Analytic description of primordial black hole formation from scalar field fragmentation
Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during...
Saved in:
| Published in | Journal of cosmology and astroparticle physics Vol. 2019; no. 10; p. 77 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bristol
IOP Publishing
31.10.2019
Institute of Physics (IOP) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-7516 1475-7516 |
| DOI | 10.1088/1475-7516/2019/10/077 |
Cover
| Abstract | Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy “particles”, whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter. |
|---|---|
| AbstractList | We report that primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy "particles", whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. lASTLY, Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter. Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy “particles”, whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter. |
| Author | Cotner, Eric Kusenko, Alexander Sasaki, Misao Takhistov, Volodymyr |
| Author_xml | – sequence: 1 givenname: Eric surname: Cotner fullname: Cotner, Eric – sequence: 2 givenname: Alexander surname: Kusenko fullname: Kusenko, Alexander – sequence: 3 givenname: Misao surname: Sasaki fullname: Sasaki, Misao – sequence: 4 givenname: Volodymyr surname: Takhistov fullname: Takhistov, Volodymyr |
| BackLink | https://www.osti.gov/servlets/purl/1608335$$D View this record in Osti.gov |
| BookMark | eNqFkN1LwzAUxYNMcJv-CULR59p8LG2KT2P4BQNfFB9Dmt66zLSZSfaw_962ExFffEo495x7Ob8ZmnSuA4QuCb4hWIiMLAqeFpzkGcWkzAjOcFGcoOmPPvn1P0OzELYY05wxMUVvy07ZQzQ6qSFob3bRuC5xTbLzpnW-NsomlVX6I9k4C0njfKtGS-NdmwStrPJJY8DWvaLeW-jiOD9Hp42yAS6-3zl6vb97WT2m6-eHp9VynWqGRUyLilNBGa-Y5jmIsi9AMNRQVzmUakGhEkJUmJcKOKeVADaMmWKEadoUhM3R1XGvC9HIoE0EvdGu60BHSXIsGOO96fpo2nn3uYcQ5dbtfV88yP52wQWho-v26NLeheChkf22sUz0ylhJsBxwywGlHFDKAfcg97j7NP-THggqf_gn9wUCzIUL |
| CitedBy_id | crossref_primary_10_1103_PhysRevD_105_103532 crossref_primary_10_3390_universe9050203 crossref_primary_10_1088_1361_6633_ad616a crossref_primary_10_1088_1475_7516_2024_03_002 crossref_primary_10_1103_PhysRevD_103_123549 crossref_primary_10_1088_1475_7516_2024_07_091 crossref_primary_10_1103_PhysRevD_109_023013 crossref_primary_10_1103_PhysRevD_108_023014 crossref_primary_10_21468_SciPostPhysLectNotes_48 crossref_primary_10_1016_j_isci_2021_102860 crossref_primary_10_1088_1475_7516_2023_06_055 crossref_primary_10_1088_1475_7516_2022_02_032 crossref_primary_10_1103_PhysRevD_100_123544 crossref_primary_10_1103_PhysRevD_105_103530 crossref_primary_10_1103_PhysRevD_108_103531 crossref_primary_10_1103_PhysRevD_106_043015 crossref_primary_10_1103_PhysRevD_108_015005 crossref_primary_10_1103_PhysRevD_108_103528 crossref_primary_10_1088_1475_7516_2023_05_013 crossref_primary_10_1103_PhysRevD_110_L051702 crossref_primary_10_1088_1475_7516_2021_03_102 crossref_primary_10_3390_universe8010041 crossref_primary_10_1103_PhysRevD_109_124063 crossref_primary_10_1093_mnras_stab3754 crossref_primary_10_1007_s11433_021_1781_x crossref_primary_10_1093_mnrasl_slac097 crossref_primary_10_1103_PhysRevD_109_123016 crossref_primary_10_1103_PhysRevD_106_103520 crossref_primary_10_1088_1475_7516_2025_01_094 crossref_primary_10_1103_PhysRevD_108_123002 crossref_primary_10_1103_PhysRevD_104_044011 crossref_primary_10_1088_1475_7516_2021_06_030 crossref_primary_10_1093_ptep_ptaa108 crossref_primary_10_1088_1475_7516_2022_03_017 crossref_primary_10_1103_PhysRevLett_126_071101 crossref_primary_10_1103_PhysRevD_102_121301 crossref_primary_10_1088_1475_7516_2022_03_012 crossref_primary_10_1007_JHEP08_2024_012 crossref_primary_10_3390_sym16070895 crossref_primary_10_1088_1361_6382_ad9e67 crossref_primary_10_1103_PhysRevD_101_083022 crossref_primary_10_21468_SciPostPhys_12_5_150 crossref_primary_10_1088_1475_7516_2022_10_048 crossref_primary_10_1103_PhysRevD_103_104051 crossref_primary_10_1088_1475_7516_2024_10_082 crossref_primary_10_1103_PhysRevD_103_083504 crossref_primary_10_1088_1475_7516_2022_03_029 crossref_primary_10_1103_PhysRevLett_130_221002 crossref_primary_10_1016_j_dark_2022_101115 crossref_primary_10_1007_JHEP12_2022_079 crossref_primary_10_1088_1475_7516_2022_03_023 crossref_primary_10_1103_PhysRevD_110_043526 crossref_primary_10_1103_PhysRevD_111_063544 crossref_primary_10_1103_PhysRevLett_130_181002 crossref_primary_10_1088_1475_7516_2025_02_040 crossref_primary_10_1103_PhysRevD_104_083018 crossref_primary_10_3390_galaxies11010035 crossref_primary_10_1007_JHEP08_2024_242 crossref_primary_10_1088_1475_7516_2021_04_035 crossref_primary_10_1103_PhysRevD_108_103543 crossref_primary_10_1103_PhysRevD_110_015005 crossref_primary_10_1088_1475_7516_2020_07_055 crossref_primary_10_1103_PhysRevD_107_045004 crossref_primary_10_1103_PhysRevD_111_043005 crossref_primary_10_1016_j_dark_2020_100672 crossref_primary_10_1088_1475_7516_2021_01_030 crossref_primary_10_1103_PhysRevD_108_063514 crossref_primary_10_1088_1475_7516_2024_07_059 crossref_primary_10_1103_PhysRevD_105_063508 crossref_primary_10_1140_epjc_s10052_023_11379_0 crossref_primary_10_1103_PhysRevD_105_115033 crossref_primary_10_1103_PhysRevD_105_123505 crossref_primary_10_1103_PhysRevLett_126_041101 crossref_primary_10_1088_1475_7516_2023_06_012 crossref_primary_10_1007_JHEP07_2022_130 crossref_primary_10_1103_PhysRevD_110_084073 crossref_primary_10_1088_1475_7516_2023_06_018 crossref_primary_10_3847_1538_4357_ac66da crossref_primary_10_1088_1475_7516_2023_10_001 crossref_primary_10_1103_PhysRevD_108_063524 crossref_primary_10_1103_PhysRevD_108_025006 crossref_primary_10_1007_JHEP08_2023_196 crossref_primary_10_1103_PhysRevD_101_043508 crossref_primary_10_1016_j_dark_2023_101231 crossref_primary_10_1103_PhysRevD_104_063008 crossref_primary_10_1103_PhysRevLett_133_101002 crossref_primary_10_1088_1475_7516_2024_11_026 crossref_primary_10_1088_1361_6471_abc534 crossref_primary_10_1103_PhysRevLett_125_181304 crossref_primary_10_3390_universe7110398 crossref_primary_10_1103_PhysRevLett_125_101101 crossref_primary_10_1103_PhysRevD_108_123511 crossref_primary_10_1088_1475_7516_2022_02_017 crossref_primary_10_1103_PhysRevD_105_064067 crossref_primary_10_1007_JHEP07_2021_062 crossref_primary_10_3389_fspas_2022_927144 crossref_primary_10_1007_s43673_023_00109_z crossref_primary_10_1088_1361_6382_ad5488 crossref_primary_10_1088_1475_7516_2021_05_027 crossref_primary_10_1088_1475_7516_2023_03_013 crossref_primary_10_1007_JHEP01_2023_063 crossref_primary_10_1088_1475_7516_2024_07_076 crossref_primary_10_3389_fspas_2024_1361399 crossref_primary_10_3847_2041_8213_abdcb6 crossref_primary_10_1103_PhysRevD_105_123009 crossref_primary_10_1103_PhysRevD_107_103037 crossref_primary_10_1103_PhysRevD_107_124019 crossref_primary_10_1103_PhysRevD_109_123002 crossref_primary_10_1088_1402_4896_adbc31 crossref_primary_10_3847_1538_4357_ac6ddd crossref_primary_10_1007_s11433_022_2095_5 crossref_primary_10_1088_1361_6633_ac1e31 crossref_primary_10_1103_PhysRevD_101_063519 crossref_primary_10_1103_PhysRevD_101_063520 crossref_primary_10_1103_PhysRevD_108_L101301 crossref_primary_10_3390_universe8020066 crossref_primary_10_1103_PhysRevD_108_L061301 |
| Cites_doi | 10.1103/RevModPhys.76.1 10.1103/PhysRevD.92.023524 10.1103/PhysRevLett.121.059901 10.1103/PhysRevD.36.1088 10.1016/j.physletb.2005.05.082 10.1016/0370-1573(92)90064-7 10.1016/0550-3213(96)00095-8 10.1093/mnras/168.2.399 10.1088/1475-7516/2014/08/051 10.1103/PhysRevD.90.083528 10.1088/1674-4527/10/6/001 10.1103/PhysRev.172.1331 10.1103/PhysRevD.96.103002 10.1103/PhysRevLett.117.121801 10.1103/PhysRevD.94.083504 10.1016/j.dark.2017.10.001 10.1103/PhysRevLett.120.219901 10.1103/PhysRevLett.116.241103 10.1103/PhysRevD.49.5040 10.1086/310886 10.1103/PhysRevD.65.084037 10.1016/0550-3213(85)90286-X 10.1103/PhysRevLett.122.141302 10.1103/PhysRevD.98.123024 10.1103/PhysRevD.62.023512 10.1103/PhysRevD.92.105024 10.1103/PhysRevD.66.063505 10.1103/PhysRevLett.119.061101 10.1103/PhysRev.187.1767 10.1103/PhysRevD.94.083523 10.1007/JHEP04(2019)030 10.1103/PhysRevD.74.124003 10.1103/PhysRevD.98.043531 10.1103/PhysRevD.96.043504 10.1103/PhysRevLett.116.061102 10.1103/PhysRevLett.116.201301 10.1103/PhysRevD.89.103534 10.1103/PhysRevD.31.681 10.1016/0370-2693(82)90293-3 10.1093/mnras/152.1.75 10.1088/1475-7516/2017/09/013 10.1103/PhysRevD.87.023517 10.1016/S0370-2693(02)01730-6 10.1088/1742-6596/1051/1/012010 10.1016/j.physletb.2018.05.026 10.1016/S0370-2693(03)00344-7 10.1088/0264-9381/19/10/307 10.1088/1475-7516/2017/03/055 10.1088/1475-7516/2010/04/023 10.1016/j.physletb.2012.03.056 10.1103/PhysRevD.94.123006 10.1007/JHEP09(2017)138 10.1103/PhysRevD.52.1920 10.1103/PhysRevD.98.083513 10.1016/S0370-2693(97)00584-4 10.1103/PhysRevLett.120.121301 10.1093/mnras/215.4.575 10.1088/1475-7516/2005/08/011 10.1103/PhysRevD.54.6040 10.1016/j.physletb.2018.12.043 10.1070/PU1985v028n03ABEH003858 10.1016/S0370-2693(98)01078-8 10.1103/PhysRevD.99.069904 10.1016/S0370-2693(97)01375-0 10.1103/PhysRevLett.108.241302 10.1088/1475-7516/2017/10/034 10.1088/1475-7516/2017/09/037 10.1103/PhysRevD.97.123512 10.1093/mnras/sty1204 10.1103/PhysRevD.95.123510 10.3847/1538-4357/aaa7f4 10.1016/S0370-2693(97)01378-6 10.1103/PhysRevD.97.043514 10.1088/1475-7516/2018/05/042 10.1103/PhysRevD.28.1243 10.1016/0550-3213(86)90004-0 10.1103/PhysRevD.49.2978 10.1142/S0217751X8700020X 10.1098/rspa.1978.0060 10.1016/0550-3213(90)90514-E 10.1103/PhysRevLett.118.221101 10.1088/1361-6382/aaa7b4 10.1103/PhysRevD.98.123514 10.1103/PhysRevD.50.6357 10.1103/PhysRevLett.119.031103 10.1007/JHEP01(2018)083 10.1103/PhysRevLett.71.3051 10.1088/0264-9381/20/20/201 |
| ContentType | Journal Article |
| Copyright | Copyright IOP Publishing Oct 2019 |
| Copyright_xml | – notice: Copyright IOP Publishing Oct 2019 |
| CorporateAuthor | Univ. of California, Los Angeles, CA (United States) |
| CorporateAuthor_xml | – name: Univ. of California, Los Angeles, CA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1088/1475-7516/2019/10/077 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 1475-7516 |
| EndPage | 77 |
| ExternalDocumentID | 1608335 10_1088_1475_7516_2019_10_077 |
| GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT HAK KNG OIOZB OTOTI RW3 UCJ |
| ID | FETCH-LOGICAL-c308t-7b528235b3c56e8920110ededb6e9a42eb888b059ae552b8e310ed3a313c2f713 |
| ISSN | 1475-7516 |
| IngestDate | Mon Jul 10 02:34:59 EDT 2023 Wed Aug 13 08:53:28 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Wed Oct 01 04:29:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c308t-7b528235b3c56e8920110ededb6e9a42eb888b059ae552b8e310ed3a313c2f713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0009937; 15H05888; 15K21733; PHY-1607611 Japan Society for the Promotion of Science (JSPS) USDOE Office of Science (SC), High Energy Physics (HEP) National Science Foundation (NSF) |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1608335 |
| PQID | 2357581235 |
| PQPubID | 2048024 |
| PageCount | 1 |
| ParticipantIDs | osti_scitechconnect_1608335 proquest_journals_2357581235 crossref_citationtrail_10_1088_1475_7516_2019_10_077 crossref_primary_10_1088_1475_7516_2019_10_077 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-31 |
| PublicationDateYYYYMMDD | 2019-10-31 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | Bristol |
| PublicationPlace_xml | – name: Bristol – name: United States |
| PublicationTitle | Journal of cosmology and astroparticle physics |
| PublicationYear | 2019 |
| Publisher | IOP Publishing Institute of Physics (IOP) |
| Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
| References | 44 88 45 89 Y.B. Zel'dovich (1) 1967; 10 46 47 48 49 E. Braaten (78) S. Pi (11) 2018; 2018 T. Nakamura (24) 1997; 487 90 92 93 94 52 53 P.H. Frampton (6) 2010; 2010 10 54 55 12 56 57 58 15 59 16 18 I.L. Bogolyubsky (51) 1976; 24 F.E. Schunck (72) 2003; 20 A. Kusenko (85) 2005; 2005 2 3 4 M. Sasaki (19) 2018; 35 7 Y. Inoue (14) 2017; 2017 8 9 60 L.A. Urena-Lopez (76) 2002; 19 62 63 20 64 21 65 22 66 23 67 Y.N. Eroshenko (28) 2018; 1051 K. Mukaida (61) 2014; 2014 68 25 69 26 29 M. Bianchi (50) 1990; 231 J. García-Bellido (13) 2017; 2017 T. Helfer (79) 2017; 2017 70 71 M. Yu. Khlopov (5) 2010; 10 73 30 74 31 75 32 33 77 34 35 37 38 39 T. Hales . (81) Planck collaboration (36) M. Raidal (27) 2017; 2017 A.G. Polnarev (91) 1985; 28 80 82 83 B. Kocsis (17) 2018; 854 40 84 41 42 86 43 87 |
| References_xml | – ident: 41 doi: 10.1103/RevModPhys.76.1 – ident: 25 doi: 10.1103/PhysRevD.92.023524 – ident: 29 doi: 10.1103/PhysRevLett.121.059901 – ident: 46 doi: 10.1103/PhysRevD.36.1088 – ident: 88 doi: 10.1016/j.physletb.2005.05.082 – ident: 71 doi: 10.1016/0370-1573(92)90064-7 – ident: 94 doi: 10.1016/0550-3213(96)00095-8 – ident: 81 – ident: 3 doi: 10.1093/mnras/168.2.399 – volume: 2014 start-page: 051 issn: 1475-7516 year: 2014 ident: 61 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/08/051 – ident: 70 doi: 10.1103/PhysRevD.90.083528 – volume: 10 start-page: 495 issn: 1674-4527 year: 2010 ident: 5 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/10/6/001 – ident: 75 doi: 10.1103/PhysRev.172.1331 – ident: 42 doi: 10.1103/PhysRevD.96.103002 – ident: 80 doi: 10.1103/PhysRevLett.117.121801 – ident: 9 doi: 10.1103/PhysRevD.94.083504 – ident: 30 doi: 10.1016/j.dark.2017.10.001 – ident: 69 doi: 10.1103/PhysRevLett.120.219901 – ident: 22 doi: 10.1103/PhysRevLett.116.241103 – ident: 66 doi: 10.1103/PhysRevD.49.5040 – volume: 487 start-page: L139 issn: 1538-4357 year: 1997 ident: 24 publication-title: Astrophys. J. doi: 10.1086/310886 – ident: 56 doi: 10.1103/PhysRevD.65.084037 – ident: 59 doi: 10.1016/0550-3213(85)90286-X – ident: 38 doi: 10.1103/PhysRevLett.122.141302 – ident: 92 doi: 10.1103/PhysRevD.98.123024 – ident: 64 doi: 10.1103/PhysRevD.62.023512 – ident: 68 doi: 10.1103/PhysRevD.92.105024 – ident: 32 doi: 10.1103/PhysRevD.66.063505 – ident: 34 doi: 10.1103/PhysRevLett.119.061101 – ident: 73 doi: 10.1103/PhysRev.187.1767 – ident: 36 – ident: 7 doi: 10.1103/PhysRevD.94.083523 – ident: 62 doi: 10.1007/JHEP04(2019)030 – ident: 54 doi: 10.1103/PhysRevD.74.124003 – volume: 24 start-page: 12 year: 1976 ident: 51 publication-title: JETP Lett. – ident: 58 doi: 10.1103/PhysRevD.98.043531 – ident: 12 doi: 10.1103/PhysRevD.96.043504 – ident: 21 doi: 10.1103/PhysRevLett.116.061102 – ident: 26 doi: 10.1103/PhysRevLett.116.201301 – ident: 86 doi: 10.1103/PhysRevD.89.103534 – ident: 89 doi: 10.1103/PhysRevD.31.681 – ident: 45 doi: 10.1016/0370-2693(82)90293-3 – ident: 2 doi: 10.1093/mnras/152.1.75 – volume: 2017 start-page: 013 issn: 1475-7516 year: 2017 ident: 13 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/09/013 – ident: 83 doi: 10.1103/PhysRevD.87.023517 – ident: 65 doi: 10.1016/S0370-2693(02)01730-6 – volume: 1051 start-page: 012010 issn: 1742-6596 year: 2018 ident: 28 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1051/1/012010 – ident: 31 doi: 10.1016/j.physletb.2018.05.026 – volume: 10 start-page: 602 issn: 0004-6299 year: 1967 ident: 1 publication-title: Sov. Astron. – ident: 55 doi: 10.1016/S0370-2693(03)00344-7 – volume: 19 start-page: 2617 issn: 0264-9381 year: 2002 ident: 76 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/19/10/307 – volume: 2017 start-page: 055 issn: 1475-7516 year: 2017 ident: 79 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/03/055 – volume: 2010 start-page: 023 issn: 1475-7516 year: 2010 ident: 6 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/04/023 – ident: 33 doi: 10.1016/j.physletb.2012.03.056 – ident: 87 doi: 10.1103/PhysRevD.94.123006 – ident: 15 doi: 10.1007/JHEP09(2017)138 – ident: 53 doi: 10.1103/PhysRevD.52.1920 – ident: 43 doi: 10.1103/PhysRevD.98.083513 – ident: 60 doi: 10.1016/S0370-2693(97)00584-4 – ident: 39 doi: 10.1103/PhysRevLett.120.121301 – ident: 49 doi: 10.1093/mnras/215.4.575 – volume: 2005 start-page: 011 issn: 1475-7516 year: 2005 ident: 85 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2005/08/011 – ident: 4 doi: 10.1103/PhysRevD.54.6040 – ident: 35 doi: 10.1016/j.physletb.2018.12.043 – volume: 28 start-page: 213 issn: 0038-5670 year: 1985 ident: 91 publication-title: Sov. Phys. Usp. doi: 10.1070/PU1985v028n03ABEH003858 – ident: 84 doi: 10.1016/S0370-2693(98)01078-8 – ident: 93 doi: 10.1103/PhysRevD.99.069904 – ident: 40 doi: 10.1016/S0370-2693(97)01375-0 – ident: 57 doi: 10.1103/PhysRevLett.108.241302 – volume: 2017 start-page: 034 issn: 1475-7516 year: 2017 ident: 14 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/10/034 – volume: 2017 start-page: 037 issn: 1475-7516 year: 2017 ident: 27 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/09/037 – ident: 18 doi: 10.1103/PhysRevD.97.123512 – ident: 20 doi: 10.1093/mnras/sty1204 – ident: 10 doi: 10.1103/PhysRevD.95.123510 – volume: 854 start-page: 41 issn: 0004-637X year: 2018 ident: 17 publication-title: Astrophys. J. doi: 10.3847/1538-4357/aaa7f4 – ident: 63 doi: 10.1016/S0370-2693(97)01378-6 – ident: 16 doi: 10.1103/PhysRevD.97.043514 – volume: 2018 start-page: 042 issn: 1475-7516 year: 2018 ident: 11 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/05/042 – ident: 48 doi: 10.1103/PhysRevD.28.1243 – ident: 82 doi: 10.1016/0550-3213(86)90004-0 – ident: 78 – ident: 52 doi: 10.1103/PhysRevD.49.2978 – ident: 90 doi: 10.1142/S0217751X8700020X – ident: 44 doi: 10.1098/rspa.1978.0060 – ident: 74 doi: 10.1016/0550-3213(90)90514-E – ident: 23 doi: 10.1103/PhysRevLett.118.221101 – volume: 35 start-page: 063001 issn: 0264-9381 year: 2018 ident: 19 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aaa7b4 – ident: 37 doi: 10.1103/PhysRevD.98.123514 – ident: 47 doi: 10.1103/PhysRevD.50.6357 – ident: 8 doi: 10.1103/PhysRevLett.119.031103 – ident: 67 doi: 10.1007/JHEP01(2018)083 – ident: 77 doi: 10.1103/PhysRevLett.71.3051 – volume: 231 start-page: 301 issn: 0004-6361 year: 1990 ident: 50 publication-title: Astron. Astrophys. – volume: 20 start-page: R301 issn: 0264-9381 year: 2003 ident: 72 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/20/20/201 |
| SSID | ssj0026338 |
| Score | 2.6235867 |
| Snippet | Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce... We report that primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary... |
| SourceID | osti proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 77 |
| SubjectTerms | Black holes Cosmic microwave background Dark matter Flux density Fragmentation Large scale structure of the universe Oscillons PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Scalars Variation |
| Title | Analytic description of primordial black hole formation from scalar field fragmentation |
| URI | https://www.proquest.com/docview/2357581235 https://www.osti.gov/servlets/purl/1608335 |
| Volume | 2019 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1475-7516 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0026338 issn: 1475-7516 databaseCode: IOP dateStart: 20030101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVc99JL0RVxkhY8FLkEii1RC3UMggRBkaUHG_WNICm6CFJLqaQUSP-l_9oZilqMuutFECiQlPhG5HA4b4aQd5jkLQt06plQGQ_W48zj4cp4gS-ZStOESRvx5vIqPl-E75fRcjT6PvBauq_Vkf62lVfyP6hCGeCKLNl_QLZrFArgHvCFKyAM17_C2EYUwYirmen_fnRhLgGB0lJCFBroDjEJbs9TbDglFaAjy0PrwgYl8tPa0ZDyXyisuqjWfcQmWdUlbLibl3IGkk4_PynqlkhT3uj-uKgy-e0mr6az8MhKNhm0L28qWfQGhVsbEfmr9ceF3rOH9UM5NFX46WCOt9vX6w8D49pg0g2TyEsi34XE3lLmZmpscyiTs61rAMybNoqAawApL1DPWijwqMpljdmIvH11Lc4WFxdifrqcH9x98TApGR7euwwtj8jjABYNzAwC39Dt52NmE6V3PbUEMc6nXdkU-4bXmkK_G6rPuIAp_CcFwGo182fkqUOXHjcwPicjk78gO8eILZJd6AG19w7el-RjK3J0IHK0WNFe5KgVOYoiRzuRoyhytBE5akWObojcK7I4O52fnHsuN4en2YzXXqIi2KyzSDEdxYanVo80mclUbFIZBkZxzhXo7tJEUaC4YfiYSeYzHawSn70m47zIzQ6hYRZpnfmMZSt0LoAteDCDJkIpU2jElxMStsMmtAtcj_lTPgvrQMG5wNEWONoCRxuLYbQn5KirdtdEbvlThT3ERIDqifGTNTqa6Vr48QyJiROy30Il3BRQCYwVFXGkm-_-_vEeedL_EPtkXJf35g1os7V6a2XqBxS3oKE |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+description+of+primordial+black+hole+formation+from+scalar+field+fragmentation&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Cotner%2C+Eric&rft.au=Kusenko%2C+Alexander&rft.au=Sasaki%2C+Misao&rft.au=Takhistov%2C+Volodymyr&rft.date=2019-10-31&rft.pub=IOP+Publishing&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2019&rft.issue=10&rft_id=info:doi/10.1088%2F1475-7516%2F2019%2F10%2F077&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |