Magnetic field amplification in proto-neutron stars The role of the neutron-finger instability for dynamo excitation

Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 479; no. 1; pp. 167 - 176
Main Authors Naso, L., Rezzolla, L., Bonanno, A., Paternò, L.
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.02.2008
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361:20078360

Cover

Abstract Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-finger instability, is instead excited in the outer layers where the lepton gradients are large. Both instabilities involve convective motions and hence can trigger dynamo actions that may be responsible for the large magnetic fields in neutron stars and magnetars. However, because they have rather different mean turbulent velocities, they are also likely to give rise to different types of dynamo. Methods. We have solved the mean-field induction equation in a simplified one-dimensional model of both the convective and the neutron-finger instability zones. Although very idealized, the model includes the nonlinearities introduced by the feedback processes that tend to saturate the growth of the magnetic field (\alpha-quenching) and suppress its turbulent diffusion (\eta-quenching). The possibility of a dynamo action is studied within a dynamical model of turbulent diffusivity where the boundary of the unstable zone is allowed to move. A large number of numerical simulations have been performed in which the relevant parameters, such as the spin-period, the strength of the differential rotation, the intensity of the initial magnetic field, and the extent of the neutron finger instability zone, have been suitably varied. Results. We show that the dynamo action can also be operative within a dynamical model of turbulent diffusivity and that the amplification of the magnetic field can still be very effective. Furthermore, we confirm the existence of a critical spin- period, below which the dynamo is always excited independently of the degree of differential rotation, and whose value is related to the size of the neutron-finger instability zone. We provide a relation for the intensity of the final field as a function of the spin of the star and of its differential rotation. Conclusions. Although they were obtained by using a toy model, we expect that our results are able to capture the qualitative and asymptotic behaviour of a mean-field dynamo action developing in the neutron-finger instability zone. Overall, we find that such a dynamo is very efficient in producing magnetic fields well above equipartition, and thus that it could represent a possible explanation for the large surface magnetic fields observed in neutron stars.
AbstractList Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the convective instability, is excited in the inner regions, where the entropy gradient produces a Rayleigh-type convection. The second one, the neutron-finger instability, is instead excited in the outer layers where the lepton gradients are large. Both instabilities involve convective motions and hence can trigger dynamo actions that may be responsible for the large magnetic fields in neutron stars and magnetars. However, because they have rather different mean turbulent velocities, they are also likely to give rise to different types of dynamo. Methods. We have solved the mean-field induction equation in a simplified one-dimensional model of both the convective and the neutron-finger instability zones. Although very idealized, the model includes the nonlinearities introduced by the feedback processes that tend to saturate the growth of the magnetic field (\alpha-quenching) and suppress its turbulent diffusion (\eta-quenching). The possibility of a dynamo action is studied within a dynamical model of turbulent diffusivity where the boundary of the unstable zone is allowed to move. A large number of numerical simulations have been performed in which the relevant parameters, such as the spin-period, the strength of the differential rotation, the intensity of the initial magnetic field, and the extent of the neutron finger instability zone, have been suitably varied. Results. We show that the dynamo action can also be operative within a dynamical model of turbulent diffusivity and that the amplification of the magnetic field can still be very effective. Furthermore, we confirm the existence of a critical spin- period, below which the dynamo is always excited independently of the degree of differential rotation, and whose value is related to the size of the neutron-finger instability zone. We provide a relation for the intensity of the final field as a function of the spin of the star and of its differential rotation. Conclusions. Although they were obtained by using a toy model, we expect that our results are able to capture the qualitative and asymptotic behaviour of a mean-field dynamo action developing in the neutron-finger instability zone. Overall, we find that such a dynamo is very efficient in producing magnetic fields well above equipartition, and thus that it could represent a possible explanation for the large surface magnetic fields observed in neutron stars.
Author Naso, L.
Rezzolla, L.
Bonanno, A.
Paternò, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Naso
  fullname: Naso, L.
– sequence: 2
  givenname: L.
  surname: Rezzolla
  fullname: Rezzolla, L.
– sequence: 3
  givenname: A.
  surname: Bonanno
  fullname: Bonanno, A.
– sequence: 4
  givenname: L.
  surname: Paternò
  fullname: Paternò, L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20053995$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi1UJNrCH2DKAlvg_BHbYUMVX1IRC8yW49jIKHWK7Q78e1zaMjAwne70vKe7Z4YmYQwWoXMMVxgafA0ArOaU4xsCICTlcISmmFFSg2B8gqa_wAmapfRRWoIlnSL6rN-Dzd5Uztuhr_RqPXjnjc5-DJUP1TqOeayD3eRYBinrmE7RsdNDsmf7Okdv93evi8d6-fLwtLhd1oaCzLXodM_bBoMhpKMGk7YjsqWO0Q73unfcSUta0zPR9JRzJkRrSQOy4BwMAzpHl7u95YbPjU1ZrXwydhh0sOMmKQKNIELiAl7sQZ2MHlzUwfik1tGvdPwqHDS0bZvCyR1n4phStE4Zn38-zVH7QWFQW5tqK0ttZamDzRIlf6KH7f-EvgFNe3bQ
CODEN AAEJAF
CitedBy_id crossref_primary_10_1088_1475_7516_2024_01_063
crossref_primary_10_3390_fluids7020087
crossref_primary_10_1111_j_1365_2966_2012_22027_x
crossref_primary_10_1093_mnras_stz2392
crossref_primary_10_1002_asna_201211675
crossref_primary_10_3390_universe6060083
crossref_primary_10_1051_0004_6361_201116776
crossref_primary_10_3390_universe8050272
crossref_primary_10_1002_asna_200811042
crossref_primary_10_1007_s41114_017_0008_x
crossref_primary_10_1093_mnras_staa1295
crossref_primary_10_1103_PhysRevLett_130_071001
crossref_primary_10_1111_j_1365_2966_2011_19290_x
crossref_primary_10_1088_1674_4527_17_10_102
Cites_doi 10.1086/305338
10.1086/164405
10.1086/340899
10.1002/3527603654
10.1086/342705
10.1086/172580
10.1086/505170
10.1086/504068
10.1086/183274
10.1051/0004-6361:20042098
10.1093/mnras/188.2.305
10.1086/340640
10.1086/431929
10.1080/03091929408226581
10.1086/342368
10.1051/0004-6361:20054654
10.1051/0004-6361:20054473
10.1086/317163
10.1051/0004-6361:20010450
10.1080/03091928408219262
10.1086/376967
10.1051/0004-6361:20041741
10.1051/0004-6361:20031459
10.1093/mnras/288.3.551
10.1080/03091929008219859
10.1046/j.1365-8711.2000.03452.x
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
DOI 10.1051/0004-6361:20078360
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
EndPage 176
ExternalDocumentID 20053995
10_1051_0004_6361_20078360
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
IQODW
7TG
KL.
ID FETCH-LOGICAL-c308t-7bad69510c22b3c129b2893f43b1dadf6f8e29cd475d3664779e2508c2260c403
ISSN 0004-6361
IngestDate Thu Sep 04 22:20:19 EDT 2025
Mon Jul 21 09:13:54 EDT 2025
Tue Jul 01 00:40:00 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Differential rotation
Magnetohydrodynamics
Neutrons
Entropy
Convection
Protostars
Mean-field theory
Feedback
Excitation
Dynamic model
magnetohydrodynamics (MHD)
stars: rotation
Neutron stars
Convective instabilities
Turbulence
Leptons
stars: magnetic fields
Intensity
Digital simulation
Asymptotic behavior
Turbulent diffusion
instabilities
Diffusivity
stars: neutron
Amplification
Nonlinearity
Magnetic stars
Stellar rotation
Magnetic fields
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-7bad69510c22b3c129b2893f43b1dadf6f8e29cd475d3664779e2508c2260c403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 20572781
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_20572781
pascalfrancis_primary_20053995
crossref_citationtrail_10_1051_0004_6361_20078360
crossref_primary_10_1051_0004_6361_20078360
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2008
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Bonanno (R5) 2005; 440
Burrows (R10) 1986; 307
Sanwal (R26) 2002; 574
Rüdiger (R23) 1996; 316
Becker (R1) 2003; 594
Gilman (R14) 2005; 630
Rüdiger (R25) 1994; 78
Xu (R29) 2001; 371
Blackman (R3) 2002; 579
Rempel (R21) 2006; 647
Belvedere (R2) 1990; 51
Mezzacappa (R16) 1998; 495
Roald (R22) 1997; 288
Bonanno (R6) 2006; 451
Thompson (R27) 1993; 408
Livio (R15) 1980; 238
R24
Bonanno (R4) 2003; 410
R8
Buras (R9) 2006; 457
Covas (R11) 2005; 429
Miralles (R17) 2000; 543
Weiss (R28) 1984; 30
Epstein (R13) 1979; 188
Pavlov (R20) 2002; 569
Moss (R19) 2000; 315
Brandenburg (R7) 1989; 213
Miralles (R18) 2002; 574
Dessart (R12) 2006; 645
References_xml – volume: 495
  start-page: 911
  year: 1998
  ident: R16
  publication-title: ApJ
  doi: 10.1086/305338
– volume: 307
  start-page: 178
  year: 1986
  ident: R10
  publication-title: ApJ
  doi: 10.1086/164405
– volume: 574
  start-page: 356
  year: 2002
  ident: R18
  publication-title: ApJ
  doi: 10.1086/340899
– ident: R24
  doi: 10.1002/3527603654
– volume: 579
  start-page: 359
  year: 2002
  ident: R3
  publication-title: ApJ
  doi: 10.1086/342705
– volume: 213
  start-page: 411
  year: 1989
  ident: R7
  publication-title: A&A
– volume: 408
  start-page: 194
  year: 1993
  ident: R27
  publication-title: ApJ
  doi: 10.1086/172580
– volume: 316
  start-page: L17
  year: 1996
  ident: R23
  publication-title: A&A
– volume: 647
  start-page: 675
  year: 2006
  ident: R21
  publication-title: ApJ
  doi: 10.1086/505170
– volume: 645
  start-page: 534
  year: 2006
  ident: R12
  publication-title: ApJ
  doi: 10.1086/504068
– volume: 238
  start-page: L139
  year: 1980
  ident: R15
  publication-title: ApJ
  doi: 10.1086/183274
– volume: 440
  start-page: 199
  year: 2005
  ident: R5
  publication-title: A&A
  doi: 10.1051/0004-6361:20042098
– volume: 188
  start-page: 305
  year: 1979
  ident: R13
  publication-title: MNRAS
  doi: 10.1093/mnras/188.2.305
– volume: 569
  start-page: L95
  year: 2002
  ident: R20
  publication-title: ApJ
  doi: 10.1086/340640
– volume: 630
  start-page: 615
  year: 2005
  ident: R14
  publication-title: ApJ
  doi: 10.1086/431929
– volume: 78
  start-page: 247
  year: 1994
  ident: R25
  publication-title: GAFD
  doi: 10.1080/03091929408226581
– volume: 574
  start-page: L61
  year: 2002
  ident: R26
  publication-title: ApJ
  doi: 10.1086/342368
– volume: 457
  start-page: 281
  year: 2006
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361:20054654
– volume: 451
  start-page: 1049
  year: 2006
  ident: R6
  publication-title: A&A
  doi: 10.1051/0004-6361:20054473
– volume: 543
  start-page: 1001
  year: 2000
  ident: R17
  publication-title: ApJ
  doi: 10.1086/317163
– volume: 371
  start-page: 963
  year: 2001
  ident: R29
  publication-title: A&A
  doi: 10.1051/0004-6361:20010450
– volume: 30
  start-page: 305
  year: 1984
  ident: R28
  publication-title: GAFD
  doi: 10.1080/03091928408219262
– volume: 594
  start-page: 798
  year: 2003
  ident: R1
  publication-title: ApJ
  doi: 10.1086/376967
– volume: 429
  start-page: 657
  year: 2005
  ident: R11
  publication-title: A&A
  doi: 10.1051/0004-6361:20041741
– volume: 410
  start-page: L33
  year: 2003
  ident: R4
  publication-title: A&A
  doi: 10.1051/0004-6361:20031459
– volume: 288
  start-page: 551
  year: 1997
  ident: R22
  publication-title: MNRAS
  doi: 10.1093/mnras/288.3.551
– volume: 51
  start-page: 263
  year: 1990
  ident: R2
  publication-title: GAFD
  doi: 10.1080/03091929008219859
– volume: 315
  start-page: 521
  year: 2000
  ident: R19
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03452.x
– ident: R8
SSID ssj0002183
Score 2.0028846
Snippet Aims. During the first 40 s after their birth, proto-neutron stars are expected to be subject to at least two types of instability. The first one, the...
SourceID proquest
pascalfrancis
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 167
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Fundamental aspects of astrophysics
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
Late stages of stellar evolution (including black holes)
Magnetohydrodynamics and plasmas
Neutron stars
Stars
Subtitle The role of the neutron-finger instability for dynamo excitation
Title Magnetic field amplification in proto-neutron stars
URI https://www.proquest.com/docview/20572781
Volume 479
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_OiiCIaFV6ftR9EF-O1XzuJb5FrVRpcwe2UPoSkt1sOdCkXHIgPvh3-Oc6s5vNJVb8egm5vWxy3PwyMzv7mxlCnnmFV_hO4TEVc8mC3PMZLIMkc2MFxsEJVSgxwfk45YenwYez8Gwy-T5gLW3a4oX4-su8kv-RKoyBXDFL9h8k298UBuAc5AtHkDAc_0rGx_lFhUmIM81Dm-XIDlddEE7Tw9d1W7Oq3GC8G6MG60ZTLCylEJ3O7lumTEXCFbqLmjBrmJwSO9bXs_KLWA027W3Z2gan1p9NDaccP5lIiQ7lmkpag1BDmnxcbBMdcJfn4Px8cXSUjAZfL9IkTRejOOsywcK9g8k2ThFZarMNnr1dWnXVjBRywLhv6rFbhRyY9jIj5Bn16prWHZ2ldk3nmCtGAPSMYU2aW4PMMCCL2Spbo2c3-n-yhT1DEYNtmPV7jVz35uCVYRr5-2-9jUfH0iyszDO6dCx48st-7JV96sjluXWZN_D2KdM25YoHoN2akzvkdrceoYkB110yKatdstcLlj6nyUCsu-TG0pzdI61FH9XooyP00VVFR-ijGn0U0EcRfbRWFNBHx-ijA_RRQB816KNb9N0np-8OTt4csq6HBxO-E7VsXuSSoxcvPFAKArzLApb4vgr8wpW5VFxFpRcLGcxD6XPMio5L8MojuJw7InD8B2Snqqtyj1AhBY-UcLnwC3B7QZuEPCrBAkkZ59yVU-Lavzmzvwr7rHzKNNEidJFoEWQomsyKZkpm_ZxLU97lt1fvj6TXT7FomZKnVpwZqGnce8urst40cEUIK4XIffinWzwiN7dvz2Oy06435RPwe9tiX0PwB5csrCM
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+field+amplification+in+proto-neutron+stars+The+role+of+the+neutron-finger+instability+for+dynamo+excitation&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=NASO%2C+L&rft.au=REZZOLLA%2C+L&rft.au=BONANNO%2C+A&rft.au=PATERNO%2C+L&rft.date=2008-02-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.volume=479&rft.issue=1&rft.spage=167&rft.epage=176&rft_id=info:doi/10.1051%2F0004-6361%3A20078360&rft.externalDBID=n%2Fa&rft.externalDocID=20053995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon