Wearable energy storage with MXene textile supercapacitors for real world use
Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the in...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 7; pp. 3514 - 3523 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 |
DOI | 10.1039/d2ta08995e |
Cover
Abstract | Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti
3
C
2
T
x
that can be integrated in series
via
a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm
2
and an MXene loading of 24.2 mg cm
−2
could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm
−2
at a power density of 0.248 mW cm
−2
, and an areal capacitance of 146 mF cm
−2
at a 0.16 mA cm
−2
discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor.
We demonstrate a Ti
3
C
2
T
x
MXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes. |
---|---|
AbstractList | We demonstrate a Ti3C2TxMXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes. Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti 3 C 2 T x that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm 2 and an MXene loading of 24.2 mg cm −2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm −2 at a power density of 0.248 mW cm −2 , and an areal capacitance of 146 mF cm −2 at a 0.16 mA cm −2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor. We demonstrate a Ti 3 C 2 T x MXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes. Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti3C2Tx that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm2 and an MXene loading of 24.2 mg cm−2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm−2 at a power density of 0.248 mW cm−2, and an areal capacitance of 146 mF cm−2 at a 0.16 mA cm−2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor. Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti 3 C 2 T x that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm 2 and an MXene loading of 24.2 mg cm −2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm −2 at a power density of 0.248 mW cm −2 , and an areal capacitance of 146 mF cm −2 at a 0.16 mA cm −2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor. |
Author | Gogotsi, Yury Wang, Ruocun (John) Greenspan, Ben Danielescu, Andreea Hryhorchuk, Tetiana Bi, Lingyi Tabb, Taylor Gallo, Eric M Inman, Alex VahidMohammadi, Armin Dion, Genevieve |
AuthorAffiliation | Drexel University Accenture Labs Center for Functional Fabrics A.J. Drexel Nanomaterials Institute and Department of Material Science and Engineering |
AuthorAffiliation_xml | – sequence: 0 name: A.J. Drexel Nanomaterials Institute and Department of Material Science and Engineering – sequence: 0 name: Drexel University – sequence: 0 name: Center for Functional Fabrics – sequence: 0 name: Accenture Labs |
Author_xml | – sequence: 1 givenname: Alex surname: Inman fullname: Inman, Alex – sequence: 2 givenname: Tetiana surname: Hryhorchuk fullname: Hryhorchuk, Tetiana – sequence: 3 givenname: Lingyi surname: Bi fullname: Bi, Lingyi – sequence: 4 givenname: Ruocun (John) surname: Wang fullname: Wang, Ruocun (John) – sequence: 5 givenname: Ben surname: Greenspan fullname: Greenspan, Ben – sequence: 6 givenname: Taylor surname: Tabb fullname: Tabb, Taylor – sequence: 7 givenname: Eric M surname: Gallo fullname: Gallo, Eric M – sequence: 8 givenname: Armin surname: VahidMohammadi fullname: VahidMohammadi, Armin – sequence: 9 givenname: Genevieve surname: Dion fullname: Dion, Genevieve – sequence: 10 givenname: Andreea surname: Danielescu fullname: Danielescu, Andreea – sequence: 11 givenname: Yury surname: Gogotsi fullname: Gogotsi, Yury |
BackLink | https://www.osti.gov/biblio/2422606$$D View this record in Osti.gov |
BookMark | eNpt0UtLAzEQAOAgFay1F-9C0Juwms2-kmOp9QEWLxW9Ldlk0m5ZNzXJUvvvja5UEHOZEL4ZZibHaNCaFhA6jclVTBJ-ragXhHGewQEaUpKRqEh5PtjfGTtCY-fWJBxGSM75EM1fQFhRNYChBbvcYeeNFUvA29qv8Pw1vGIPH74OwnUbsFJshKwDclgbiy2IBm-NbRTuHJygQy0aB-OfOELPt7PF9D56fLp7mE4eI5kQ5iOulah0EQJRNBOKA68KlfKKMFnFMVMk01xQmVBFaEGlAq2U1qqgGU3DTMkInfd1jfN16UI_IFfStC1IX9KU0pzkAV30aGPNewfOl2vT2Tb0VdKiyBinOaNBkV5Ja5yzoMtQTfjatN6KuiljUn4tt7yhi8n3cmch5fJPysbWb8Lu_sdnPbZO7t3vTyWfybSGWw |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2023_170809 crossref_primary_10_1002_adma_202404492 crossref_primary_10_1021_acsomega_3c01176 crossref_primary_10_1016_j_cej_2024_149505 crossref_primary_10_1002_smll_202404506 crossref_primary_10_1002_admt_202301266 crossref_primary_10_1002_smll_202402049 crossref_primary_10_1016_j_synthmet_2023_117424 crossref_primary_10_1039_D4NR04560B crossref_primary_10_1007_s44258_024_00048_w crossref_primary_10_1016_j_colsurfa_2024_133210 crossref_primary_10_1002_admi_202300724 crossref_primary_10_1016_j_est_2024_115183 crossref_primary_10_1016_j_cej_2023_146351 crossref_primary_10_1021_acs_chemmater_4c01536 crossref_primary_10_1016_j_materresbull_2024_112969 crossref_primary_10_1088_1742_6596_2855_1_012009 crossref_primary_10_1016_j_jmat_2023_08_013 crossref_primary_10_1016_j_jallcom_2023_169722 crossref_primary_10_1002_aenm_202401650 crossref_primary_10_1016_j_est_2024_113810 crossref_primary_10_1002_celc_202300435 crossref_primary_10_1021_acsami_3c14842 crossref_primary_10_1016_j_mattod_2024_10_008 crossref_primary_10_1021_acsomega_3c02002 crossref_primary_10_1016_j_surfin_2024_104513 crossref_primary_10_1002_adfm_202409953 crossref_primary_10_1016_j_est_2024_111207 crossref_primary_10_1039_D3TC02784H crossref_primary_10_1016_j_mser_2024_100814 crossref_primary_10_1016_j_est_2024_113228 crossref_primary_10_1016_j_apenergy_2024_124265 crossref_primary_10_1016_j_nanoso_2024_101290 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1016_j_cej_2024_149160 crossref_primary_10_1002_aenm_202303587 crossref_primary_10_1088_2631_7990_ad8735 crossref_primary_10_1002_adma_202304757 crossref_primary_10_1039_D4TA00328D crossref_primary_10_1002_adma_202403791 crossref_primary_10_1039_D4RA01324G crossref_primary_10_1021_acsaenm_3c00470 crossref_primary_10_1039_D3TB02247A crossref_primary_10_1039_D3MA00365E crossref_primary_10_1002_aenm_202402367 crossref_primary_10_1016_j_pmatsci_2024_101351 crossref_primary_10_1016_j_est_2025_115664 crossref_primary_10_1360_SSC_2024_0147 crossref_primary_10_1021_acsanm_3c04826 crossref_primary_10_1002_asia_202401181 crossref_primary_10_1016_j_flatc_2024_100609 crossref_primary_10_1016_j_jechem_2023_11_031 |
Cites_doi | 10.3390/app11136131 10.1002/adem.202100469 10.1021/acsnano.1c06027 10.1002/adom.202001563 10.1038/s41467-019-09398-1 10.1007/978-3-030-19026-2 10.1007/978-3-030-59373-5 10.1002/adfm.201910504 10.1038/nenergy.2017.105 10.1016/j.jmst.2022.08.020 10.1016/j.esci.2021.09.004 10.1126/science.aag2421 10.1016/j.mattod.2020.02.005 10.1126/scitranslmed.abb2779 10.1021/acsnano.2c02841 10.1021/acsami.8b04662 10.1002/anie.202115559 10.1016/j.cej.2021.130242 10.1021/acsnano.0c08357 10.1021/nn304178b 10.1016/0003-2670(95)00440-B 10.1016/j.electacta.2021.139141 10.1016/j.compositesb.2021.109246 10.4236/jst.2011.12004 10.1126/science.abf1581 10.1007/978-3-030-19026-2_5 10.1002/adma.201190147 10.1016/j.jcis.2021.07.097 10.1002/admt.201800016 10.3390/app11093914 10.1002/aenm.201703043 10.1016/j.ensm.2021.09.027 10.1016/j.ijbiomac.2021.04.112 10.1039/C8TA09810G 10.1002/adfm.201905015 10.1016/j.apsusc.2021.149710 10.1039/D1TA00681A 10.1201/9780429263941 10.1016/j.jcis.2020.12.102 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST) |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI OTOTI |
DOI | 10.1039/d2ta08995e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 3523 |
ExternalDocumentID | 2422606 10_1039_D2TA08995E d2ta08995e |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI OTOTI |
ID | FETCH-LOGICAL-c308t-9fdabf79fd0d25ad9e9b7d49b08cb118d05f9a2c32d0272cdefddffd725247493 |
ISSN | 2050-7488 |
IngestDate | Mon Aug 12 05:48:05 EDT 2024 Mon Jun 30 11:57:18 EDT 2025 Tue Jul 01 01:13:35 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue Dec 17 20:58:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-9fdabf79fd0d25ad9e9b7d49b08cb118d05f9a2c32d0272cdefddffd725247493 |
Notes | https://doi.org/10.1039/d2ta08995e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE AC02-05CH11231 |
ORCID | 0000-0001-5998-2617 0000-0001-9423-4032 0000-0003-3486-1549 0000-0001-7460-2467 0000-0001-8095-5285 0000-0001-5030-6903 0000-0001-6833-8700 0000000150306903 0000000334861549 0000000168338700 0000000174602467 0000000159982617 0000000194234032 0000000180955285 |
PQID | 2775892682 |
PQPubID | 2047523 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2775892682 crossref_primary_10_1039_D2TA08995E rsc_primary_d2ta08995e osti_scitechconnect_2422606 crossref_citationtrail_10_1039_D2TA08995E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-14 |
PublicationDateYYYYMMDD | 2023-02-14 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United States |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Deka (D2TA08995E/cit10/1) 2021; 43 Kang (D2TA08995E/cit4/1) 2021; 11 VahidMohammadi (D2TA08995E/cit21/1) 2021; 372 Peng (D2TA08995E/cit42/1) 2021; 1 Lukatskaya (D2TA08995E/cit27/1) 2017; 2 Wu (D2TA08995E/cit40/1) 2022; 16 Wang (D2TA08995E/cit35/1) 2021; 15 Jiang (D2TA08995E/cit25/1) 2018; 8 Anasori (D2TA08995E/cit20/1) 2019 Wu (D2TA08995E/cit39/1) 2022 Choudhry (D2TA08995E/cit5/1) 2021; 23 Sakuma (D2TA08995E/cit1/1) 2020 Zhang (D2TA08995E/cit13/1) 2022; 605 Seyedin (D2TA08995E/cit28/1) 2020; 30 Yang (D2TA08995E/cit15/1) 2021; 181 Chen (D2TA08995E/cit14/1) 2021; 423 Ma (D2TA08995E/cit38/1) 2021; 9 Paeschke (D2TA08995E/cit6/1) 1995; 305 Wu (D2TA08995E/cit11/1) 2021; 395 Yan (D2TA08995E/cit12/1) 2021; 224 Song (D2TA08995E/cit37/1) 2018; 3 Kanakry (D2TA08995E/cit9/1) 2020; 12 Wang (D2TA08995E/cit36/1) 2012; 6 Kan (D2TA08995E/cit2/1) 2021; 11 Maleski (D2TA08995E/cit32/1) 2019 Driscoll (D2TA08995E/cit31/1) 2020 Tong (D2TA08995E/cit7/1) 2018 Qin (D2TA08995E/cit17/1) 2021; 589 Shahzad (D2TA08995E/cit33/1) 2016; 353 Levitt (D2TA08995E/cit29/1) 2019; 7 Maleski (D2TA08995E/cit34/1) 2018; 10 Maleski (D2TA08995E/cit24/1) 2021; 9 Sun (D2TA08995E/cit41/1) 2023; 139 Levitt (D2TA08995E/cit30/1) 2020; 34 Hartman (D2TA08995E/cit3/1) 2014 Zhang (D2TA08995E/cit22/1) 2019; 10 Uzun (D2TA08995E/cit23/1) 2019; 29 Naguib (D2TA08995E/cit18/1) 2011; 23 Mathis (D2TA08995E/cit26/1) 2021; 15 Wu (D2TA08995E/cit43/1) 2022; 61 Abidoye (D2TA08995E/cit8/1) 2011; 1 Hwang (D2TA08995E/cit16/1) 2021; 556 Xiao (D2TA08995E/cit19/1) 2020 |
References_xml | – issn: 2020 publication-title: Flexible, Wearable, and Stretchable Electronics doi: Sakuma – issn: 2014 publication-title: Make: Wearable Electronics: Design, Prototype, and Wear Your Own Interactive Garments doi: Hartman – issn: 2020 publication-title: MXenes and MXenes-based composites doi: Xiao Ruan Kong Que Zhou Liu Zhang – issn: 2019 publication-title: 2D Metal Carbides and Nitrides (MXenes) doi: Anasori Gogotsi – issn: 2018 publication-title: Wearable Technology in Medicine and Health Care doi: Tong – issn: 2019 end-page: p 69-87 publication-title: 2D Metal Carbides and Nitrides (MXenes) doi: Maleski Alhabeb – volume: 11 start-page: 6131 year: 2021 ident: D2TA08995E/cit4/1 publication-title: Appl. Sci. doi: 10.3390/app11136131 – volume: 23 start-page: 2100469 year: 2021 ident: D2TA08995E/cit5/1 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202100469 – volume: 15 start-page: 15274 year: 2021 ident: D2TA08995E/cit35/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c06027 – volume: 9 start-page: 2001563 year: 2021 ident: D2TA08995E/cit24/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001563 – volume: 10 start-page: 1795 year: 2019 ident: D2TA08995E/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09398-1 – volume-title: 2D Metal Carbides and Nitrides (MXenes) year: 2019 ident: D2TA08995E/cit20/1 doi: 10.1007/978-3-030-19026-2 – volume-title: MXenes and MXenes-based composites year: 2020 ident: D2TA08995E/cit19/1 doi: 10.1007/978-3-030-59373-5 – volume: 30 start-page: 1910504 year: 2020 ident: D2TA08995E/cit28/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910504 – volume: 2 start-page: 17105 year: 2017 ident: D2TA08995E/cit27/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.105 – volume: 139 start-page: 23 year: 2023 ident: D2TA08995E/cit41/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.08.020 – volume: 1 start-page: 83 year: 2021 ident: D2TA08995E/cit42/1 publication-title: eScience doi: 10.1016/j.esci.2021.09.004 – volume: 353 start-page: 1137 year: 2016 ident: D2TA08995E/cit33/1 publication-title: Science doi: 10.1126/science.aag2421 – volume: 34 start-page: 17 year: 2020 ident: D2TA08995E/cit30/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.02.005 – volume: 12 start-page: eabb2779 year: 2020 ident: D2TA08995E/cit9/1 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb2779 – volume: 16 start-page: 10130 year: 2022 ident: D2TA08995E/cit40/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c02841 – volume: 10 start-page: 24491 year: 2018 ident: D2TA08995E/cit34/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04662 – volume: 61 start-page: e202115559 year: 2022 ident: D2TA08995E/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202115559 – volume: 423 start-page: 130242 year: 2021 ident: D2TA08995E/cit14/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130242 – volume: 15 start-page: 6420 year: 2021 ident: D2TA08995E/cit26/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c08357 – volume: 6 start-page: 10296 year: 2012 ident: D2TA08995E/cit36/1 publication-title: ACS Nano doi: 10.1021/nn304178b – volume: 305 start-page: 126 year: 1995 ident: D2TA08995E/cit6/1 publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(95)00440-B – volume-title: Make: Wearable Electronics: Design, Prototype, and Wear Your Own Interactive Garments year: 2014 ident: D2TA08995E/cit3/1 – volume-title: Wearable Technology in Medicine and Health Care year: 2018 ident: D2TA08995E/cit7/1 – volume: 395 start-page: 139141 year: 2021 ident: D2TA08995E/cit11/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139141 – volume: 224 start-page: 109246 year: 2021 ident: D2TA08995E/cit12/1 publication-title: Composites, Part B doi: 10.1016/j.compositesb.2021.109246 – volume: 1 start-page: 22 year: 2011 ident: D2TA08995E/cit8/1 publication-title: J. Sens. Technol. doi: 10.4236/jst.2011.12004 – start-page: e202203765 year: 2022 ident: D2TA08995E/cit39/1 publication-title: Angew. Chem. – volume: 372 start-page: eabf1581 year: 2021 ident: D2TA08995E/cit21/1 publication-title: Science doi: 10.1126/science.abf1581 – start-page: 69 volume-title: 2D Metal Carbides and Nitrides (MXenes) year: 2019 ident: D2TA08995E/cit32/1 doi: 10.1007/978-3-030-19026-2_5 – volume: 23 start-page: 4207 year: 2011 ident: D2TA08995E/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.201190147 – volume: 605 start-page: 472 year: 2022 ident: D2TA08995E/cit13/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.097 – volume: 3 start-page: 1800016 year: 2018 ident: D2TA08995E/cit37/1 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800016 – volume: 11 start-page: 3914 year: 2021 ident: D2TA08995E/cit2/1 publication-title: Appl. Sci. doi: 10.3390/app11093914 – volume: 8 start-page: 1703043 year: 2018 ident: D2TA08995E/cit25/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703043 – volume: 43 start-page: 402 year: 2021 ident: D2TA08995E/cit10/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.09.027 – volume: 181 start-page: 1063 year: 2021 ident: D2TA08995E/cit15/1 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.04.112 – volume: 7 start-page: 269 year: 2019 ident: D2TA08995E/cit29/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09810G – volume: 29 start-page: 1905015 year: 2019 ident: D2TA08995E/cit23/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905015 – start-page: e60741 year: 2020 ident: D2TA08995E/cit31/1 publication-title: J. Visualized Exp. – volume: 556 start-page: 149710 year: 2021 ident: D2TA08995E/cit16/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149710 – volume: 9 start-page: 11501 year: 2021 ident: D2TA08995E/cit38/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00681A – volume-title: Flexible, Wearable, and Stretchable Electronics year: 2020 ident: D2TA08995E/cit1/1 doi: 10.1201/9780429263941 – volume: 589 start-page: 264 year: 2021 ident: D2TA08995E/cit17/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.12.102 |
SSID | ssj0000800699 |
Score | 2.6083984 |
Snippet | Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However,... We demonstrate a Ti3C2TxMXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of... |
SourceID | osti proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3514 |
SubjectTerms | Biomedical materials Capacitance Chemistry Commercialization Data transmission Electrochemistry Electronics Energy & Fuels Energy storage Form factors Garments Materials Science Metal carbides MXenes Performance measurement Smart materials Storage systems Supercapacitors Temperature requirements Transition metals Two dimensional materials Wearable technology |
Title | Wearable energy storage with MXene textile supercapacitors for real world use |
URI | https://www.proquest.com/docview/2775892682 https://www.osti.gov/biblio/2422606 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 2050-7496 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800699 issn: 2050-7488 databaseCode: AETIL dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHBIOJsoEswQVFGZ7zw_GxgqINUQ6oE71Fie1AJZROaXIYfz3v2U7SogoBl7RyIiv299l-fnnvMyGvtWCqEJKh-KAKY85MmBVChyY1FeZVlpHABOfF5_TyOv64SlajV8lml7Tlufp5MK_kf1CFMsAVs2T_AdmhUiiA_4AvXAFhuP4Vxl-Bpjb1ybgMPox0xBgc61xdrKA0wMAOGPjBtrsxjYKVUa3t-ToYXdigqLCVTA267X5I0GimgkXrmhKo_my482Dm0nz6O1Y23L2C9cP3SVkYdzu47K9q72zFnJqBTc3t9w0Mtc4FbBucb0YXwdp7Db7drkfHv5ucvnQb1dW7PguOX4rDi9Fn6TwjfViqDTvxDRhnP84ShkKn2d5UfbFDSXFwBWARCqhq3hb4QTMx4zo3RB9yzB5GmfYjLtKUT8jRbL68-jS45tCITu3Jo8NL9MK2kXw7Vr1nykw2MCXvbVPuNv0ZMtZWWT4iDz16dOYY85jcMfUxuTc0_5g82JGhfEIWPY-oA5F6HlHkEbU8op5H9DceUYCeIo-o5REFHj0l1x_my3eXoT9mI1QRy9pQVrooKwE_TPOk0NLIUuhYlixTJew_NUsqWXAVcc244EqbSuuq0oInPBaxjE7IpN7U5hmhsPkFg1ZFSmoeZ1qWWVYZwbRJ06xMRDUlb_oey5XXoMejUH7kNhYikvl7vpzZ3p1Pyavh2RunvHLwqVPs-BzsRRQ9VhgdptrcQzwlZz0euR-325wL2CNLnmZ8Sk4Ao6H2Ednnf6z1lNwfSX1GJm3TmRdgmrblS0-lX3YSlcs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+energy+storage+with+MXene+textile+supercapacitors+for+real+world+use&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Inman%2C+Alex&rft.au=Hryhorchuk%2C+Tetiana&rft.au=Bi%2C+Lingyi&rft.au=Wang%2C+Ruocun&rft.date=2023-02-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.volume=11&rft.issue=7&rft_id=info:doi/10.1039%2Fd2ta08995e&rft.externalDocID=2422606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |