Conservation Laws for Chemical Reactions with Arbitrary Kinetics in a Partially Stirred Reactor

One of the difficulties encountered in solving direct and inverse chemical kinetics problems is the complexity of studying multidimensional systems of differential equations describing the regularities of reactions carried out under unsteady-state conditions. This difficulty emerging when one deals...

Full description

Saved in:
Bibliographic Details
Published inRussian journal of general chemistry Vol. 92; no. 9; pp. 1845 - 1851
Main Author Kol’tsov, N. I.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1070-3632
1608-3350
DOI10.1134/S1070363222090262

Cover

Abstract One of the difficulties encountered in solving direct and inverse chemical kinetics problems is the complexity of studying multidimensional systems of differential equations describing the regularities of reactions carried out under unsteady-state conditions. This difficulty emerging when one deals not only with real reaction systems but also with simple model reactions can be overcome by reducing the dimension of the differential equations systems via using conservation laws, whose finding, especially for nonlinear systems, is a challenging task. It is known that chemical reactions occurring in lumped closed systems are subject to stoichiometric conservation laws characterizing the laws of conservation of the atoms of the reactants, which are fairly easy to detect. This is a more difficult task in the case of distributed systems for which the corresponding chemical processes are described by plug-flow and partially stirred reactor models, which do not have analytical solutions. It is in this connection that a method for finding conservation laws (invariants) for chemical reactions proceeding in an open nonisothermal partially stirred reactor operating in an unsteady mode, with longitudinal diffusion of the reactants and heat convection taken into account, was presented. The invariants found by this method can be used for experimental verification of the mechanisms of chemical reactions, whose detailed kinetic characteristics (kinetic laws, rate constants of individual steps, etc.) are not known. These invariants allow comparing the theoretical characteristics of the supposed mechanism of the reaction with its experimentally observed regularities and providing a more reliable solution to the inverse chemical kinetics problem. The effectiveness of the method was illustrated by examples of specific reactions, for which the conservation laws were found and used for identifying their mechanisms.
AbstractList One of the difficulties encountered in solving direct and inverse chemical kinetics problems is the complexity of studying multidimensional systems of differential equations describing the regularities of reactions carried out under unsteady-state conditions. This difficulty emerging when one deals not only with real reaction systems but also with simple model reactions can be overcome by reducing the dimension of the differential equations systems via using conservation laws, whose finding, especially for nonlinear systems, is a challenging task. It is known that chemical reactions occurring in lumped closed systems are subject to stoichiometric conservation laws characterizing the laws of conservation of the atoms of the reactants, which are fairly easy to detect. This is a more difficult task in the case of distributed systems for which the corresponding chemical processes are described by plug-flow and partially stirred reactor models, which do not have analytical solutions. It is in this connection that a method for finding conservation laws (invariants) for chemical reactions proceeding in an open nonisothermal partially stirred reactor operating in an unsteady mode, with longitudinal diffusion of the reactants and heat convection taken into account, was presented. The invariants found by this method can be used for experimental verification of the mechanisms of chemical reactions, whose detailed kinetic characteristics (kinetic laws, rate constants of individual steps, etc.) are not known. These invariants allow comparing the theoretical characteristics of the supposed mechanism of the reaction with its experimentally observed regularities and providing a more reliable solution to the inverse chemical kinetics problem. The effectiveness of the method was illustrated by examples of specific reactions, for which the conservation laws were found and used for identifying their mechanisms.
Audience Academic
Author Kol’tsov, N. I.
Author_xml – sequence: 1
  givenname: N. I.
  surname: Kol’tsov
  fullname: Kol’tsov, N. I.
  email: koltsovni@mail.ru
  organization: Ul’yanov Chuvash State University
BookMark eNp1kEtLxDAUhYMoOD5-gLuA6-pN0knb5TD4wgHF0XW5097MRGoyJlWZf29KBRciWSTknO8m5xyxfecdMXYm4EIIlV8uBRSgtJJSQgVSyz02ERrKTKkp7KdzkrNBP2RHMb4CCAAtJ6yeexcpfGJvveML_Irc-MDnG3qzDXb8ibAZpMi_bL_hs7CyfcCw4_fWUW-byK3jyB8x9Ba7bseXvQ2B2hH04YQdGOwinf7sx-zl-up5fpstHm7u5rNF1igo-oxQtZArhblWBrGiVUFUYqumZS6AdInFSlYrJaTSpdaNmcq2bUibCqvcVKCO2fk4dxv8-wfFvn71H8GlJ2tZSA05VPnguhhda-yots74FKZJqx3ipkaNTfezQioJU4ABECPQBB9jIFNvg31L-WsB9VB8_af4xMiRicnr1hR-v_I_9A1eK4YS
Cites_doi 10.1098/rstb.1952.0012
10.1134/S004057952004020X
10.1134/S004057952005036
10.1515/9783110464948
10.1134/S1070427220100092
10.1007/s13203-016-0169-7
10.1134/S1070427216050062
10.1134/S0040579520020177
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2022
COPYRIGHT 2022 Springer
Pleiades Publishing, Ltd. 2022.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2022
– notice: COPYRIGHT 2022 Springer
– notice: Pleiades Publishing, Ltd. 2022.
DBID AAYXX
CITATION
DOI 10.1134/S1070363222090262
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1608-3350
EndPage 1851
ExternalDocumentID A723205000
10_1134_S1070363222090262
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
1N0
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9N
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
XU3
YLTOR
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z87
ZCG
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AEIIB
ID FETCH-LOGICAL-c307t-ea3d0433a463faa9eb7ee8ad358410e68a7b29b31236866cf52ddce6f9a94f903
IEDL.DBID AGYKE
ISSN 1070-3632
IngestDate Thu Sep 25 00:48:50 EDT 2025
Tue Jun 10 21:04:36 EDT 2025
Wed Oct 01 04:48:25 EDT 2025
Fri Feb 21 02:47:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords inverse problem
conservation laws
kinetics
mechanisms
chemical reactions
partially stirred reactor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-ea3d0433a463faa9eb7ee8ad358410e68a7b29b31236866cf52ddce6f9a94f903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2726040940
PQPubID 2043565
PageCount 7
ParticipantIDs proquest_journals_2726040940
gale_infotracacademiconefile_A723205000
crossref_primary_10_1134_S1070363222090262
springer_journals_10_1134_S1070363222090262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Russian journal of general chemistry
PublicationTitleAbbrev Russ J Gen Chem
PublicationYear 2022
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References TalipovaR.R.KharrasovR.U.AgliullinM.R.BadikovaA.D.KutepovB.I.Appl. Petrochem. Res.201664194261:CAS:528:DC%2BC28XitFWgtLrL10.1007/s13203-016-0169-7
Frank-Kamenetskii, D.A., Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoi kinetike (Fundamentals of Macrokinetics: Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Intellekt, 2008.
Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics), Moscow: Fizmatlit, 2001.
Vanag, V.K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh (Dissipative Structures in Reaction-Diffusion Systems), Moscow: RKhD, 2008.
Kol’tsov, N.I., Matematicheskoe modelirovanie kataliticheskikh reaktsii (Mathematical Modeling of Catalytic Reactions), Cheboksary: Chuvash. Univ., 2007.
SpivakS.I.KantorO.G.MorozkinN.D.Theor. Found. Chem. Eng.2020545135211:CAS:528:DC%2BB3cXhtlGms7jK10.1134/S0040579520020177
Malinovskaya, O.A., Beskov, V.S., and Slin’ko, M.G., Modelirovanie kataliticheskikh protsessov na poristykh zernakh (Modeling Catalytic Processes on Porous Grains), Novosibirsk: Nauka, 1975.
Yablonskii, G.S., Bykov, V.I., and Gorban’, A.N., Kineticheskie modeli reaktsii (Kinetic Models of Reactions), Novosibirsk: Nauka, 1983.
Aris, R., Introduction to the Analysis of Chemical Reactors, Hoboken: Prentice Hall, 1965.
FedotovV.Kh.Kol’tsovN.I.GaidaiN.A.AgafonovYu.A.BotavinaM.A.LapidusA.L.uss. J. Appl. Chem.2016897197261:CAS:528:DC%2BC28Xhtlaksr%2FL10.1134/S1070427216050062
Zhabotinsky, A.M., Kontsentratsionnye avtokolebaniya (Concentration Self-Oscillations), Moscow: Nauka, 1974.
AlekseevB.V.Kol’tsovN.I.FedotovV.Kh.Zh. Fiz. Khim.199266321932241:CAS:528:DyaK3sXmsFOhtLg%3D
Kol’tsov, N.I., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2021, vol. 64, no. 1, pp. 41–46.
AlekseevB.V.Kol’tsovN.I.FedotovV.Kh.Zh. Fiz. Khim.19886230693072
Ismagilova, A.S. and Spivak, S.I., Inverse Problems of Chemical Kinetics, Saarbrucken: Lap Lambert Academic, 2013.
Kol’tsovN.I.Theor. Found. Chem. Eng.20205486387110.1134/S004057952005036
Bykov, V.I., Tsybenova, S.B., and Yablonsky, G.S., Chemical Complexity via Simple Models, Berlin: De Gruyter, 2018.
KorzukhinM.D.Zh. Fiz. Khim.197246184518471:CAS:528:DyaE38XltFyntrg%3D
Bykov, V.I. and Tsybenova, S.B., Nelineinye modeli khimicheskoi kinetiki (Nonlinear Models of Chemical Kinetics), Moscow: URSS, 2011.
Vol’ter, B.V. and Sal’nikov, I.E., Ustoichivost’ rezhimov raboty khimicheskikh reaktorov (Stability of Operating Modes of Chemical Reactors), Moscow: Khimiya, 1981.
Kol’tsovN.I.Russ. J. Appl. Chem.2020931544155210.1134/S1070427220100092
TuringA.M.Philos. Trans. Royal Soc. London, Ser. B: Biol. Sci.1952237377210.1098/rstb.1952.0012
Vol’pert, A.I. and Khudyaev, S.I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki (Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics), Moscow: Nauka, 1975.
Kol’tsovN.I.Theor. Found. Chem. Eng.20205491391810.1134/S004057952004020X
5954_CR14
5954_CR12
A.M. Turing (5954_CR4) 1952; 237
5954_CR13
5954_CR10
5954_CR11
N.I. Kol’tsov (5954_CR19) 2020; 93
5954_CR22
5954_CR20
R.R. Talipova (5954_CR23) 2016; 6
B.V. Alekseev (5954_CR6) 1988; 62
B.V. Alekseev (5954_CR7) 1992; 66
V.Kh. Fedotov (5954_CR18) 2016; 89
5954_CR3
S.I. Spivak (5954_CR24) 2020; 54
5954_CR9
5954_CR8
N.I. Kol’tsov (5954_CR15) 2020; 54
5954_CR2
5954_CR1
N.I. Kol’tsov (5954_CR21) 2020; 54
5954_CR16
M.D. Korzukhin (5954_CR5) 1972; 46
5954_CR17
References_xml – reference: Ismagilova, A.S. and Spivak, S.I., Inverse Problems of Chemical Kinetics, Saarbrucken: Lap Lambert Academic, 2013.
– reference: Kol’tsovN.I.Theor. Found. Chem. Eng.20205486387110.1134/S004057952005036
– reference: Bykov, V.I., Tsybenova, S.B., and Yablonsky, G.S., Chemical Complexity via Simple Models, Berlin: De Gruyter, 2018.
– reference: SpivakS.I.KantorO.G.MorozkinN.D.Theor. Found. Chem. Eng.2020545135211:CAS:528:DC%2BB3cXhtlGms7jK10.1134/S0040579520020177
– reference: Zhabotinsky, A.M., Kontsentratsionnye avtokolebaniya (Concentration Self-Oscillations), Moscow: Nauka, 1974.
– reference: TuringA.M.Philos. Trans. Royal Soc. London, Ser. B: Biol. Sci.1952237377210.1098/rstb.1952.0012
– reference: AlekseevB.V.Kol’tsovN.I.FedotovV.Kh.Zh. Fiz. Khim.19886230693072
– reference: Kol’tsovN.I.Russ. J. Appl. Chem.2020931544155210.1134/S1070427220100092
– reference: AlekseevB.V.Kol’tsovN.I.FedotovV.Kh.Zh. Fiz. Khim.199266321932241:CAS:528:DyaK3sXmsFOhtLg%3D
– reference: KorzukhinM.D.Zh. Fiz. Khim.197246184518471:CAS:528:DyaE38XltFyntrg%3D
– reference: Aris, R., Introduction to the Analysis of Chemical Reactors, Hoboken: Prentice Hall, 1965.
– reference: Kol’tsov, N.I., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2021, vol. 64, no. 1, pp. 41–46.
– reference: Yablonskii, G.S., Bykov, V.I., and Gorban’, A.N., Kineticheskie modeli reaktsii (Kinetic Models of Reactions), Novosibirsk: Nauka, 1983.
– reference: Frank-Kamenetskii, D.A., Osnovy makrokinetiki. Diffuziya i teploperedacha v khimicheskoi kinetike (Fundamentals of Macrokinetics: Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Intellekt, 2008.
– reference: Vol’pert, A.I. and Khudyaev, S.I., Analiz v klassakh razryvnykh funktsii i uravneniya matematicheskoi fiziki (Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics), Moscow: Nauka, 1975.
– reference: Kol’tsovN.I.Theor. Found. Chem. Eng.20205491391810.1134/S004057952004020X
– reference: Vol’ter, B.V. and Sal’nikov, I.E., Ustoichivost’ rezhimov raboty khimicheskikh reaktorov (Stability of Operating Modes of Chemical Reactors), Moscow: Khimiya, 1981.
– reference: TalipovaR.R.KharrasovR.U.AgliullinM.R.BadikovaA.D.KutepovB.I.Appl. Petrochem. Res.201664194261:CAS:528:DC%2BC28XitFWgtLrL10.1007/s13203-016-0169-7
– reference: Vanag, V.K., Dissipativnye struktury v reaktsionno-diffuzionnykh sistemakh (Dissipative Structures in Reaction-Diffusion Systems), Moscow: RKhD, 2008.
– reference: FedotovV.Kh.Kol’tsovN.I.GaidaiN.A.AgafonovYu.A.BotavinaM.A.LapidusA.L.uss. J. Appl. Chem.2016897197261:CAS:528:DC%2BC28Xhtlaksr%2FL10.1134/S1070427216050062
– reference: Kol’tsov, N.I., Matematicheskoe modelirovanie kataliticheskikh reaktsii (Mathematical Modeling of Catalytic Reactions), Cheboksary: Chuvash. Univ., 2007.
– reference: Malinovskaya, O.A., Beskov, V.S., and Slin’ko, M.G., Modelirovanie kataliticheskikh protsessov na poristykh zernakh (Modeling Catalytic Processes on Porous Grains), Novosibirsk: Nauka, 1975.
– reference: Bykov, V.I. and Tsybenova, S.B., Nelineinye modeli khimicheskoi kinetiki (Nonlinear Models of Chemical Kinetics), Moscow: URSS, 2011.
– reference: Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook of Linear Equations of Mathematical Physics), Moscow: Fizmatlit, 2001.
– ident: 5954_CR3
– volume: 237
  start-page: 37
  year: 1952
  ident: 5954_CR4
  publication-title: Philos. Trans. Royal Soc. London, Ser. B: Biol. Sci.
  doi: 10.1098/rstb.1952.0012
– ident: 5954_CR1
– ident: 5954_CR2
– ident: 5954_CR22
– volume: 62
  start-page: 3069
  year: 1988
  ident: 5954_CR6
  publication-title: Zh. Fiz. Khim.
– ident: 5954_CR8
– volume: 54
  start-page: 913
  year: 2020
  ident: 5954_CR15
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S004057952004020X
– volume: 54
  start-page: 863
  year: 2020
  ident: 5954_CR21
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S004057952005036
– ident: 5954_CR11
– ident: 5954_CR20
  doi: 10.1515/9783110464948
– ident: 5954_CR10
– ident: 5954_CR12
– volume: 93
  start-page: 1544
  year: 2020
  ident: 5954_CR19
  publication-title: Russ. J. Appl. Chem.
  doi: 10.1134/S1070427220100092
– ident: 5954_CR13
– volume: 6
  start-page: 419
  year: 2016
  ident: 5954_CR23
  publication-title: Appl. Petrochem. Res.
  doi: 10.1007/s13203-016-0169-7
– volume: 66
  start-page: 3219
  year: 1992
  ident: 5954_CR7
  publication-title: Zh. Fiz. Khim.
– ident: 5954_CR9
– ident: 5954_CR16
– volume: 89
  start-page: 719
  year: 2016
  ident: 5954_CR18
  publication-title: uss. J. Appl. Chem.
  doi: 10.1134/S1070427216050062
– ident: 5954_CR17
– volume: 46
  start-page: 1845
  year: 1972
  ident: 5954_CR5
  publication-title: Zh. Fiz. Khim.
– ident: 5954_CR14
– volume: 54
  start-page: 513
  year: 2020
  ident: 5954_CR24
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579520020177
SSID ssj0010062
Score 2.256736
Snippet One of the difficulties encountered in solving direct and inverse chemical kinetics problems is the complexity of studying multidimensional systems of...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1845
SubjectTerms Analysis
Chemical reaction, Rate of
Chemical reactions
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Computer networks
Conservation laws
Differential equations
Environmental law
Exact solutions
Invariants
Kinetics
Mathematical models
Nonlinear systems
Plug flow
Rate constants
Reaction kinetics
Title Conservation Laws for Chemical Reactions with Arbitrary Kinetics in a Partially Stirred Reactor
URI https://link.springer.com/article/10.1134/S1070363222090262
https://www.proquest.com/docview/2726040940
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1608-3350
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0010062
  issn: 1070-3632
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1608-3350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010062
  issn: 1070-3632
  databaseCode: AFBBN
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1608-3350
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010062
  issn: 1070-3632
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1608-3350
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010062
  issn: 1070-3632
  databaseCode: U2A
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60PejFt1gfZQ-CoETTvJo91mItVkTUgp7CPqEoVdqI6K93Jskqvg6ek93NZmbnsTPzDcCutiZNTaQ99H-sFxkjPVTD0uMilq3UWqV0kSB7kfSH0dltfFvVcU9dtrsLSRaSuuw7Eh1dt_wCLAoVGuUSktytx-Sf1KDeOb0bnHwED6gusEw1RBGDA6pg5q-TfFFH34Xyj-hooXR6i3DjPrfMNbk_fM7loXr7huT4z_0swUJlhLJOyTXLMGPGKzDXdb3fViGjPp7uupadi5cpQ-OWOXQBdmXKeogpo3tcnEiOivJ9NkCjlYCf2WjMBLskvhQPD6_sOh9NJkaXAx8nazDsndx0-17VisFTKARyz4hQE9SZiJLQCsGNbBuTCh2i_dLyTZKKtgy4DAnLJU0SZeNAa2USywWPLPfDdaiNH8dmAxhyhlGS6mUTEdlYowHEOTqlXKZJ6KuwAfuOItlTibiRFZ5KGGU__lkD9ohmGZ1G3KcSVVEBLkW4VlmnjRajT00fGrDtyJpVx3SaBW1058jDxccHjkqfj_9cdvNfb2_BfEBFE0Vm2jbU8smz2UFTJpdNZN3e8fFFs2LhJswOg8476x7qJA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kPejFt1ifOQiCsrrtptvkWIpabRXRCnoKeUJRqrQror_eye5G8XXwvJtkszOZR2bmG4Ad4yxjlpoI_R8XUWtVhGpYRVw2VZ05p7XJE2Qv0u4NPbtt3pZ13JOQ7R5CkrmkLvqO0MPrepyDRaFC87mEXu5WaZ0xWoFq--Sud_QRPPB1gUWqIYoYHFAGM3-d5Is6-i6Uf0RHc6VzPAeD8LlFrsn9wXOmDvTbNyTHf-5nHmZLI5S0C65ZgCk7WoTpTuj9tgTC9_EM17WkL18mBI1bEtAFyJUt6iEmxN_j4kRqmJfvkx4arR74mQxHRJJLz5fy4eGVXGfD8diaYuDjeBlujo8GnW5UtmKINAqBLLIyMR7qTNI0cVJyq1rWMmkStF_qsU2ZbKkGV4nHcmFpql2zYYy2qeOSU8fjZAUqo8eRXQWCnGG18vWyqaSuadAA4hydUq5YmsQ6qcFeoIh4KhA3RO6pJFT8-Gc12PU0E_404j61LIsKcCmPayXaLbQYY9_0oQYbgayiPKYT0WihO-c9XHy8H6j0-fjPZdf-9fY2THcH533RP73orcNMwxdQ5FlqG1DJxs92E82aTG2VbPwOP0TqsA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-ioL6InzidmgdBUMq6NuuaxzEd040xnIO9haRJYDC60VbE_967fig6ffA5aUIvH3eXu9_vCLnW1oShYdoB_8c6zBjlgBpWDpct1QytjSKdJ8iOgv6UPc1as7LOaVplu1chyQLTgCxNcdZYaVvWIGGNSdPNiaNAuWFeId7BWwxUNXpfU6_zGUZAhGCRdAiXDXQvw5q_DvFNMf28ntfipLn66e2TvdJupJ1ioQ_IhokPyU63Ktd2RASW3qxeWOlQvqUU7FFaEQLQZ1NAGFKKT68wkJrniHs6ADsTuZrpPKaSjnErycXinU6yeZIYXXy4TI7JtPfw0u07ZfUEJ4JzmzlG-hrZySQLfCslN6ptTCi1DyZH0zVBKNvK48pH-pUwCCLb8rSOTGC55Mxy1z8hm_EyNqeEwmKaSCHENZDMtjTYLJyDH8lVGPhu5NfIbSU6sSpIMkTuXPhMrMm5Rm5QuAIPEPxnJEscAEyFVFSi0wYjz8U6DTVSr-QvypOVCq8NHhg6pdB8V63JV_Of0579q_cV2R7f98TwcTQ4J7seQh7yvLI62cySV3MBhkimLvPN9gE3o9I-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+Laws+for+Chemical+Reactions+with+Arbitrary+Kinetics+in+a+Partially+Stirred+Reactor&rft.jtitle=Russian+journal+of+general+chemistry&rft.au=Kol%E2%80%99tsov%2C+N.+I.&rft.date=2022-09-01&rft.pub=Pleiades+Publishing&rft.issn=1070-3632&rft.eissn=1608-3350&rft.volume=92&rft.issue=9&rft.spage=1845&rft.epage=1851&rft_id=info:doi/10.1134%2FS1070363222090262&rft.externalDocID=10_1134_S1070363222090262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-3632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-3632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-3632&client=summon