Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems
Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in un...
Saved in:
| Published in | SAE International journal of aerospace Vol. 16; no. 1; pp. 57 - 73 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Warrendale
SAE International
01.03.2023
SAE International, a Pennsylvania Not-for Profit |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1946-3855 1946-3901 |
| DOI | 10.4271/01-16-01-0004 |
Cover
| Abstract | Statistical machine learning classification methods have been widely used in the
fault detection analysis in several engineering domains. This motivates us to
provide in this article an overview on the application of these methods in the
fault diagnosis strategies and also their successful use in unmanned aerial
vehicles (UAVs) systems. Different existing aspects including the implementation
conditions, offline design, and online computation algorithms as well as
computation complexity and detection time are discussed in detail. Evaluation
and validation of these aspects have been ensured by a simple demonstration of
the basic classification methods and neural network techniques in solving the
fault detection and diagnosis problem of the propulsion system failure of a
multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Measurements data issued from the onboard sensors are collected and a
classification model to detect damaged propellers and failed motors has been
built. To simulate a motor fault condition, its effectiveness is reduced using
an RC transmitter. Propeller damages are simulated by clipping the propellers
gradually. Experimental results demonstrate that artificial neural networks
(ANN) techniques outperform other methods in terms of classification accuracy
and are shown to be effective at identifying the different types of damaged
propellers or failed motors. |
|---|---|
| AbstractList | Statistical machine learning classification methods have been widely used in the
fault detection analysis in several engineering domains. This motivates us to
provide in this article an overview on the application of these methods in the
fault diagnosis strategies and also their successful use in unmanned aerial
vehicles (UAVs) systems. Different existing aspects including the implementation
conditions, offline design, and online computation algorithms as well as
computation complexity and detection time are discussed in detail. Evaluation
and validation of these aspects have been ensured by a simple demonstration of
the basic classification methods and neural network techniques in solving the
fault detection and diagnosis problem of the propulsion system failure of a
multirotor UAV. A testing platform of an Hexarotor UAV is completely realized.
Measurements data issued from the onboard sensors are collected and a
classification model to detect damaged propellers and failed motors has been
built. To simulate a motor fault condition, its effectiveness is reduced using
an RC transmitter. Propeller damages are simulated by clipping the propellers
gradually. Experimental results demonstrate that artificial neural networks
(ANN) techniques outperform other methods in terms of classification accuracy
and are shown to be effective at identifying the different types of damaged
propellers or failed motors. Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized. Measurements data issued from the onboard sensors are collected and a classification model to detect damaged propellers and failed motors has been built. To simulate a motor fault condition, its effectiveness is reduced using an RC transmitter. Propeller damages are simulated by clipping the propellers gradually. Experimental results demonstrate that artificial neural networks (ANN) techniques outperform other methods in terms of classification accuracy and are shown to be effective at identifying the different types of damaged propellers or failed motors. |
| ArticleNumber | 01-16-01-0004 |
| Audience | Academic |
| Author | Attieh, Hadi Saied, Majd Francis, Clovis Shraim, Hassan Mazeh, Hussein |
| Author_xml | – sequence: 1 givenname: Majd surname: Saied fullname: Saied, Majd – sequence: 2 givenname: Hadi surname: Attieh fullname: Attieh, Hadi – sequence: 3 givenname: Hussein surname: Mazeh fullname: Mazeh, Hussein – sequence: 4 givenname: Hassan surname: Shraim fullname: Shraim, Hassan – sequence: 5 givenname: Clovis surname: Francis fullname: Francis, Clovis |
| BookMark | eNp1UcFu1DAQtVCRaAtH7pY4cUixEztxuEVbSldaqRJLz9GsM1m5cpxgO4V-Az-N011Ai4QsjUf2e2_mzVyQMzc6JOQtZ1cir_gHxjNeZikyxsQLcs5rUWZFzfjZ71xJ-YpchPDAWFmxXJ2Tn9t5Qv9oAnZ0g-CdcXu6shCC6Y2GaEZHm2myxzxQ4-gNzDbSa4yon__BdfTawN6NwYSPtHH07nHRxO907Ol6mCwO6OJfgXs3gHOpYoPegKXbpxBxCK_Jyx5swDfH-5Lc33z6urrNNnef16tmk-mCVTHTvBAcCskVqH5X8WSt5mrHapbvBBdKAmBeF7LqulJ0sMtLLTTyqu65LHWli0vy7qA7-fHbjCG2D-PsXSrZ5ooJxaUUKqGuDqg9WGyN68foQafT4WB0mnxv0ntTyVoJkUuRCO9PCAkT8UfcwxxCu95-OcVmB6z2Ywge-3byZgD_1HLWLstsGW95ucRlmQlf_IPX5jDQ1JSx_2UdLQRYGoqYTC4csH8MnxJ-AbaUs84 |
| CitedBy_id | crossref_primary_10_7467_KSAE_2024_32_1_119 crossref_primary_10_1017_aer_2024_150 |
| Cites_doi | 10.1016/j.neucom.2018.08.046 10.1007/BF00941472 10.1007/978-90-481-9707-1_43 10.1186/s41256-020-00175-y 10.1016/j.conengprac.2017.06.011 10.1504/IJDSS.2015.070158 10.1109/TII.2008.2002920 10.1109/ICCSSE.2019.00010 10.23919/WAC.2018.8430428 10.1007/978-1-4471-4799-2 10.1109/YAC.2017.7967520 10.1109/ROPEC.2018.8661459 10.23919/SPA.2017.8166870 10.1016/j.jtice.2019.09.017 10.3390/s19040771 10.1016/S0098-1354(02)00161-8 10.1016/j.ifacol.2018.11.560 10.1016/j.eswa.2007.12.010 10.1177/0954406218780508 10.1016/j.measurement.2016.02.024 10.1049/iet-est.2014.0042 10.1109/TIM.2019.2900885 10.1134/S2075108720010046 10.1109/ChiCC.2015.7260639 10.1007/s10845-019-01511-x 10.1109/ACCESS.2018.2888950 10.1177/0278364915596233 10.1177/1461348419861822 10.1109/DASC.2017.8102037 10.1002/etep.2577 10.1016/S1532-0464(03)00034-0 10.1016/S0098-1354(02)00160-6 10.1109/ICSENS.2018.8589572 10.1109/ICIEA.2016.7603846 10.1007/11554028_120 10.1201/9781351174664-382 10.1109/TII.2009.2030793 10.1007/s00521-018-3911-5 10.1016/j.enbuild.2016.09.039 10.1109/ETFA.2016.7733537 10.1006/mssp.2001.1454 10.1007/BF01189880 10.1016/j.trpro.2017.05.131 10.1053/j.jvca.2021.03.049 10.1016/j.asoc.2019.105524 10.1007/s00500-013-1055-1 10.1109/TSM.2007.907607 10.1007/s10462-011-9272-4 10.12783/shm2017/14091 10.1186/s41601-017-0063-z 10.1016/j.eswa.2009.10.041 10.1109/ICRA.2014.6906588 10.1016/j.jprocont.2010.07.002 10.3390/s17102243 10.1109/TMECH.2019.2947250 10.1016/j.solener.2018.07.089 10.1016/j.patrec.2004.08.005 10.1016/j.ifacol.2017.08.468 10.1016/j.enbuild.2018.10.016 10.1017/aer.2019.149 10.23919/ACC45564.2020.9148044 10.23919/ECC.2019.8796198 10.1109/ICUAS.2017.7991445 10.1016/j.compchemeng.2020.106964 10.3390/robotics8030059 10.1007/s42452-019-1356-9 10.1017/CBO9780511801389 |
| ContentType | Journal Article |
| Copyright | 2023 SAE International COPYRIGHT 2023 SAE International Copyright SAE International, a Pennsylvania Not-for Profit 2023 |
| Copyright_xml | – notice: 2023 SAE International – notice: COPYRIGHT 2023 SAE International – notice: Copyright SAE International, a Pennsylvania Not-for Profit 2023 |
| DBID | AAYXX CITATION ISR |
| DOI | 10.4271/01-16-01-0004 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1946-3901 |
| EndPage | 73 |
| ExternalDocumentID | A759844254 10_4271_01_16_01_0004 01_16_01_0004 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 6P2 ABJNI ACGFS ADNWM AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU EBS EJD ESX HCIFZ IAO ISR ITC L7B P2P PV9 PYD RHI RZL AAYXX CITATION IVC PHGZM PHGZT PQGLB PUEGO |
| ID | FETCH-LOGICAL-c307t-c1341a3518a8fb71194918b0902b41485aae29357dd64dab26c4ce179f156c7c3 |
| ISSN | 1946-3855 |
| IngestDate | Sat Jul 26 00:04:59 EDT 2025 Mon Oct 20 17:07:46 EDT 2025 Thu Oct 16 16:14:25 EDT 2025 Thu Oct 02 04:29:29 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Thu Apr 18 22:56:44 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c307t-c1341a3518a8fb71194918b0902b41485aae29357dd64dab26c4ce179f156c7c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2804815548 |
| PQPubID | 5013117 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2804815548 gale_infotracacademiconefile_A759844254 gale_incontextgauss_ISR_A759844254 crossref_primary_10_4271_01_16_01_0004 crossref_citationtrail_10_4271_01_16_01_0004 sae_internationaljournals_01_16_01_0004 |
| PublicationCentury | 2000 |
| PublicationDate | 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 20230301 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Warrendale |
| PublicationPlace_xml | – name: Warrendale |
| PublicationTitle | SAE International journal of aerospace |
| PublicationYear | 2023 |
| Publisher | SAE International SAE International, a Pennsylvania Not-for Profit |
| Publisher_xml | – name: SAE International – name: SAE International, a Pennsylvania Not-for Profit |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref0 ref2 ref1 ref39 ref38 ref70 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref49 doi: 10.1016/j.neucom.2018.08.046 – ident: ref70 doi: 10.1007/BF00941472 – ident: ref5 doi: 10.1007/978-90-481-9707-1_43 – ident: ref39 doi: 10.1186/s41256-020-00175-y – ident: ref43 – ident: ref21 doi: 10.1016/j.conengprac.2017.06.011 – ident: ref24 – ident: ref27 doi: 10.1504/IJDSS.2015.070158 – ident: ref10 doi: 10.1109/TII.2008.2002920 – ident: ref68 doi: 10.1109/ICCSSE.2019.00010 – ident: ref57 doi: 10.23919/WAC.2018.8430428 – ident: ref7 doi: 10.1007/978-1-4471-4799-2 – ident: ref51 doi: 10.1109/YAC.2017.7967520 – ident: ref60 doi: 10.1109/ROPEC.2018.8661459 – ident: ref56 doi: 10.23919/SPA.2017.8166870 – ident: ref17 doi: 10.1016/j.jtice.2019.09.017 – ident: ref47 doi: 10.3390/s19040771 – ident: ref6 doi: 10.1016/S0098-1354(02)00161-8 – ident: ref4 doi: 10.1016/j.ifacol.2018.11.560 – ident: ref15 doi: 10.1016/j.eswa.2007.12.010 – ident: ref52 doi: 10.1177/0954406218780508 – ident: ref41 doi: 10.1016/j.measurement.2016.02.024 – ident: ref53 doi: 10.1049/iet-est.2014.0042 – ident: ref36 doi: 10.1109/TIM.2019.2900885 – ident: ref50 doi: 10.1134/S2075108720010046 – ident: ref61 doi: 10.1109/ChiCC.2015.7260639 – ident: ref30 doi: 10.1007/s10845-019-01511-x – ident: ref25 doi: 10.1109/ACCESS.2018.2888950 – ident: ref2 doi: 10.1177/0278364915596233 – ident: ref31 doi: 10.1177/1461348419861822 – ident: ref44 doi: 10.1109/DASC.2017.8102037 – ident: ref26 doi: 10.1002/etep.2577 – ident: ref20 doi: 10.1016/S1532-0464(03)00034-0 – ident: ref3 doi: 10.1016/S0098-1354(02)00160-6 – ident: ref65 doi: 10.1109/ICSENS.2018.8589572 – ident: ref22 doi: 10.1109/ICIEA.2016.7603846 – ident: ref35 doi: 10.1007/11554028_120 – ident: ref45 – ident: ref14 doi: 10.1201/9781351174664-382 – ident: ref8 doi: 10.1109/TII.2009.2030793 – ident: ref40 doi: 10.1007/s00521-018-3911-5 – ident: ref12 doi: 10.1016/j.enbuild.2016.09.039 – ident: ref63 doi: 10.1109/ETFA.2016.7733537 – ident: ref29 doi: 10.1006/mssp.2001.1454 – ident: ref37 doi: 10.1007/BF01189880 – ident: ref0 doi: 10.1016/j.trpro.2017.05.131 – ident: ref38 doi: 10.1053/j.jvca.2021.03.049 – ident: ref69 doi: 10.1016/j.asoc.2019.105524 – ident: ref23 doi: 10.1007/s00500-013-1055-1 – ident: ref18 doi: 10.1109/TSM.2007.907607 – ident: ref11 doi: 10.1007/s10462-011-9272-4 – ident: ref54 doi: 10.12783/shm2017/14091 – ident: ref19 doi: 10.1186/s41601-017-0063-z – ident: ref42 doi: 10.1016/j.eswa.2009.10.041 – ident: ref1 doi: 10.1109/ICRA.2014.6906588 – ident: ref9 doi: 10.1016/j.jprocont.2010.07.002 – ident: ref48 doi: 10.3390/s17102243 – ident: ref62 doi: 10.1109/TMECH.2019.2947250 – ident: ref46 – ident: ref13 doi: 10.1016/j.solener.2018.07.089 – ident: ref33 doi: 10.1016/j.patrec.2004.08.005 – ident: ref66 doi: 10.1016/j.ifacol.2017.08.468 – ident: ref32 doi: 10.1016/j.enbuild.2018.10.016 – ident: ref67 doi: 10.1017/aer.2019.149 – ident: ref59 doi: 10.23919/ACC45564.2020.9148044 – ident: ref55 doi: 10.23919/ECC.2019.8796198 – ident: ref64 doi: 10.1109/ICUAS.2017.7991445 – ident: ref34 doi: 10.1016/j.compchemeng.2020.106964 – ident: ref58 doi: 10.3390/robotics8030059 – ident: ref16 doi: 10.1007/s42452-019-1356-9 – ident: ref28 doi: 10.1017/CBO9780511801389 |
| SSID | ssj0067028 |
| Score | 2.2455842 |
| Snippet | Statistical machine learning classification methods have been widely used in the
fault detection analysis in several engineering domains. This motivates us to... Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to... |
| SourceID | proquest gale crossref sae |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 57 |
| SubjectTerms | Algorithms Artificial intelligence Artificial neural networks Classification Computation Computer simulation Damage detection Data-driven fault diagnosis Drone aircraft Fault detection Fault diagnosis Machine learning Motors Neural networks Propellers Propulsion systems Supervised learning Unmanned aerial vehicles |
| Title | Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems |
| URI | https://doi.org/10.4271/01-16-01-0004 https://www.proquest.com/docview/2804815548 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1946-3901 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0067028 issn: 1946-3855 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdK9wIPiL-iMJCFEDxAIE4c2-WtoE4FsYHWTdpbZDvOCNrSak152Ffgo_AlOcdOmhSQBi9RZFmOk_v5zr7c_Q6hZ1koeaYMCZLcpuSMQxkosMoBY1wBnExscntQ3D9gs2P68SQ5GQx-dqKW1pV6rS__mFfyP1KFNpCrzZL9B8m2g0ID3IN84QoShuuVZDxfL-1SX8Gm8VPj4qirXNr4HyfZybIfMb4n12cVaJnK-BrhNhLZhdsVK-8l_PzdjuoSWmr24HOfoOSGOC7PpdXOLyf1O_ZIz_02dz6ZbvkaOwwV0oBlhqN6C6m5LJzLdV9-y1oE2l8ntc8HlGOxcZxf-sb1amWKFtnzrxfS1YWewet7xHtnRhRvorn8X7St2XU085iyIBaO07dV3ew3iDo97Eivt80DjTipUx4C4twooSt93Kfh_jA_7Dc6emCejAUFDUevoZ0ITEg4RDvvpgdfDhvDz3hYl_JtZ-ooXe1D3_Qe2dsCbW8ELPWNNJ09ztEtdNMfTvDEIe02GpjyDrrRoay8i35sMIcbzOE-5nAXc7gocY053GIOA-Zwi7m3eFLiBnF4keMtxNkBGsRhhzjsEXcPHe9Nj97PAl_QI9BgSqpAW_ZAGSdESJErTuBLjYlQNjRYUTiXJ1Ia2H4mPMsYzaSKmKbagMnIScI01_F9NCwXpXmAcKQkz0UWxYpTOs6IEFpwTVSUM5klIR2hV803TrVnu7dFV85SOPVakaQhSQmzVyuSEXredl86mpe_dXxqBZZa6pTSxmadSsB7CphJNwgZoRe-U76Ah2rpU11g6pZtrddztxF86hfiKo1ETeKUUAEDARjSorsk2m69eT28yrweoeubRbeLhtXF2jyGPXWlnngs_wK7etCP |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+Classification+Applications+in+Fault+Detection+and+Diagnosis%3A+An+Overview+of+Implementations+in+Unmanned+Aerial+Systems&rft.jtitle=SAE+International+journal+of+aerospace&rft.au=Saied%2C+Majd&rft.au=Attieh%2C+Hadi&rft.au=Mazeh%2C+Hussein&rft.au=Shraim%2C+Hassan&rft.date=2023-03-01&rft.pub=SAE+International&rft.issn=1946-3855&rft.volume=16&rft.issue=1&rft.spage=57&rft_id=info:doi/10.4271%2F01-16-01-0004&rft.externalDBID=ISR&rft.externalDocID=A759844254 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-3855&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-3855&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-3855&client=summon |