Magnetic field amplification in proto-neutron stars The role of the neutron-finger instability for dynamo excitation
Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 479; no. 1; pp. 167 - 176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.02.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361:20078360 |
Cover
Abstract | Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-finger instability, is instead excited in the outer layers where the lepton gradients are large. Both instabilities involve convective motions and hence can trigger dynamo actions that may be responsible for the large magnetic fields in neutron stars and magnetars. However, because they have rather different mean turbulent velocities, they are also likely to give rise to different types of dynamo. Methods. We have solved the mean-field induction equation in a simplified one-dimensional model of both the convective and the neutron-finger instability zones. Although very idealized, the model includes the nonlinearities introduced by the feedback processes that tend to saturate the growth of the magnetic field (\alpha-quenching) and suppress its turbulent diffusion (\eta-quenching). The possibility of a dynamo action is studied within a dynamical model of turbulent diffusivity where the boundary of the unstable zone is allowed to move. A large number of numerical simulations have been performed in which the relevant parameters, such as the spin-period, the strength of the differential rotation, the intensity of the initial magnetic field, and the extent of the neutron finger instability zone, have been suitably varied. Results. We show that the dynamo action can also be operative within a dynamical model of turbulent diffusivity and that the amplification of the magnetic field can still be very effective. Furthermore, we confirm the existence of a critical spin- period, below which the dynamo is always excited independently of the degree of differential rotation, and whose value is related to the size of the neutron-finger instability zone. We provide a relation for the intensity of the final field as a function of the spin of the star and of its differential rotation. Conclusions. Although they were obtained by using a toy model, we expect that our results are able to capture the qualitative and asymptotic behaviour of a mean-field dynamo action developing in the neutron-finger instability zone. Overall, we find that such a dynamo is very efficient in producing magnetic fields well above equipartition, and thus that it could represent a possible explanation for the large surface magnetic fields observed in neutron stars. |
---|---|
AbstractList | Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-finger instability, is instead excited in the outer layers where the lepton gradients are large. Both instabilities involve convective motions and hence can trigger dynamo actions that may be responsible for the large magnetic fields in neutron stars and magnetars. However, because they have rather different mean turbulent velocities, they are also likely to give rise to different types of dynamo. Methods. We have solved the mean-field induction equation in a simplified one-dimensional model of both the convective and the neutron-finger instability zones. Although very idealized, the model includes the nonlinearities introduced by the feedback processes that tend to saturate the growth of the magnetic field (\alpha-quenching) and suppress its turbulent diffusion (\eta-quenching). The possibility of a dynamo action is studied within a dynamical model of turbulent diffusivity where the boundary of the unstable zone is allowed to move. A large number of numerical simulations have been performed in which the relevant parameters, such as the spin-period, the strength of the differential rotation, the intensity of the initial magnetic field, and the extent of the neutron finger instability zone, have been suitably varied. Results. We show that the dynamo action can also be operative within a dynamical model of turbulent diffusivity and that the amplification of the magnetic field can still be very effective. Furthermore, we confirm the existence of a critical spin- period, below which the dynamo is always excited independently of the degree of differential rotation, and whose value is related to the size of the neutron-finger instability zone. We provide a relation for the intensity of the final field as a function of the spin of the star and of its differential rotation. Conclusions. Although they were obtained by using a toy model, we expect that our results are able to capture the qualitative and asymptotic behaviour of a mean-field dynamo action developing in the neutron-finger instability zone. Overall, we find that such a dynamo is very efficient in producing magnetic fields well above equipartition, and thus that it could represent a possible explanation for the large surface magnetic fields observed in neutron stars. |
Author | Naso, L. Rezzolla, L. Bonanno, A. Paternò, L. |
Author_xml | – sequence: 1 givenname: L. surname: Naso fullname: Naso, L. – sequence: 2 givenname: L. surname: Rezzolla fullname: Rezzolla, L. – sequence: 3 givenname: A. surname: Bonanno fullname: Bonanno, A. – sequence: 4 givenname: L. surname: Paternò fullname: Paternò, L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20053995$$DView record in Pascal Francis |
BookMark | eNp9kD1PwzAQhi1UJNrCH2DKAlvg_BHbYUMVX1IRC8yW49jIKHWK7Q78e1zaMjAwne70vKe7Z4YmYQwWoXMMVxgafA0ArOaU4xsCICTlcISmmFFSg2B8gqa_wAmapfRRWoIlnSL6rN-Dzd5Uztuhr_RqPXjnjc5-DJUP1TqOeayD3eRYBinrmE7RsdNDsmf7Okdv93evi8d6-fLwtLhd1oaCzLXodM_bBoMhpKMGk7YjsqWO0Q73unfcSUta0zPR9JRzJkRrSQOy4BwMAzpHl7u95YbPjU1ZrXwydhh0sOMmKQKNIELiAl7sQZ2MHlzUwfik1tGvdPwqHDS0bZvCyR1n4phStE4Zn38-zVH7QWFQW5tqK0ttZamDzRIlf6KH7f-EvgFNe3bQ |
CODEN | AAEJAF |
CitedBy_id | crossref_primary_10_1088_1475_7516_2024_01_063 crossref_primary_10_3390_fluids7020087 crossref_primary_10_1111_j_1365_2966_2012_22027_x crossref_primary_10_1093_mnras_stz2392 crossref_primary_10_1002_asna_201211675 crossref_primary_10_3390_universe6060083 crossref_primary_10_1051_0004_6361_201116776 crossref_primary_10_3390_universe8050272 crossref_primary_10_1002_asna_200811042 crossref_primary_10_1007_s41114_017_0008_x crossref_primary_10_1093_mnras_staa1295 crossref_primary_10_1103_PhysRevLett_130_071001 crossref_primary_10_1111_j_1365_2966_2011_19290_x crossref_primary_10_1088_1674_4527_17_10_102 |
Cites_doi | 10.1086/305338 10.1086/164405 10.1086/340899 10.1002/3527603654 10.1086/342705 10.1086/172580 10.1086/505170 10.1086/504068 10.1086/183274 10.1051/0004-6361:20042098 10.1093/mnras/188.2.305 10.1086/340640 10.1086/431929 10.1080/03091929408226581 10.1086/342368 10.1051/0004-6361:20054654 10.1051/0004-6361:20054473 10.1086/317163 10.1051/0004-6361:20010450 10.1080/03091928408219262 10.1086/376967 10.1051/0004-6361:20041741 10.1051/0004-6361:20031459 10.1093/mnras/288.3.551 10.1080/03091929008219859 10.1046/j.1365-8711.2000.03452.x |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. |
DOI | 10.1051/0004-6361:20078360 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
EndPage | 176 |
ExternalDocumentID | 20053995 10_1051_0004_6361_20078360 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 IQODW 7TG KL. |
ID | FETCH-LOGICAL-c308t-7bad69510c22b3c129b2893f43b1dadf6f8e29cd475d3664779e2508c2260c403 |
ISSN | 0004-6361 |
IngestDate | Thu Sep 04 22:20:19 EDT 2025 Mon Jul 21 09:13:54 EDT 2025 Tue Jul 01 00:40:00 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Differential rotation Magnetohydrodynamics Neutrons Entropy Convection Protostars Mean-field theory Feedback Excitation Dynamic model magnetohydrodynamics (MHD) stars: rotation Neutron stars Convective instabilities Turbulence Leptons stars: magnetic fields Intensity Digital simulation Asymptotic behavior Turbulent diffusion instabilities Diffusivity stars: neutron Amplification Nonlinearity Magnetic stars Stellar rotation Magnetic fields |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c308t-7bad69510c22b3c129b2893f43b1dadf6f8e29cd475d3664779e2508c2260c403 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 20572781 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_20572781 pascalfrancis_primary_20053995 crossref_citationtrail_10_1051_0004_6361_20078360 crossref_primary_10_1051_0004_6361_20078360 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-01 |
PublicationDateYYYYMMDD | 2008-02-01 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2008 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Bonanno (R5) 2005; 440 Burrows (R10) 1986; 307 Sanwal (R26) 2002; 574 Rüdiger (R23) 1996; 316 Becker (R1) 2003; 594 Gilman (R14) 2005; 630 Rüdiger (R25) 1994; 78 Xu (R29) 2001; 371 Blackman (R3) 2002; 579 Rempel (R21) 2006; 647 Belvedere (R2) 1990; 51 Mezzacappa (R16) 1998; 495 Roald (R22) 1997; 288 Bonanno (R6) 2006; 451 Thompson (R27) 1993; 408 Livio (R15) 1980; 238 R24 Bonanno (R4) 2003; 410 R8 Buras (R9) 2006; 457 Covas (R11) 2005; 429 Miralles (R17) 2000; 543 Weiss (R28) 1984; 30 Epstein (R13) 1979; 188 Pavlov (R20) 2002; 569 Moss (R19) 2000; 315 Brandenburg (R7) 1989; 213 Miralles (R18) 2002; 574 Dessart (R12) 2006; 645 |
References_xml | – volume: 495 start-page: 911 year: 1998 ident: R16 publication-title: ApJ doi: 10.1086/305338 – volume: 307 start-page: 178 year: 1986 ident: R10 publication-title: ApJ doi: 10.1086/164405 – volume: 574 start-page: 356 year: 2002 ident: R18 publication-title: ApJ doi: 10.1086/340899 – ident: R24 doi: 10.1002/3527603654 – volume: 579 start-page: 359 year: 2002 ident: R3 publication-title: ApJ doi: 10.1086/342705 – volume: 213 start-page: 411 year: 1989 ident: R7 publication-title: A&A – volume: 408 start-page: 194 year: 1993 ident: R27 publication-title: ApJ doi: 10.1086/172580 – volume: 316 start-page: L17 year: 1996 ident: R23 publication-title: A&A – volume: 647 start-page: 675 year: 2006 ident: R21 publication-title: ApJ doi: 10.1086/505170 – volume: 645 start-page: 534 year: 2006 ident: R12 publication-title: ApJ doi: 10.1086/504068 – volume: 238 start-page: L139 year: 1980 ident: R15 publication-title: ApJ doi: 10.1086/183274 – volume: 440 start-page: 199 year: 2005 ident: R5 publication-title: A&A doi: 10.1051/0004-6361:20042098 – volume: 188 start-page: 305 year: 1979 ident: R13 publication-title: MNRAS doi: 10.1093/mnras/188.2.305 – volume: 569 start-page: L95 year: 2002 ident: R20 publication-title: ApJ doi: 10.1086/340640 – volume: 630 start-page: 615 year: 2005 ident: R14 publication-title: ApJ doi: 10.1086/431929 – volume: 78 start-page: 247 year: 1994 ident: R25 publication-title: GAFD doi: 10.1080/03091929408226581 – volume: 574 start-page: L61 year: 2002 ident: R26 publication-title: ApJ doi: 10.1086/342368 – volume: 457 start-page: 281 year: 2006 ident: R9 publication-title: A&A doi: 10.1051/0004-6361:20054654 – volume: 451 start-page: 1049 year: 2006 ident: R6 publication-title: A&A doi: 10.1051/0004-6361:20054473 – volume: 543 start-page: 1001 year: 2000 ident: R17 publication-title: ApJ doi: 10.1086/317163 – volume: 371 start-page: 963 year: 2001 ident: R29 publication-title: A&A doi: 10.1051/0004-6361:20010450 – volume: 30 start-page: 305 year: 1984 ident: R28 publication-title: GAFD doi: 10.1080/03091928408219262 – volume: 594 start-page: 798 year: 2003 ident: R1 publication-title: ApJ doi: 10.1086/376967 – volume: 429 start-page: 657 year: 2005 ident: R11 publication-title: A&A doi: 10.1051/0004-6361:20041741 – volume: 410 start-page: L33 year: 2003 ident: R4 publication-title: A&A doi: 10.1051/0004-6361:20031459 – volume: 288 start-page: 551 year: 1997 ident: R22 publication-title: MNRAS doi: 10.1093/mnras/288.3.551 – volume: 51 start-page: 263 year: 1990 ident: R2 publication-title: GAFD doi: 10.1080/03091929008219859 – volume: 315 start-page: 521 year: 2000 ident: R19 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03452.x – ident: R8 |
SSID | ssj0002183 |
Score | 2.0028846 |
Snippet | Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 167 |
SubjectTerms | Astronomy Earth, ocean, space Exact sciences and technology Fundamental aspects of astrophysics Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations Late stages of stellar evolution (including black holes) Magnetohydrodynamics and plasmas Neutron stars Stars |
Subtitle | The role of the neutron-finger instability for dynamo excitation |
Title | Magnetic field amplification in proto-neutron stars |
URI | https://www.proquest.com/docview/20572781 |
Volume | 479 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_OiiCIaFV6ftR9EF-O1XzuJb5FrVRpcwe2UPoSkt1sOdCkXHIgPvh3-Oc6s5vNJVb8egm5vWxy3PwyMzv7mxlCnnmFV_hO4TEVc8mC3PMZLIMkc2MFxsEJVSgxwfk45YenwYez8Gwy-T5gLW3a4oX4-su8kv-RKoyBXDFL9h8k298UBuAc5AtHkDAc_0rGx_lFhUmIM81Dm-XIDlddEE7Tw9d1W7Oq3GC8G6MG60ZTLCylEJ3O7lumTEXCFbqLmjBrmJwSO9bXs_KLWA027W3Z2gan1p9NDaccP5lIiQ7lmkpag1BDmnxcbBMdcJfn4Px8cXSUjAZfL9IkTRejOOsywcK9g8k2ThFZarMNnr1dWnXVjBRywLhv6rFbhRyY9jIj5Bn16prWHZ2ldk3nmCtGAPSMYU2aW4PMMCCL2Spbo2c3-n-yhT1DEYNtmPV7jVz35uCVYRr5-2-9jUfH0iyszDO6dCx48st-7JV96sjluXWZN_D2KdM25YoHoN2akzvkdrceoYkB110yKatdstcLlj6nyUCsu-TG0pzdI61FH9XooyP00VVFR-ijGn0U0EcRfbRWFNBHx-ijA_RRQB816KNb9N0np-8OTt4csq6HBxO-E7VsXuSSoxcvPFAKArzLApb4vgr8wpW5VFxFpRcLGcxD6XPMio5L8MojuJw7InD8B2Snqqtyj1AhBY-UcLnwC3B7QZuEPCrBAkkZ59yVU-Lavzmzvwr7rHzKNNEidJFoEWQomsyKZkpm_ZxLU97lt1fvj6TXT7FomZKnVpwZqGnce8urst40cEUIK4XIffinWzwiN7dvz2Oy06435RPwe9tiX0PwB5csrCM |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+field+amplification+in+proto-neutron+stars+The+role+of+the+neutron-finger+instability+for+dynamo+excitation&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=NASO%2C+L&rft.au=REZZOLLA%2C+L&rft.au=BONANNO%2C+A&rft.au=PATERNO%2C+L&rft.date=2008-02-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.volume=479&rft.issue=1&rft.spage=167&rft.epage=176&rft_id=info:doi/10.1051%2F0004-6361%3A20078360&rft.externalDBID=n%2Fa&rft.externalDocID=20053995 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |