Analytic description of primordial black hole formation from scalar field fragmentation

Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2019; no. 10; p. 77
Main Authors Cotner, Eric, Kusenko, Alexander, Sasaki, Misao, Takhistov, Volodymyr
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 31.10.2019
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7516
DOI10.1088/1475-7516/2019/10/077

Cover

Abstract Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy “particles”, whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter.
AbstractList We report that primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy "particles", whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. lASTLY, Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter.
Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce PBHs under mild assumptions regarding the scalar potential. In the early universe, light scalar fields develop large expectation values during inflation and subsequently relax to the minimum of the effective potential at a later time. During the relaxation process, an initially homogeneous scalar condensate can fragment into lumps via an instability similar to the gravitational (Jeans) instability, where the scalar self-interactions, rather than gravity, play the leading role. The fragmentation of the scalar field into lumps (e.g. Q-balls or oscillons) creates matter composed of relatively few heavy “particles”, whose distribution is subject to significant fluctuations unconstrained by comic microwave background (CMB) observations and unrelated to the large-scale structure. If this matter component comes to temporarily dominate the energy density before the scalar lumps decay, PBHs can be efficiently produced during the temporary matter-dominated era. We develop a general analytic framework for description of PBH formation in this class of models. We highlight the differences between the scalar fragmentation scenario and other commonly considered PBH formation models. Given the existence of the Higgs field and the preponderance of scalar fields within supersymmetric and other models of new physics, PBHs constitute an appealing and plausible candidate for dark matter.
Author Cotner, Eric
Kusenko, Alexander
Sasaki, Misao
Takhistov, Volodymyr
Author_xml – sequence: 1
  givenname: Eric
  surname: Cotner
  fullname: Cotner, Eric
– sequence: 2
  givenname: Alexander
  surname: Kusenko
  fullname: Kusenko, Alexander
– sequence: 3
  givenname: Misao
  surname: Sasaki
  fullname: Sasaki, Misao
– sequence: 4
  givenname: Volodymyr
  surname: Takhistov
  fullname: Takhistov, Volodymyr
BackLink https://www.osti.gov/servlets/purl/1608335$$D View this record in Osti.gov
BookMark eNqFkN1LwzAUxYNMcJv-CULR59p8LG2KT2P4BQNfFB9Dmt66zLSZSfaw_962ExFffEo495x7Ob8ZmnSuA4QuCb4hWIiMLAqeFpzkGcWkzAjOcFGcoOmPPvn1P0OzELYY05wxMUVvy07ZQzQ6qSFob3bRuC5xTbLzpnW-NsomlVX6I9k4C0njfKtGS-NdmwStrPJJY8DWvaLeW-jiOD9Hp42yAS6-3zl6vb97WT2m6-eHp9VynWqGRUyLilNBGa-Y5jmIsi9AMNRQVzmUakGhEkJUmJcKOKeVADaMmWKEadoUhM3R1XGvC9HIoE0EvdGu60BHSXIsGOO96fpo2nn3uYcQ5dbtfV88yP52wQWho-v26NLeheChkf22sUz0ylhJsBxwywGlHFDKAfcg97j7NP-THggqf_gn9wUCzIUL
CitedBy_id crossref_primary_10_1103_PhysRevD_105_103532
crossref_primary_10_3390_universe9050203
crossref_primary_10_1088_1361_6633_ad616a
crossref_primary_10_1088_1475_7516_2024_03_002
crossref_primary_10_1103_PhysRevD_103_123549
crossref_primary_10_1088_1475_7516_2024_07_091
crossref_primary_10_1103_PhysRevD_109_023013
crossref_primary_10_1103_PhysRevD_108_023014
crossref_primary_10_21468_SciPostPhysLectNotes_48
crossref_primary_10_1016_j_isci_2021_102860
crossref_primary_10_1088_1475_7516_2023_06_055
crossref_primary_10_1088_1475_7516_2022_02_032
crossref_primary_10_1103_PhysRevD_100_123544
crossref_primary_10_1103_PhysRevD_105_103530
crossref_primary_10_1103_PhysRevD_108_103531
crossref_primary_10_1103_PhysRevD_106_043015
crossref_primary_10_1103_PhysRevD_108_015005
crossref_primary_10_1103_PhysRevD_108_103528
crossref_primary_10_1088_1475_7516_2023_05_013
crossref_primary_10_1103_PhysRevD_110_L051702
crossref_primary_10_1088_1475_7516_2021_03_102
crossref_primary_10_3390_universe8010041
crossref_primary_10_1103_PhysRevD_109_124063
crossref_primary_10_1093_mnras_stab3754
crossref_primary_10_1007_s11433_021_1781_x
crossref_primary_10_1093_mnrasl_slac097
crossref_primary_10_1103_PhysRevD_109_123016
crossref_primary_10_1103_PhysRevD_106_103520
crossref_primary_10_1088_1475_7516_2025_01_094
crossref_primary_10_1103_PhysRevD_108_123002
crossref_primary_10_1103_PhysRevD_104_044011
crossref_primary_10_1088_1475_7516_2021_06_030
crossref_primary_10_1093_ptep_ptaa108
crossref_primary_10_1088_1475_7516_2022_03_017
crossref_primary_10_1103_PhysRevLett_126_071101
crossref_primary_10_1103_PhysRevD_102_121301
crossref_primary_10_1088_1475_7516_2022_03_012
crossref_primary_10_1007_JHEP08_2024_012
crossref_primary_10_3390_sym16070895
crossref_primary_10_1088_1361_6382_ad9e67
crossref_primary_10_1103_PhysRevD_101_083022
crossref_primary_10_21468_SciPostPhys_12_5_150
crossref_primary_10_1088_1475_7516_2022_10_048
crossref_primary_10_1103_PhysRevD_103_104051
crossref_primary_10_1088_1475_7516_2024_10_082
crossref_primary_10_1103_PhysRevD_103_083504
crossref_primary_10_1088_1475_7516_2022_03_029
crossref_primary_10_1103_PhysRevLett_130_221002
crossref_primary_10_1016_j_dark_2022_101115
crossref_primary_10_1007_JHEP12_2022_079
crossref_primary_10_1088_1475_7516_2022_03_023
crossref_primary_10_1103_PhysRevD_110_043526
crossref_primary_10_1103_PhysRevD_111_063544
crossref_primary_10_1103_PhysRevLett_130_181002
crossref_primary_10_1088_1475_7516_2025_02_040
crossref_primary_10_1103_PhysRevD_104_083018
crossref_primary_10_3390_galaxies11010035
crossref_primary_10_1007_JHEP08_2024_242
crossref_primary_10_1088_1475_7516_2021_04_035
crossref_primary_10_1103_PhysRevD_108_103543
crossref_primary_10_1103_PhysRevD_110_015005
crossref_primary_10_1088_1475_7516_2020_07_055
crossref_primary_10_1103_PhysRevD_107_045004
crossref_primary_10_1103_PhysRevD_111_043005
crossref_primary_10_1016_j_dark_2020_100672
crossref_primary_10_1088_1475_7516_2021_01_030
crossref_primary_10_1103_PhysRevD_108_063514
crossref_primary_10_1088_1475_7516_2024_07_059
crossref_primary_10_1103_PhysRevD_105_063508
crossref_primary_10_1140_epjc_s10052_023_11379_0
crossref_primary_10_1103_PhysRevD_105_115033
crossref_primary_10_1103_PhysRevD_105_123505
crossref_primary_10_1103_PhysRevLett_126_041101
crossref_primary_10_1088_1475_7516_2023_06_012
crossref_primary_10_1007_JHEP07_2022_130
crossref_primary_10_1103_PhysRevD_110_084073
crossref_primary_10_1088_1475_7516_2023_06_018
crossref_primary_10_3847_1538_4357_ac66da
crossref_primary_10_1088_1475_7516_2023_10_001
crossref_primary_10_1103_PhysRevD_108_063524
crossref_primary_10_1103_PhysRevD_108_025006
crossref_primary_10_1007_JHEP08_2023_196
crossref_primary_10_1103_PhysRevD_101_043508
crossref_primary_10_1016_j_dark_2023_101231
crossref_primary_10_1103_PhysRevD_104_063008
crossref_primary_10_1103_PhysRevLett_133_101002
crossref_primary_10_1088_1475_7516_2024_11_026
crossref_primary_10_1088_1361_6471_abc534
crossref_primary_10_1103_PhysRevLett_125_181304
crossref_primary_10_3390_universe7110398
crossref_primary_10_1103_PhysRevLett_125_101101
crossref_primary_10_1103_PhysRevD_108_123511
crossref_primary_10_1088_1475_7516_2022_02_017
crossref_primary_10_1103_PhysRevD_105_064067
crossref_primary_10_1007_JHEP07_2021_062
crossref_primary_10_3389_fspas_2022_927144
crossref_primary_10_1007_s43673_023_00109_z
crossref_primary_10_1088_1361_6382_ad5488
crossref_primary_10_1088_1475_7516_2021_05_027
crossref_primary_10_1088_1475_7516_2023_03_013
crossref_primary_10_1007_JHEP01_2023_063
crossref_primary_10_1088_1475_7516_2024_07_076
crossref_primary_10_3389_fspas_2024_1361399
crossref_primary_10_3847_2041_8213_abdcb6
crossref_primary_10_1103_PhysRevD_105_123009
crossref_primary_10_1103_PhysRevD_107_103037
crossref_primary_10_1103_PhysRevD_107_124019
crossref_primary_10_1103_PhysRevD_109_123002
crossref_primary_10_1088_1402_4896_adbc31
crossref_primary_10_3847_1538_4357_ac6ddd
crossref_primary_10_1007_s11433_022_2095_5
crossref_primary_10_1088_1361_6633_ac1e31
crossref_primary_10_1103_PhysRevD_101_063519
crossref_primary_10_1103_PhysRevD_101_063520
crossref_primary_10_1103_PhysRevD_108_L101301
crossref_primary_10_3390_universe8020066
crossref_primary_10_1103_PhysRevD_108_L061301
Cites_doi 10.1103/RevModPhys.76.1
10.1103/PhysRevD.92.023524
10.1103/PhysRevLett.121.059901
10.1103/PhysRevD.36.1088
10.1016/j.physletb.2005.05.082
10.1016/0370-1573(92)90064-7
10.1016/0550-3213(96)00095-8
10.1093/mnras/168.2.399
10.1088/1475-7516/2014/08/051
10.1103/PhysRevD.90.083528
10.1088/1674-4527/10/6/001
10.1103/PhysRev.172.1331
10.1103/PhysRevD.96.103002
10.1103/PhysRevLett.117.121801
10.1103/PhysRevD.94.083504
10.1016/j.dark.2017.10.001
10.1103/PhysRevLett.120.219901
10.1103/PhysRevLett.116.241103
10.1103/PhysRevD.49.5040
10.1086/310886
10.1103/PhysRevD.65.084037
10.1016/0550-3213(85)90286-X
10.1103/PhysRevLett.122.141302
10.1103/PhysRevD.98.123024
10.1103/PhysRevD.62.023512
10.1103/PhysRevD.92.105024
10.1103/PhysRevD.66.063505
10.1103/PhysRevLett.119.061101
10.1103/PhysRev.187.1767
10.1103/PhysRevD.94.083523
10.1007/JHEP04(2019)030
10.1103/PhysRevD.74.124003
10.1103/PhysRevD.98.043531
10.1103/PhysRevD.96.043504
10.1103/PhysRevLett.116.061102
10.1103/PhysRevLett.116.201301
10.1103/PhysRevD.89.103534
10.1103/PhysRevD.31.681
10.1016/0370-2693(82)90293-3
10.1093/mnras/152.1.75
10.1088/1475-7516/2017/09/013
10.1103/PhysRevD.87.023517
10.1016/S0370-2693(02)01730-6
10.1088/1742-6596/1051/1/012010
10.1016/j.physletb.2018.05.026
10.1016/S0370-2693(03)00344-7
10.1088/0264-9381/19/10/307
10.1088/1475-7516/2017/03/055
10.1088/1475-7516/2010/04/023
10.1016/j.physletb.2012.03.056
10.1103/PhysRevD.94.123006
10.1007/JHEP09(2017)138
10.1103/PhysRevD.52.1920
10.1103/PhysRevD.98.083513
10.1016/S0370-2693(97)00584-4
10.1103/PhysRevLett.120.121301
10.1093/mnras/215.4.575
10.1088/1475-7516/2005/08/011
10.1103/PhysRevD.54.6040
10.1016/j.physletb.2018.12.043
10.1070/PU1985v028n03ABEH003858
10.1016/S0370-2693(98)01078-8
10.1103/PhysRevD.99.069904
10.1016/S0370-2693(97)01375-0
10.1103/PhysRevLett.108.241302
10.1088/1475-7516/2017/10/034
10.1088/1475-7516/2017/09/037
10.1103/PhysRevD.97.123512
10.1093/mnras/sty1204
10.1103/PhysRevD.95.123510
10.3847/1538-4357/aaa7f4
10.1016/S0370-2693(97)01378-6
10.1103/PhysRevD.97.043514
10.1088/1475-7516/2018/05/042
10.1103/PhysRevD.28.1243
10.1016/0550-3213(86)90004-0
10.1103/PhysRevD.49.2978
10.1142/S0217751X8700020X
10.1098/rspa.1978.0060
10.1016/0550-3213(90)90514-E
10.1103/PhysRevLett.118.221101
10.1088/1361-6382/aaa7b4
10.1103/PhysRevD.98.123514
10.1103/PhysRevD.50.6357
10.1103/PhysRevLett.119.031103
10.1007/JHEP01(2018)083
10.1103/PhysRevLett.71.3051
10.1088/0264-9381/20/20/201
ContentType Journal Article
Copyright Copyright IOP Publishing Oct 2019
Copyright_xml – notice: Copyright IOP Publishing Oct 2019
CorporateAuthor Univ. of California, Los Angeles, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Los Angeles, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1088/1475-7516/2019/10/077
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1475-7516
EndPage 77
ExternalDocumentID 1608335
10_1088_1475_7516_2019_10_077
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
HAK
KNG
OIOZB
OTOTI
RW3
UCJ
ID FETCH-LOGICAL-c308t-7b528235b3c56e8920110ededb6e9a42eb888b059ae552b8e310ed3a313c2f713
ISSN 1475-7516
IngestDate Mon Jul 10 02:34:59 EDT 2023
Wed Aug 13 08:53:28 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Wed Oct 01 04:29:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c308t-7b528235b3c56e8920110ededb6e9a42eb888b059ae552b8e310ed3a313c2f713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0009937; 15H05888; 15K21733; PHY-1607611
Japan Society for the Promotion of Science (JSPS)
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
OpenAccessLink https://www.osti.gov/servlets/purl/1608335
PQID 2357581235
PQPubID 2048024
PageCount 1
ParticipantIDs osti_scitechconnect_1608335
proquest_journals_2357581235
crossref_citationtrail_10_1088_1475_7516_2019_10_077
crossref_primary_10_1088_1475_7516_2019_10_077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-31
PublicationDateYYYYMMDD 2019-10-31
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-31
  day: 31
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2019
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References 44
88
45
89
Y.B. Zel'dovich (1) 1967; 10
46
47
48
49
E. Braaten (78)
S. Pi (11) 2018; 2018
T. Nakamura (24) 1997; 487
90
92
93
94
52
53
P.H. Frampton (6) 2010; 2010
10
54
55
12
56
57
58
15
59
16
18
I.L. Bogolyubsky (51) 1976; 24
F.E. Schunck (72) 2003; 20
A. Kusenko (85) 2005; 2005
2
3
4
M. Sasaki (19) 2018; 35
7
Y. Inoue (14) 2017; 2017
8
9
60
L.A. Urena-Lopez (76) 2002; 19
62
63
20
64
21
65
22
66
23
67
Y.N. Eroshenko (28) 2018; 1051
K. Mukaida (61) 2014; 2014
68
25
69
26
29
M. Bianchi (50) 1990; 231
J. García-Bellido (13) 2017; 2017
T. Helfer (79) 2017; 2017
70
71
M. Yu. Khlopov (5) 2010; 10
73
30
74
31
75
32
33
77
34
35
37
38
39
T. Hales . (81)
Planck collaboration (36)
M. Raidal (27) 2017; 2017
A.G. Polnarev (91) 1985; 28
80
82
83
B. Kocsis (17) 2018; 854
40
84
41
42
86
43
87
References_xml – ident: 41
  doi: 10.1103/RevModPhys.76.1
– ident: 25
  doi: 10.1103/PhysRevD.92.023524
– ident: 29
  doi: 10.1103/PhysRevLett.121.059901
– ident: 46
  doi: 10.1103/PhysRevD.36.1088
– ident: 88
  doi: 10.1016/j.physletb.2005.05.082
– ident: 71
  doi: 10.1016/0370-1573(92)90064-7
– ident: 94
  doi: 10.1016/0550-3213(96)00095-8
– ident: 81
– ident: 3
  doi: 10.1093/mnras/168.2.399
– volume: 2014
  start-page: 051
  issn: 1475-7516
  year: 2014
  ident: 61
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/08/051
– ident: 70
  doi: 10.1103/PhysRevD.90.083528
– volume: 10
  start-page: 495
  issn: 1674-4527
  year: 2010
  ident: 5
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/10/6/001
– ident: 75
  doi: 10.1103/PhysRev.172.1331
– ident: 42
  doi: 10.1103/PhysRevD.96.103002
– ident: 80
  doi: 10.1103/PhysRevLett.117.121801
– ident: 9
  doi: 10.1103/PhysRevD.94.083504
– ident: 30
  doi: 10.1016/j.dark.2017.10.001
– ident: 69
  doi: 10.1103/PhysRevLett.120.219901
– ident: 22
  doi: 10.1103/PhysRevLett.116.241103
– ident: 66
  doi: 10.1103/PhysRevD.49.5040
– volume: 487
  start-page: L139
  issn: 1538-4357
  year: 1997
  ident: 24
  publication-title: Astrophys. J.
  doi: 10.1086/310886
– ident: 56
  doi: 10.1103/PhysRevD.65.084037
– ident: 59
  doi: 10.1016/0550-3213(85)90286-X
– ident: 38
  doi: 10.1103/PhysRevLett.122.141302
– ident: 92
  doi: 10.1103/PhysRevD.98.123024
– ident: 64
  doi: 10.1103/PhysRevD.62.023512
– ident: 68
  doi: 10.1103/PhysRevD.92.105024
– ident: 32
  doi: 10.1103/PhysRevD.66.063505
– ident: 34
  doi: 10.1103/PhysRevLett.119.061101
– ident: 73
  doi: 10.1103/PhysRev.187.1767
– ident: 36
– ident: 7
  doi: 10.1103/PhysRevD.94.083523
– ident: 62
  doi: 10.1007/JHEP04(2019)030
– ident: 54
  doi: 10.1103/PhysRevD.74.124003
– volume: 24
  start-page: 12
  year: 1976
  ident: 51
  publication-title: JETP Lett.
– ident: 58
  doi: 10.1103/PhysRevD.98.043531
– ident: 12
  doi: 10.1103/PhysRevD.96.043504
– ident: 21
  doi: 10.1103/PhysRevLett.116.061102
– ident: 26
  doi: 10.1103/PhysRevLett.116.201301
– ident: 86
  doi: 10.1103/PhysRevD.89.103534
– ident: 89
  doi: 10.1103/PhysRevD.31.681
– ident: 45
  doi: 10.1016/0370-2693(82)90293-3
– ident: 2
  doi: 10.1093/mnras/152.1.75
– volume: 2017
  start-page: 013
  issn: 1475-7516
  year: 2017
  ident: 13
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/09/013
– ident: 83
  doi: 10.1103/PhysRevD.87.023517
– ident: 65
  doi: 10.1016/S0370-2693(02)01730-6
– volume: 1051
  start-page: 012010
  issn: 1742-6596
  year: 2018
  ident: 28
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1051/1/012010
– ident: 31
  doi: 10.1016/j.physletb.2018.05.026
– volume: 10
  start-page: 602
  issn: 0004-6299
  year: 1967
  ident: 1
  publication-title: Sov. Astron.
– ident: 55
  doi: 10.1016/S0370-2693(03)00344-7
– volume: 19
  start-page: 2617
  issn: 0264-9381
  year: 2002
  ident: 76
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/19/10/307
– volume: 2017
  start-page: 055
  issn: 1475-7516
  year: 2017
  ident: 79
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/03/055
– volume: 2010
  start-page: 023
  issn: 1475-7516
  year: 2010
  ident: 6
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/04/023
– ident: 33
  doi: 10.1016/j.physletb.2012.03.056
– ident: 87
  doi: 10.1103/PhysRevD.94.123006
– ident: 15
  doi: 10.1007/JHEP09(2017)138
– ident: 53
  doi: 10.1103/PhysRevD.52.1920
– ident: 43
  doi: 10.1103/PhysRevD.98.083513
– ident: 60
  doi: 10.1016/S0370-2693(97)00584-4
– ident: 39
  doi: 10.1103/PhysRevLett.120.121301
– ident: 49
  doi: 10.1093/mnras/215.4.575
– volume: 2005
  start-page: 011
  issn: 1475-7516
  year: 2005
  ident: 85
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2005/08/011
– ident: 4
  doi: 10.1103/PhysRevD.54.6040
– ident: 35
  doi: 10.1016/j.physletb.2018.12.043
– volume: 28
  start-page: 213
  issn: 0038-5670
  year: 1985
  ident: 91
  publication-title: Sov. Phys. Usp.
  doi: 10.1070/PU1985v028n03ABEH003858
– ident: 84
  doi: 10.1016/S0370-2693(98)01078-8
– ident: 93
  doi: 10.1103/PhysRevD.99.069904
– ident: 40
  doi: 10.1016/S0370-2693(97)01375-0
– ident: 57
  doi: 10.1103/PhysRevLett.108.241302
– volume: 2017
  start-page: 034
  issn: 1475-7516
  year: 2017
  ident: 14
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/10/034
– volume: 2017
  start-page: 037
  issn: 1475-7516
  year: 2017
  ident: 27
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/09/037
– ident: 18
  doi: 10.1103/PhysRevD.97.123512
– ident: 20
  doi: 10.1093/mnras/sty1204
– ident: 10
  doi: 10.1103/PhysRevD.95.123510
– volume: 854
  start-page: 41
  issn: 0004-637X
  year: 2018
  ident: 17
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/aaa7f4
– ident: 63
  doi: 10.1016/S0370-2693(97)01378-6
– ident: 16
  doi: 10.1103/PhysRevD.97.043514
– volume: 2018
  start-page: 042
  issn: 1475-7516
  year: 2018
  ident: 11
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/05/042
– ident: 48
  doi: 10.1103/PhysRevD.28.1243
– ident: 82
  doi: 10.1016/0550-3213(86)90004-0
– ident: 78
– ident: 52
  doi: 10.1103/PhysRevD.49.2978
– ident: 90
  doi: 10.1142/S0217751X8700020X
– ident: 44
  doi: 10.1098/rspa.1978.0060
– ident: 74
  doi: 10.1016/0550-3213(90)90514-E
– ident: 23
  doi: 10.1103/PhysRevLett.118.221101
– volume: 35
  start-page: 063001
  issn: 0264-9381
  year: 2018
  ident: 19
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aaa7b4
– ident: 37
  doi: 10.1103/PhysRevD.98.123514
– ident: 47
  doi: 10.1103/PhysRevD.50.6357
– ident: 8
  doi: 10.1103/PhysRevLett.119.031103
– ident: 67
  doi: 10.1007/JHEP01(2018)083
– ident: 77
  doi: 10.1103/PhysRevLett.71.3051
– volume: 231
  start-page: 301
  issn: 0004-6361
  year: 1990
  ident: 50
  publication-title: Astron. Astrophys.
– volume: 20
  start-page: R301
  issn: 0264-9381
  year: 2003
  ident: 72
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/20/20/201
SSID ssj0026338
Score 2.6235867
Snippet Primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary universe can produce...
We report that primordial black hole (PBH) formation is a more generic phenomenon than was once thought. The dynamics of a scalar field in inflationary...
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 77
SubjectTerms Black holes
Cosmic microwave background
Dark matter
Flux density
Fragmentation
Large scale structure of the universe
Oscillons
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Scalars
Variation
Title Analytic description of primordial black hole formation from scalar field fragmentation
URI https://www.proquest.com/docview/2357581235
https://www.osti.gov/servlets/purl/1608335
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1475-7516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026338
  issn: 1475-7516
  databaseCode: IOP
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVc99JL0RVxkhY8FLkEii1RC3UMggRBkaUHG_WNICm6CFJLqaQUSP-l_9oZilqMuutFECiQlPhG5HA4b4aQd5jkLQt06plQGQ_W48zj4cp4gS-ZStOESRvx5vIqPl-E75fRcjT6PvBauq_Vkf62lVfyP6hCGeCKLNl_QLZrFArgHvCFKyAM17_C2EYUwYirmen_fnRhLgGB0lJCFBroDjEJbs9TbDglFaAjy0PrwgYl8tPa0ZDyXyisuqjWfcQmWdUlbLibl3IGkk4_PynqlkhT3uj-uKgy-e0mr6az8MhKNhm0L28qWfQGhVsbEfmr9ceF3rOH9UM5NFX46WCOt9vX6w8D49pg0g2TyEsi34XE3lLmZmpscyiTs61rAMybNoqAawApL1DPWijwqMpljdmIvH11Lc4WFxdifrqcH9x98TApGR7euwwtj8jjABYNzAwC39Dt52NmE6V3PbUEMc6nXdkU-4bXmkK_G6rPuIAp_CcFwGo182fkqUOXHjcwPicjk78gO8eILZJd6AG19w7el-RjK3J0IHK0WNFe5KgVOYoiRzuRoyhytBE5akWObojcK7I4O52fnHsuN4en2YzXXqIi2KyzSDEdxYanVo80mclUbFIZBkZxzhXo7tJEUaC4YfiYSeYzHawSn70m47zIzQ6hYRZpnfmMZSt0LoAteDCDJkIpU2jElxMStsMmtAtcj_lTPgvrQMG5wNEWONoCRxuLYbQn5KirdtdEbvlThT3ERIDqifGTNTqa6Vr48QyJiROy30Il3BRQCYwVFXGkm-_-_vEeedL_EPtkXJf35g1os7V6a2XqBxS3oKE
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytic+description+of+primordial+black+hole+formation+from+scalar+field+fragmentation&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Cotner%2C+Eric&rft.au=Kusenko%2C+Alexander&rft.au=Sasaki%2C+Misao&rft.au=Takhistov%2C+Volodymyr&rft.date=2019-10-31&rft.pub=IOP+Publishing&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2019&rft.issue=10&rft_id=info:doi/10.1088%2F1475-7516%2F2019%2F10%2F077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon