Wearable energy storage with MXene textile supercapacitors for real world use

Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the in...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 7; pp. 3514 - 3523
Main Authors Inman, Alex, Hryhorchuk, Tetiana, Bi, Lingyi, Wang, Ruocun (John), Greenspan, Ben, Tabb, Taylor, Gallo, Eric M, VahidMohammadi, Armin, Dion, Genevieve, Danielescu, Andreea, Gogotsi, Yury
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.02.2023
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d2ta08995e

Cover

Abstract Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti 3 C 2 T x that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm 2 and an MXene loading of 24.2 mg cm −2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm −2 at a power density of 0.248 mW cm −2 , and an areal capacitance of 146 mF cm −2 at a 0.16 mA cm −2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor. We demonstrate a Ti 3 C 2 T x MXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes.
AbstractList We demonstrate a Ti3C2TxMXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes.
Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti 3 C 2 T x that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm 2 and an MXene loading of 24.2 mg cm −2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm −2 at a power density of 0.248 mW cm −2 , and an areal capacitance of 146 mF cm −2 at a 0.16 mA cm −2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor. We demonstrate a Ti 3 C 2 T x MXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of real time operation of a wireless sensor for over 90 minutes.
Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti3C2Tx that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm2 and an MXene loading of 24.2 mg cm−2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm−2 at a power density of 0.248 mW cm−2, and an areal capacitance of 146 mF cm−2 at a 0.16 mA cm−2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor.
Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However, flexible, stretchable, and truly textile-grade energy storing platforms have so far remained missing from most e-textile systems due to the insufficient performance metrics of current available materials and technologies. Two-dimensional (2D) transition metal carbides and nitrides (MXenes) offer unique combinations of properties including metallic conductivity, high specific capacitance, hydrophilicity, and solution processability, as well as mechanical flexibility and robustness that render these materials promising for flexible wearable energy storage technologies. Here we demonstrate textile-based electrochemical capacitor devices with a high areal loading of Ti 3 C 2 T x that can be integrated in series via a stacked design approach and meet the real-world power requirements for wearable electronics. A demo textile supercapacitor with 5 cells in series, a footprint area of 25 cm 2 and an MXene loading of 24.2 mg cm −2 could operate in a 6 V voltage window delivering an energy density of 0.401 mW h cm −2 at a power density of 0.248 mW cm −2 , and an areal capacitance of 146 mF cm −2 at a 0.16 mA cm −2 discharge current. The MXene textile supercapacitor powers a temperature monitoring system requiring high current densities with wireless data transmission to a receiver for 96 minutes. Power time is a crucial subject for integration of flexible supercapacitors with commercial microelectronics and successful commercialization of smart garments. This initial report of an MXene textile supercapacitor powering a practical peripheral electronics system demonstrates the potential of this family of 2D materials to support a wide range of devices such as motion trackers and biomedical monitors in a flexible textile form factor.
Author Gogotsi, Yury
Wang, Ruocun (John)
Greenspan, Ben
Danielescu, Andreea
Hryhorchuk, Tetiana
Bi, Lingyi
Tabb, Taylor
Gallo, Eric M
Inman, Alex
VahidMohammadi, Armin
Dion, Genevieve
AuthorAffiliation Drexel University
Accenture Labs
Center for Functional Fabrics
A.J. Drexel Nanomaterials Institute and Department of Material Science and Engineering
AuthorAffiliation_xml – sequence: 0
  name: A.J. Drexel Nanomaterials Institute and Department of Material Science and Engineering
– sequence: 0
  name: Drexel University
– sequence: 0
  name: Center for Functional Fabrics
– sequence: 0
  name: Accenture Labs
Author_xml – sequence: 1
  givenname: Alex
  surname: Inman
  fullname: Inman, Alex
– sequence: 2
  givenname: Tetiana
  surname: Hryhorchuk
  fullname: Hryhorchuk, Tetiana
– sequence: 3
  givenname: Lingyi
  surname: Bi
  fullname: Bi, Lingyi
– sequence: 4
  givenname: Ruocun (John)
  surname: Wang
  fullname: Wang, Ruocun (John)
– sequence: 5
  givenname: Ben
  surname: Greenspan
  fullname: Greenspan, Ben
– sequence: 6
  givenname: Taylor
  surname: Tabb
  fullname: Tabb, Taylor
– sequence: 7
  givenname: Eric M
  surname: Gallo
  fullname: Gallo, Eric M
– sequence: 8
  givenname: Armin
  surname: VahidMohammadi
  fullname: VahidMohammadi, Armin
– sequence: 9
  givenname: Genevieve
  surname: Dion
  fullname: Dion, Genevieve
– sequence: 10
  givenname: Andreea
  surname: Danielescu
  fullname: Danielescu, Andreea
– sequence: 11
  givenname: Yury
  surname: Gogotsi
  fullname: Gogotsi, Yury
BackLink https://www.osti.gov/biblio/2422606$$D View this record in Osti.gov
BookMark eNpt0UtLAzEQAOAgFay1F-9C0Juwms2-kmOp9QEWLxW9Ldlk0m5ZNzXJUvvvja5UEHOZEL4ZZibHaNCaFhA6jclVTBJ-ragXhHGewQEaUpKRqEh5PtjfGTtCY-fWJBxGSM75EM1fQFhRNYChBbvcYeeNFUvA29qv8Pw1vGIPH74OwnUbsFJshKwDclgbiy2IBm-NbRTuHJygQy0aB-OfOELPt7PF9D56fLp7mE4eI5kQ5iOulah0EQJRNBOKA68KlfKKMFnFMVMk01xQmVBFaEGlAq2U1qqgGU3DTMkInfd1jfN16UI_IFfStC1IX9KU0pzkAV30aGPNewfOl2vT2Tb0VdKiyBinOaNBkV5Ja5yzoMtQTfjatN6KuiljUn4tt7yhi8n3cmch5fJPysbWb8Lu_sdnPbZO7t3vTyWfybSGWw
CitedBy_id crossref_primary_10_1016_j_jallcom_2023_170809
crossref_primary_10_1002_adma_202404492
crossref_primary_10_1021_acsomega_3c01176
crossref_primary_10_1016_j_cej_2024_149505
crossref_primary_10_1002_smll_202404506
crossref_primary_10_1002_admt_202301266
crossref_primary_10_1002_smll_202402049
crossref_primary_10_1016_j_synthmet_2023_117424
crossref_primary_10_1039_D4NR04560B
crossref_primary_10_1007_s44258_024_00048_w
crossref_primary_10_1016_j_colsurfa_2024_133210
crossref_primary_10_1002_admi_202300724
crossref_primary_10_1016_j_est_2024_115183
crossref_primary_10_1016_j_cej_2023_146351
crossref_primary_10_1021_acs_chemmater_4c01536
crossref_primary_10_1016_j_materresbull_2024_112969
crossref_primary_10_1088_1742_6596_2855_1_012009
crossref_primary_10_1016_j_jmat_2023_08_013
crossref_primary_10_1016_j_jallcom_2023_169722
crossref_primary_10_1002_aenm_202401650
crossref_primary_10_1016_j_est_2024_113810
crossref_primary_10_1002_celc_202300435
crossref_primary_10_1021_acsami_3c14842
crossref_primary_10_1016_j_mattod_2024_10_008
crossref_primary_10_1021_acsomega_3c02002
crossref_primary_10_1016_j_surfin_2024_104513
crossref_primary_10_1002_adfm_202409953
crossref_primary_10_1016_j_est_2024_111207
crossref_primary_10_1039_D3TC02784H
crossref_primary_10_1016_j_mser_2024_100814
crossref_primary_10_1016_j_est_2024_113228
crossref_primary_10_1016_j_apenergy_2024_124265
crossref_primary_10_1016_j_nanoso_2024_101290
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1016_j_cej_2024_149160
crossref_primary_10_1002_aenm_202303587
crossref_primary_10_1088_2631_7990_ad8735
crossref_primary_10_1002_adma_202304757
crossref_primary_10_1039_D4TA00328D
crossref_primary_10_1002_adma_202403791
crossref_primary_10_1039_D4RA01324G
crossref_primary_10_1021_acsaenm_3c00470
crossref_primary_10_1039_D3TB02247A
crossref_primary_10_1039_D3MA00365E
crossref_primary_10_1002_aenm_202402367
crossref_primary_10_1016_j_pmatsci_2024_101351
crossref_primary_10_1016_j_est_2025_115664
crossref_primary_10_1360_SSC_2024_0147
crossref_primary_10_1021_acsanm_3c04826
crossref_primary_10_1002_asia_202401181
crossref_primary_10_1016_j_flatc_2024_100609
crossref_primary_10_1016_j_jechem_2023_11_031
Cites_doi 10.3390/app11136131
10.1002/adem.202100469
10.1021/acsnano.1c06027
10.1002/adom.202001563
10.1038/s41467-019-09398-1
10.1007/978-3-030-19026-2
10.1007/978-3-030-59373-5
10.1002/adfm.201910504
10.1038/nenergy.2017.105
10.1016/j.jmst.2022.08.020
10.1016/j.esci.2021.09.004
10.1126/science.aag2421
10.1016/j.mattod.2020.02.005
10.1126/scitranslmed.abb2779
10.1021/acsnano.2c02841
10.1021/acsami.8b04662
10.1002/anie.202115559
10.1016/j.cej.2021.130242
10.1021/acsnano.0c08357
10.1021/nn304178b
10.1016/0003-2670(95)00440-B
10.1016/j.electacta.2021.139141
10.1016/j.compositesb.2021.109246
10.4236/jst.2011.12004
10.1126/science.abf1581
10.1007/978-3-030-19026-2_5
10.1002/adma.201190147
10.1016/j.jcis.2021.07.097
10.1002/admt.201800016
10.3390/app11093914
10.1002/aenm.201703043
10.1016/j.ensm.2021.09.027
10.1016/j.ijbiomac.2021.04.112
10.1039/C8TA09810G
10.1002/adfm.201905015
10.1016/j.apsusc.2021.149710
10.1039/D1TA00681A
10.1201/9780429263941
10.1016/j.jcis.2020.12.102
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
OTOTI
DOI 10.1039/d2ta08995e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList

Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 3523
ExternalDocumentID 2422606
10_1039_D2TA08995E
d2ta08995e
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
OTOTI
ID FETCH-LOGICAL-c308t-9fdabf79fd0d25ad9e9b7d49b08cb118d05f9a2c32d0272cdefddffd725247493
ISSN 2050-7488
IngestDate Mon Aug 12 05:48:05 EDT 2024
Mon Jun 30 11:57:18 EDT 2025
Tue Jul 01 01:13:35 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue Dec 17 20:58:44 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-9fdabf79fd0d25ad9e9b7d49b08cb118d05f9a2c32d0272cdefddffd725247493
Notes https://doi.org/10.1039/d2ta08995e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
AC02-05CH11231
ORCID 0000-0001-5998-2617
0000-0001-9423-4032
0000-0003-3486-1549
0000-0001-7460-2467
0000-0001-8095-5285
0000-0001-5030-6903
0000-0001-6833-8700
0000000150306903
0000000334861549
0000000168338700
0000000174602467
0000000159982617
0000000194234032
0000000180955285
PQID 2775892682
PQPubID 2047523
PageCount 1
ParticipantIDs proquest_journals_2775892682
crossref_primary_10_1039_D2TA08995E
rsc_primary_d2ta08995e
osti_scitechconnect_2422606
crossref_citationtrail_10_1039_D2TA08995E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-14
PublicationDateYYYYMMDD 2023-02-14
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Deka (D2TA08995E/cit10/1) 2021; 43
Kang (D2TA08995E/cit4/1) 2021; 11
VahidMohammadi (D2TA08995E/cit21/1) 2021; 372
Peng (D2TA08995E/cit42/1) 2021; 1
Lukatskaya (D2TA08995E/cit27/1) 2017; 2
Wu (D2TA08995E/cit40/1) 2022; 16
Wang (D2TA08995E/cit35/1) 2021; 15
Jiang (D2TA08995E/cit25/1) 2018; 8
Anasori (D2TA08995E/cit20/1) 2019
Wu (D2TA08995E/cit39/1) 2022
Choudhry (D2TA08995E/cit5/1) 2021; 23
Sakuma (D2TA08995E/cit1/1) 2020
Zhang (D2TA08995E/cit13/1) 2022; 605
Seyedin (D2TA08995E/cit28/1) 2020; 30
Yang (D2TA08995E/cit15/1) 2021; 181
Chen (D2TA08995E/cit14/1) 2021; 423
Ma (D2TA08995E/cit38/1) 2021; 9
Paeschke (D2TA08995E/cit6/1) 1995; 305
Wu (D2TA08995E/cit11/1) 2021; 395
Yan (D2TA08995E/cit12/1) 2021; 224
Song (D2TA08995E/cit37/1) 2018; 3
Kanakry (D2TA08995E/cit9/1) 2020; 12
Wang (D2TA08995E/cit36/1) 2012; 6
Kan (D2TA08995E/cit2/1) 2021; 11
Maleski (D2TA08995E/cit32/1) 2019
Driscoll (D2TA08995E/cit31/1) 2020
Tong (D2TA08995E/cit7/1) 2018
Qin (D2TA08995E/cit17/1) 2021; 589
Shahzad (D2TA08995E/cit33/1) 2016; 353
Levitt (D2TA08995E/cit29/1) 2019; 7
Maleski (D2TA08995E/cit34/1) 2018; 10
Maleski (D2TA08995E/cit24/1) 2021; 9
Sun (D2TA08995E/cit41/1) 2023; 139
Levitt (D2TA08995E/cit30/1) 2020; 34
Hartman (D2TA08995E/cit3/1) 2014
Zhang (D2TA08995E/cit22/1) 2019; 10
Uzun (D2TA08995E/cit23/1) 2019; 29
Naguib (D2TA08995E/cit18/1) 2011; 23
Mathis (D2TA08995E/cit26/1) 2021; 15
Wu (D2TA08995E/cit43/1) 2022; 61
Abidoye (D2TA08995E/cit8/1) 2011; 1
Hwang (D2TA08995E/cit16/1) 2021; 556
Xiao (D2TA08995E/cit19/1) 2020
References_xml – issn: 2020
  publication-title: Flexible, Wearable, and Stretchable Electronics
  doi: Sakuma
– issn: 2014
  publication-title: Make: Wearable Electronics: Design, Prototype, and Wear Your Own Interactive Garments
  doi: Hartman
– issn: 2020
  publication-title: MXenes and MXenes-based composites
  doi: Xiao Ruan Kong Que Zhou Liu Zhang
– issn: 2019
  publication-title: 2D Metal Carbides and Nitrides (MXenes)
  doi: Anasori Gogotsi
– issn: 2018
  publication-title: Wearable Technology in Medicine and Health Care
  doi: Tong
– issn: 2019
  end-page: p 69-87
  publication-title: 2D Metal Carbides and Nitrides (MXenes)
  doi: Maleski Alhabeb
– volume: 11
  start-page: 6131
  year: 2021
  ident: D2TA08995E/cit4/1
  publication-title: Appl. Sci.
  doi: 10.3390/app11136131
– volume: 23
  start-page: 2100469
  year: 2021
  ident: D2TA08995E/cit5/1
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202100469
– volume: 15
  start-page: 15274
  year: 2021
  ident: D2TA08995E/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06027
– volume: 9
  start-page: 2001563
  year: 2021
  ident: D2TA08995E/cit24/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202001563
– volume: 10
  start-page: 1795
  year: 2019
  ident: D2TA08995E/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09398-1
– volume-title: 2D Metal Carbides and Nitrides (MXenes)
  year: 2019
  ident: D2TA08995E/cit20/1
  doi: 10.1007/978-3-030-19026-2
– volume-title: MXenes and MXenes-based composites
  year: 2020
  ident: D2TA08995E/cit19/1
  doi: 10.1007/978-3-030-59373-5
– volume: 30
  start-page: 1910504
  year: 2020
  ident: D2TA08995E/cit28/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910504
– volume: 2
  start-page: 17105
  year: 2017
  ident: D2TA08995E/cit27/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.105
– volume: 139
  start-page: 23
  year: 2023
  ident: D2TA08995E/cit41/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.08.020
– volume: 1
  start-page: 83
  year: 2021
  ident: D2TA08995E/cit42/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.09.004
– volume: 353
  start-page: 1137
  year: 2016
  ident: D2TA08995E/cit33/1
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 34
  start-page: 17
  year: 2020
  ident: D2TA08995E/cit30/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.02.005
– volume: 12
  start-page: eabb2779
  year: 2020
  ident: D2TA08995E/cit9/1
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb2779
– volume: 16
  start-page: 10130
  year: 2022
  ident: D2TA08995E/cit40/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c02841
– volume: 10
  start-page: 24491
  year: 2018
  ident: D2TA08995E/cit34/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04662
– volume: 61
  start-page: e202115559
  year: 2022
  ident: D2TA08995E/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202115559
– volume: 423
  start-page: 130242
  year: 2021
  ident: D2TA08995E/cit14/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130242
– volume: 15
  start-page: 6420
  year: 2021
  ident: D2TA08995E/cit26/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08357
– volume: 6
  start-page: 10296
  year: 2012
  ident: D2TA08995E/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/nn304178b
– volume: 305
  start-page: 126
  year: 1995
  ident: D2TA08995E/cit6/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(95)00440-B
– volume-title: Make: Wearable Electronics: Design, Prototype, and Wear Your Own Interactive Garments
  year: 2014
  ident: D2TA08995E/cit3/1
– volume-title: Wearable Technology in Medicine and Health Care
  year: 2018
  ident: D2TA08995E/cit7/1
– volume: 395
  start-page: 139141
  year: 2021
  ident: D2TA08995E/cit11/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139141
– volume: 224
  start-page: 109246
  year: 2021
  ident: D2TA08995E/cit12/1
  publication-title: Composites, Part B
  doi: 10.1016/j.compositesb.2021.109246
– volume: 1
  start-page: 22
  year: 2011
  ident: D2TA08995E/cit8/1
  publication-title: J. Sens. Technol.
  doi: 10.4236/jst.2011.12004
– start-page: e202203765
  year: 2022
  ident: D2TA08995E/cit39/1
  publication-title: Angew. Chem.
– volume: 372
  start-page: eabf1581
  year: 2021
  ident: D2TA08995E/cit21/1
  publication-title: Science
  doi: 10.1126/science.abf1581
– start-page: 69
  volume-title: 2D Metal Carbides and Nitrides (MXenes)
  year: 2019
  ident: D2TA08995E/cit32/1
  doi: 10.1007/978-3-030-19026-2_5
– volume: 23
  start-page: 4207
  year: 2011
  ident: D2TA08995E/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201190147
– volume: 605
  start-page: 472
  year: 2022
  ident: D2TA08995E/cit13/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.07.097
– volume: 3
  start-page: 1800016
  year: 2018
  ident: D2TA08995E/cit37/1
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800016
– volume: 11
  start-page: 3914
  year: 2021
  ident: D2TA08995E/cit2/1
  publication-title: Appl. Sci.
  doi: 10.3390/app11093914
– volume: 8
  start-page: 1703043
  year: 2018
  ident: D2TA08995E/cit25/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703043
– volume: 43
  start-page: 402
  year: 2021
  ident: D2TA08995E/cit10/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.09.027
– volume: 181
  start-page: 1063
  year: 2021
  ident: D2TA08995E/cit15/1
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.04.112
– volume: 7
  start-page: 269
  year: 2019
  ident: D2TA08995E/cit29/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09810G
– volume: 29
  start-page: 1905015
  year: 2019
  ident: D2TA08995E/cit23/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905015
– start-page: e60741
  year: 2020
  ident: D2TA08995E/cit31/1
  publication-title: J. Visualized Exp.
– volume: 556
  start-page: 149710
  year: 2021
  ident: D2TA08995E/cit16/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149710
– volume: 9
  start-page: 11501
  year: 2021
  ident: D2TA08995E/cit38/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00681A
– volume-title: Flexible, Wearable, and Stretchable Electronics
  year: 2020
  ident: D2TA08995E/cit1/1
  doi: 10.1201/9780429263941
– volume: 589
  start-page: 264
  year: 2021
  ident: D2TA08995E/cit17/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.12.102
SSID ssj0000800699
Score 2.6083984
Snippet Successful implementation of wearable electronics requires practical wearable energy storage systems that can meet certain power and energy metrics. However,...
We demonstrate a Ti3C2TxMXene coated textile supercapacitor configured as five cells stacked in series with a high operating potential range of 6 V, capable of...
SourceID osti
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3514
SubjectTerms Biomedical materials
Capacitance
Chemistry
Commercialization
Data transmission
Electrochemistry
Electronics
Energy & Fuels
Energy storage
Form factors
Garments
Materials Science
Metal carbides
MXenes
Performance measurement
Smart materials
Storage systems
Supercapacitors
Temperature requirements
Transition metals
Two dimensional materials
Wearable technology
Title Wearable energy storage with MXene textile supercapacitors for real world use
URI https://www.proquest.com/docview/2775892682
https://www.osti.gov/biblio/2422606
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 2050-7496
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000800699
  issn: 2050-7488
  databaseCode: AETIL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagOwAHBIOJsoEswQVFGZ7zw_GxgqINUQ6oE71Fie1AJZROaXIYfz3v2U7SogoBl7RyIiv299l-fnnvMyGvtWCqEJKh-KAKY85MmBVChyY1FeZVlpHABOfF5_TyOv64SlajV8lml7Tlufp5MK_kf1CFMsAVs2T_AdmhUiiA_4AvXAFhuP4Vxl-Bpjb1ybgMPox0xBgc61xdrKA0wMAOGPjBtrsxjYKVUa3t-ToYXdigqLCVTA267X5I0GimgkXrmhKo_my482Dm0nz6O1Y23L2C9cP3SVkYdzu47K9q72zFnJqBTc3t9w0Mtc4FbBucb0YXwdp7Db7drkfHv5ucvnQb1dW7PguOX4rDi9Fn6TwjfViqDTvxDRhnP84ShkKn2d5UfbFDSXFwBWARCqhq3hb4QTMx4zo3RB9yzB5GmfYjLtKUT8jRbL68-jS45tCITu3Jo8NL9MK2kXw7Vr1nykw2MCXvbVPuNv0ZMtZWWT4iDz16dOYY85jcMfUxuTc0_5g82JGhfEIWPY-oA5F6HlHkEbU8op5H9DceUYCeIo-o5REFHj0l1x_my3eXoT9mI1QRy9pQVrooKwE_TPOk0NLIUuhYlixTJew_NUsqWXAVcc244EqbSuuq0oInPBaxjE7IpN7U5hmhsPkFg1ZFSmoeZ1qWWVYZwbRJ06xMRDUlb_oey5XXoMejUH7kNhYikvl7vpzZ3p1Pyavh2RunvHLwqVPs-BzsRRQ9VhgdptrcQzwlZz0euR-325wL2CNLnmZ8Sk4Ao6H2Ednnf6z1lNwfSX1GJm3TmRdgmrblS0-lX3YSlcs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wearable+energy+storage+with+MXene+textile+supercapacitors+for+real+world+use&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Inman%2C+Alex&rft.au=Hryhorchuk%2C+Tetiana&rft.au=Bi%2C+Lingyi&rft.au=Wang%2C+Ruocun&rft.date=2023-02-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.volume=11&rft.issue=7&rft_id=info:doi/10.1039%2Fd2ta08995e&rft.externalDocID=2422606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon