFNTC
E3H
F2A
JQ2
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c308t-a34f6d3936110f418946a918f80bbfb2201f2d09cd9a9c2e17baa11f33aa7b803
IEDL.DBID M1O
ISSN 0264-0473
IngestDate Sat Aug 23 13:33:52 EDT 2025
Wed Oct 01 05:43:25 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Thu Aug 22 06:15:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Knowledge graph embedding
Sentiment analysis
Muti-feature fusion
Stock prediction
Knowledge graph
Relevant stocks
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-a34f6d3936110f418946a918f80bbfb2201f2d09cd9a9c2e17baa11f33aa7b803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3071800947
PQPubID 32127
PageCount 28
ParticipantIDs crossref_primary_10_1108_EL_02_2023_0053
crossref_citationtrail_10_1108_EL_02_2023_0053
proquest_journals_3071800947
emerald_primary_10_1108_EL-02-2023-0053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-27
PublicationDateYYYYMMDD 2024-06-27
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-27
  day: 27
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electronic library
PublicationYear 2024
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2024062511251468100_ref002) 2013
(key2024062511251468100_ref047) 2022; 208
(key2024062511251468100_ref032) 2022; 14
(key2024062511251468100_ref049) 2002; 28
(key2024062511251468100_ref038) 2019; 2019
(key2024062511251468100_ref045) 2006; 31
(key2024062511251468100_ref001) 2003
(key2024062511251468100_ref020) 2021; 178
(key2024062511251468100_ref052) 2019; 84
(key2024062511251468100_ref050) 2018; 28
(key2024062511251468100_ref022) 2014; 278
(key2024062511251468100_ref019) 2020; 32
(key2024062511251468100_ref009) 2012; 15
(key2024062511251468100_ref008) 2020; 72
(key2024062511251468100_ref031) 2021; 33
(key2024062511251468100_ref033) 2001; 17
(key2024062511251468100_ref037) 2022
(key2024062511251468100_ref015) 2016
(key2024062511251468100_ref010) 1965; 38
(key2024062511251468100_ref026) 1994; 49
(key2024062511251468100_ref035) 2022; 16
(key2024062511251468100_ref043) 2016; 31
(key2024062511251468100_ref016) 2022; 59
(key2024062511251468100_ref017) 1997; 9
(key2024062511251468100_ref044) 2013; 40
(key2024062511251468100_ref018) 2019
(key2024062511251468100_ref023) 2019; 2019
(key2024062511251468100_ref024) 2019
(key2024062511251468100_ref013) 1999; 15
(key2024062511251468100_ref011) 2009; 64
(key2024062511251468100_ref051) 2019; 18
(key2024062511251468100_ref007) 2015
(key2024062511251468100_ref042) 2007; 62
(key2024062511251468100_ref025) 2021; 33
(key2024062511251468100_ref034) 2017
(key2024062511251468100_ref048) 2017; 29
key2024062511251468100_ref036
(key2024062511251468100_ref029) 2005; 33
(key2024062511251468100_ref041) 2013
(key2024062511251468100_ref021) 2017
(key2024062511251468100_ref027) 2019; 117
(key2024062511251468100_ref012) 2020
(key2024062511251468100_ref004) 1997; 44
(key2024062511251468100_ref003) 2022; 504
(key2024062511251468100_ref005) 2018; 42
(key2024062511251468100_ref030) 2016
(key2024062511251468100_ref014) 2002
(key2024062511251468100_ref006) 2024; 238
(key2024062511251468100_ref039) 2018; 5
(key2024062511251468100_ref028) 2018
(key2024062511251468100_ref046) 2022; 14
(key2024062511251468100_ref040) 2020; 57
References_xml – start-page: 2787
  year: 2013
  ident: key2024062511251468100_ref002
  article-title: Translating embeddings for modeling multi-relational data
– volume: 238
  start-page: 121710
  year: 2024
  ident: key2024062511251468100_ref006
  article-title: An integrated approach of ensemble learning methods for stock index prediction using investor sentiments
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.121710
– volume: 117
  start-page: 100
  year: 2019
  ident: key2024062511251468100_ref027
  article-title: Financial news-based stock movement prediction using causality analysis of influence in the Korean stock market
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2018.11.004
– volume: 16
  start-page: 200111
  year: 2022
  ident: key2024062511251468100_ref035
  article-title: A comprehensive review on multiple hybrid deep learning approaches for stock prediction
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2022.200111
– volume: 59
  start-page: 367
  issue: 2
  year: 2022
  ident: key2024062511251468100_ref016
  article-title: Attention-based hybrid CNN-LSTM and spectral data augmentation for COVID-19 diagnosis from cough sound
  publication-title: Journal of Intelligent Information Systems
  doi: 10.1007/s10844-022-00707-7
– year: 2017
  ident: key2024062511251468100_ref021
  article-title: Adam: a method for stochastic optimization
  doi: 10.48550/arXiv.1412.6980
– volume: 15
  start-page: 247
  year: 2012
  ident: key2024062511251468100_ref009
  article-title: The dual micro/macro informing role of social network sites: can twitter macro messages help predict stock prices?
  publication-title: Informing Science: The International Journal of an Emerging Transdiscipline
  doi: 10.28945/1739
– volume: 33
  start-page: 4741
  issue: 10
  year: 2021
  ident: key2024062511251468100_ref025
  article-title: A CNN-BiLSTM-AM method for stock price prediction
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05532-z
– volume: 31
  start-page: 624
  issue: 3
  year: 2016
  ident: key2024062511251468100_ref043
  article-title: Learning better word embedding by asymmetric low-rank projection of knowledge graph
  publication-title: Journal of Computer Science and Technology
  doi: 10.1007/s11390-016-1651-5
– volume: 15
  start-page: 1
  issue: 1
  year: 1999
  ident: key2024062511251468100_ref013
  article-title: Additive outliers, GARCH and forecasting volatility
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(98)00053-3
– volume: 33
  start-page: 497
  issue: 6
  year: 2005
  ident: key2024062511251468100_ref029
  article-title: A hybrid ARIMA and support vector machines model in stock price forecasting
  publication-title: Omega
  doi: 10.1016/j.omega.2004.07.024
– volume: 29
  start-page: 2724
  issue: 12
  year: 2017
  ident: key2024062511251468100_ref048
  article-title: Knowledge graph embedding: a survey of approaches and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2017.2754499
– volume: 32
  start-page: 9713
  issue: 13
  year: 2020
  ident: key2024062511251468100_ref019
  article-title: Stock closing price prediction based on sentiment analysis and LSTM
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04504-2
– volume: 28
  start-page: 636
  issue: 4
  year: 2002
  ident: key2024062511251468100_ref049
  article-title: Can mixed emotions peacefully coexist?
  publication-title: Journal of Consumer Research
  doi: 10.1086/338206
– volume: 49
  start-page: 923
  issue: 3
  year: 1994
  ident: key2024062511251468100_ref026
  article-title: The impact of public information on the stock market
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1994.tb00083.x
– volume: 64
  start-page: 2023
  issue: 5
  year: 2009
  ident: key2024062511251468100_ref011
  article-title: Media coverage and the cross-section of stock returns
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2009.01493.x
– volume: 28
  start-page: 294
  year: 2018
  ident: key2024062511251468100_ref050
  article-title: Exploiting investors social network for stock prediction in China’s market
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.10.013
– start-page: 467
  year: 2019
  ident: key2024062511251468100_ref018
  article-title: Analysis and research on stock price of LSTM and bidirectional LSTM neural network
  doi: 10.2991/iccia-19.2019.72
– volume: 33
  start-page: 17425
  issue: 24
  year: 2021
  ident: key2024062511251468100_ref031
  article-title: An attention-based CNN-LSTM model for subjectivity detection in opinion-mining
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06328-5
– volume: 72
  start-page: 101573
  year: 2020
  ident: key2024062511251468100_ref008
  article-title: Sentiment stocks
  publication-title: International Review of Financial Analysis
  doi: 10.1016/j.irfa.2020.101573
– volume: 38
  start-page: 34
  issue: 1
  year: 1965
  ident: key2024062511251468100_ref010
  article-title: The behavior of stock-market prices
  publication-title: The Journal of Business
  doi: 10.1086/294743
– start-page: 300
  year: 2019
  ident: key2024062511251468100_ref024
  article-title: Time series prediction based on temporal convolutional network
  doi: 10.1109/ICIS46139.2019.8940265
– volume: 42
  start-page: 895
  issue: 3
  year: 2018
  ident: key2024062511251468100_ref005
  article-title: The interaction between microblog sentiment and stock returns: an empirical examination
  publication-title: MIS Quarterly
  doi: 10.25300/MISQ/2018/14268
– start-page: 2327
  year: 2015
  ident: key2024062511251468100_ref007
  article-title: Deep learning for event-driven stock prediction
– start-page: 1
  volume-title: Knowledge Graphs: Methodology, Tools and Selected Use Cases
  year: 2020
  ident: key2024062511251468100_ref012
  article-title: Introduction: what is a knowledge graph
  doi: 10.1007/978-3-030-37439-6_1
– volume: 178
  start-page: 115019
  year: 2021
  ident: key2024062511251468100_ref020
  article-title: A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115019
– volume: 278
  start-page: 826
  year: 2014
  ident: key2024062511251468100_ref022
  article-title: The effect of news and public mood on stock movements
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.03.096
– start-page: 556
  year: 2018
  ident: key2024062511251468100_ref028
  article-title: Deep learning using risk-reward function for stock market prediction
  doi: 10.1145/3297156.3297173
– start-page: 1053
  volume-title: Handbook of the Economics of Finance
  year: 2003
  ident: key2024062511251468100_ref001
  article-title: Chapter 18 a survey of behavioral finance
  doi: 10.1016/S1574-0102(03)01027-6
– volume: 62
  start-page: 1139
  issue: 3
  year: 2007
  ident: key2024062511251468100_ref042
  article-title: Giving content to investor sentiment: the role of media in the stock market
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.2007.01232.x
– volume: 18
  start-page: 953
  issue: 3
  year: 2019
  ident: key2024062511251468100_ref051
  article-title: Research on knowledge discovery and stock forecasting of financial news based on domain ontology
  publication-title: International Journal of Information Technology and Decision Making
  doi: 10.1142/S0219622019500160
– volume: 504
  start-page: 1
  year: 2022
  ident: key2024062511251468100_ref003
  article-title: A hierarchical attention network for stock prediction based on attentive multi-view news learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.106
– start-page: 855
  year: 2016
  ident: key2024062511251468100_ref015
  article-title: Node2vec: scalable feature learning for networks
  doi: 10.1145/2939672.2939754
– volume: 57
  start-page: 103181
  issue: 5
  year: 2020
  ident: key2024062511251468100_ref040
  article-title: How mood affects the stock market: empirical evidence from microblogs
  publication-title: Information and Management
  doi: 10.1016/j.im.2019.103181
– volume: 208
  start-page: 118128
  year: 2022
  ident: key2024062511251468100_ref047
  article-title: Stock market index prediction using deep transformer model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.118128
– start-page: 1643
  year: 2017
  ident: key2024062511251468100_ref034
  article-title: Stock price prediction using LSTM, RNN and CNN-sliding window model
  doi: 10.1109/ICACCI.2017.8126078
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: key2024062511251468100_ref017
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 374
  year: 2016
  ident: key2024062511251468100_ref030
  article-title: Leverage financial news to predict stock price movements using word embeddings and deep neural networks
  doi: 10.18653/v1/N16-1041
– ident: key2024062511251468100_ref036
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: key2024062511251468100_ref032
  article-title: A survey of the application of graph-based approaches in stock market analysis and prediction
  publication-title: International Journal of Data Science and Analytics
  doi: 10.1007/s41060-021-00306-9
– volume: 31
  start-page: 41
  issue: 1
  year: 2006
  ident: key2024062511251468100_ref045
  article-title: Comparison of four different time series methods to forecast hepatitis a virus infection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.002
– volume: 44
  start-page: 168
  issue: 3
  year: 1997
  ident: key2024062511251468100_ref004
  article-title: Linear and nonlinear ARMA model parameter estimation using an artificial neural network
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.554763
– year: 2022
  ident: key2024062511251468100_ref037
  article-title: Artificial intelligence in financial technology
– volume: 17
  start-page: 459
  issue: 3
  year: 2001
  ident: key2024062511251468100_ref033
  article-title: Nonlinearities, cyclical behaviour and predictability in stock markets: international evidence
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(01)00093-0
– start-page: 53
  year: 2013
  ident: key2024062511251468100_ref041
  article-title: Automatic domain-specific sentiment lexicon generation with label propagation
  doi: 10.1145/2539150.2539190
– volume: 40
  start-page: 5501
  issue: 14
  year: 2013
  ident: key2024062511251468100_ref044
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.013
– start-page: 481
  volume-title: Advances in Knowledge Discovery and Data Mining
  year: 2002
  ident: key2024062511251468100_ref014
  article-title: News sensitive stock trend prediction
  doi: 10.1007/3-540-47887-6_48
– volume: 2019
  year: 2019
  ident: key2024062511251468100_ref023
  article-title: Anticipating stock market of the renowned companies: a knowledge graph approach
  publication-title: Complexity
  doi: 10.1155/2019/9202457
– volume: 2019
  start-page: e4324878
  year: 2019
  ident: key2024062511251468100_ref038
  article-title: Is deep learning for image recognition applicable to stock market prediction?
  publication-title: Complexity
  doi: 10.1155/2019/4324878
– volume: 14
  start-page: 372
  issue: 1
  year: 2022
  ident: key2024062511251468100_ref046
  article-title: Does twitter affect stock market decisions? Financial sentiment analysis during pandemics: a comparative study of the H1N1 and the COVID-19 periods
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-021-09819-8
– volume: 84
  start-page: 105747
  year: 2019
  ident: key2024062511251468100_ref052
  article-title: Cascading logistic regression onto gradient boosted decision trees for forecasting and trading stock indices
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105747
– volume: 5
  start-page: 3
  issue: 1
  year: 2018
  ident: key2024062511251468100_ref039
  article-title: Big data: deep learning for financial sentiment analysis
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-017-0111-6
SSID ssj0001670
Score 2.3404179
Snippet Purpose Stock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a...
PurposeStock prices are subject to the influence of news and social media, and a discernible co-movement pattern exists among multiple stocks. Using a...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 455
SubjectTerms Algorithms
Artificial intelligence
Bank technology
Behavior
Behavioral economics
Deep learning
Efficient markets
Forecasting
Graphical representations
Internet stocks
Investments
Investors
Knowledge
Knowledge representation
Neural networks
News
Researchers
Resistance (Psychology)
Securities markets
Semantics
Semiotics
Sentiment analysis
Short Term Memory
Social Media
Social networks
Stock exchanges
Stock prices
Teaching Methods
Time series
Volatility
Title Multi-feature fusion stock prediction based on knowledge graph
URI https://www.emerald.com/insight/content/doi/10.1108/EL-02-2023-0053/full/html
https://www.proquest.com/docview/3071800947
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 0264-0473
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: M1O
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 0264-0473
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: BENPR
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 0264-0473
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0001670
  issn: 0264-0473
  databaseCode: 8FG
  dateStart: 19980601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xWFh4I8qj8oCAxSWOU8dZQIBaEOIlBBKb5Tj2UlQKtAu_Hp_rFIGAgSFSIjtRku98d74nwI7ACjBGW9o2gtOsEI7KKjPUGl167VlUbYnZyFfX4vwhu3hsP0aD21sMq6x5YmDU1bNBG_mBp0UmMQ4uPxq8UOwahd7V2EJjGmbR-YgdDK7YzYQTM5FHGwsGW-Q8lvbBzjedy5CX7CUWRTr8IpW-peZ-sucgc7oLoOq3HYea9FqjYdky798KOf7_cxZhPqqj5HhMP0swZfvLsFC3eiBx5S_DdsxvILskJjAhoPX4ChyGRF7qbKgTStwIjXDEK5amRwav6AwK81FmVsSfTEx5JFTMXoWHbuf-9JzG1gzU8EQOqeaZExUvuPB_02VMFpnQBZNOJmXpytSrFS6tksJUhS5Malleas2Y41zrvJQJX4OZ_nPfrgNhNi38gXLRb21E219Iy6V1PEuMcaIBrRoaZWLdcmyf8aTC_iWRqnOpklQhlgqxbMD-5IbBuGTH71P3ItY_zPxCIA3YqnFUcZW_qU8QN_4e3oQ5_6QMQ8zSfAtmhq8ju-2VmWHZhGnZPWvC7Enn-vauGej3Awmc8kk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tl0N76QNasS1QHyjl4pLEXsc-bCsKi5ayrFAFEjfjOPal1bLdh6r-uf62eoyziKrlxiFSIjs5zEzmmxnPA2BbYAcYaxztWsEoV8JTWXNLnTVVsJ5F3ZVYjXw6EoML_uWye9mC300tDKZVNjoxKur62mKMfC_IYi4xD678NPlBcWoUnq42IzRMGq1Q92KLsVTYceJ-_Qwu3Kx3fBj4_a4ojvrnBwOapgxQyzI5p4ZxL2qmmAhI6HkuFRdG5dLLrKp8VQSE9EWdKVsro2zh8rIyJs89Y8aUlcxY-O4jWOGMq-D8rXzuj86-LrEgF2WK8mC6R8lScyGcvdMfxsrogJkU_4Q7uPhXcfAtQETUO3oOT5O5SvZv5OsFtNx4FZ41oyBI0gyrsJnqH8gOSQVOyPBmfQ0-xkJf6l3sI0r8AoN0JBie9huZTPGwKO5HTK1JuFmG-kjsqP0SLh6EqK-gPb4eu3UguStUuBA3g-sjuuFBOiadZzyz1osOfGgIp23qa47jNb7r6N9kUveHOis0UlojpTuwu3xhctPS4_9b3ydO_GPnHfZ1YKPhlE5aYKZvZfb1_ctv4fHg_HSoh8ejkzfwJHyVYzpaUW5Aez5duM1g-MyrrSRdBK4eWqD_AJhKD_4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9iIKFdYMAmymD4sI1d3MZx6jiHbZqgFYzycRgSN-M49gVUOmiF4E_jX-Gfwc91ikCwG4cdIiXyi6U4P78vvw-AzwIrwBhtadsITrNCOCqrzFBrdOm1Z1G1JWYj7-2L7aPs93H7eApu61wYDKuseWJg1NW5QR95y2ORSYyDy1suhkUcbnV_Dv5S7CCFJ611O40xRHbt9ZU33y6_72z5f_0lTbudP5vbNHYYoIYnckg1z5yoeMGFl4IuY7LIhC6YdDIpS1emXjq6tEoKUxW6MKlleak1Y45zrfNSJtzP-wZmcjQjMGyQHUykABN59O9goEfOY1kh7LrT6YWcaC8tKe6BRxLxSVrwg2gI8q47D3f1So3DXE6bo2HZNDdPikj-n0v5DuaiGk5-jffNAkzZ_iLM1y0uSOR4i7AW8zrIVxITtxDI9fgS_AgJzNTZUB-VuBE6H4lXqM0pGVzgIVigR12hIv5m4sIkoVL4ezh6la_8ANP9875dBsJsWvgL9QFv0om2f5CWS-t4lhjjRAOaNSyUifXasW3ImQp2WyJVp6eSVCGOFOKoAd8mLwzGpUpeJt2IOHuG8hE4G7BaY0hF7napHgC08u_hdZj1yFK9nf3dj_DWT5phlF2ar8L08GJk17w-Nyw_hY1D4OS14XUPjiVU6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-feature+fusion+stock+prediction+based+on+knowledge+graph&rft.jtitle=Electronic+library&rft.au=Liu%2C+Zhenghao&rft.au=Qian%2C+Yuxing&rft.au=Lv%2C+Wenlong&rft.au=Fang%2C+Yanbin&rft.date=2024-06-27&rft.issn=0264-0473&rft.eissn=0264-0473&rft.volume=42&rft.issue=3&rft.spage=455&rft.epage=482&rft_id=info:doi/10.1108%2FEL-02-2023-0053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EL_02_2023_0053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-0473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-0473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-0473&client=summon