Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems

Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in un...

Full description

Saved in:
Bibliographic Details
Published inSAE International journal of aerospace Vol. 16; no. 1; pp. 57 - 73
Main Authors Saied, Majd, Attieh, Hadi, Mazeh, Hussein, Shraim, Hassan, Francis, Clovis
Format Journal Article
LanguageEnglish
Published Warrendale SAE International 01.03.2023
SAE International, a Pennsylvania Not-for Profit
Subjects
Online AccessGet full text
ISSN1946-3855
1946-3901
DOI10.4271/01-16-01-0004

Cover

Abstract Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized. Measurements data issued from the onboard sensors are collected and a classification model to detect damaged propellers and failed motors has been built. To simulate a motor fault condition, its effectiveness is reduced using an RC transmitter. Propeller damages are simulated by clipping the propellers gradually. Experimental results demonstrate that artificial neural networks (ANN) techniques outperform other methods in terms of classification accuracy and are shown to be effective at identifying the different types of damaged propellers or failed motors.
AbstractList Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized. Measurements data issued from the onboard sensors are collected and a classification model to detect damaged propellers and failed motors has been built. To simulate a motor fault condition, its effectiveness is reduced using an RC transmitter. Propeller damages are simulated by clipping the propellers gradually. Experimental results demonstrate that artificial neural networks (ANN) techniques outperform other methods in terms of classification accuracy and are shown to be effective at identifying the different types of damaged propellers or failed motors.
Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to provide in this article an overview on the application of these methods in the fault diagnosis strategies and also their successful use in unmanned aerial vehicles (UAVs) systems. Different existing aspects including the implementation conditions, offline design, and online computation algorithms as well as computation complexity and detection time are discussed in detail. Evaluation and validation of these aspects have been ensured by a simple demonstration of the basic classification methods and neural network techniques in solving the fault detection and diagnosis problem of the propulsion system failure of a multirotor UAV. A testing platform of an Hexarotor UAV is completely realized. Measurements data issued from the onboard sensors are collected and a classification model to detect damaged propellers and failed motors has been built. To simulate a motor fault condition, its effectiveness is reduced using an RC transmitter. Propeller damages are simulated by clipping the propellers gradually. Experimental results demonstrate that artificial neural networks (ANN) techniques outperform other methods in terms of classification accuracy and are shown to be effective at identifying the different types of damaged propellers or failed motors.
ArticleNumber 01-16-01-0004
Audience Academic
Author Attieh, Hadi
Saied, Majd
Francis, Clovis
Shraim, Hassan
Mazeh, Hussein
Author_xml – sequence: 1
  givenname: Majd
  surname: Saied
  fullname: Saied, Majd
– sequence: 2
  givenname: Hadi
  surname: Attieh
  fullname: Attieh, Hadi
– sequence: 3
  givenname: Hussein
  surname: Mazeh
  fullname: Mazeh, Hussein
– sequence: 4
  givenname: Hassan
  surname: Shraim
  fullname: Shraim, Hassan
– sequence: 5
  givenname: Clovis
  surname: Francis
  fullname: Francis, Clovis
BookMark eNp1UcFu1DAQtVCRaAtH7pY4cUixEztxuEVbSldaqRJLz9GsM1m5cpxgO4V-Az-N011Ai4QsjUf2e2_mzVyQMzc6JOQtZ1cir_gHxjNeZikyxsQLcs5rUWZFzfjZ71xJ-YpchPDAWFmxXJ2Tn9t5Qv9oAnZ0g-CdcXu6shCC6Y2GaEZHm2myxzxQ4-gNzDbSa4yon__BdfTawN6NwYSPtHH07nHRxO907Ol6mCwO6OJfgXs3gHOpYoPegKXbpxBxCK_Jyx5swDfH-5Lc33z6urrNNnef16tmk-mCVTHTvBAcCskVqH5X8WSt5mrHapbvBBdKAmBeF7LqulJ0sMtLLTTyqu65LHWli0vy7qA7-fHbjCG2D-PsXSrZ5ooJxaUUKqGuDqg9WGyN68foQafT4WB0mnxv0ntTyVoJkUuRCO9PCAkT8UfcwxxCu95-OcVmB6z2Ywge-3byZgD_1HLWLstsGW95ucRlmQlf_IPX5jDQ1JSx_2UdLQRYGoqYTC4csH8MnxJ-AbaUs84
CitedBy_id crossref_primary_10_7467_KSAE_2024_32_1_119
crossref_primary_10_1017_aer_2024_150
Cites_doi 10.1016/j.neucom.2018.08.046
10.1007/BF00941472
10.1007/978-90-481-9707-1_43
10.1186/s41256-020-00175-y
10.1016/j.conengprac.2017.06.011
10.1504/IJDSS.2015.070158
10.1109/TII.2008.2002920
10.1109/ICCSSE.2019.00010
10.23919/WAC.2018.8430428
10.1007/978-1-4471-4799-2
10.1109/YAC.2017.7967520
10.1109/ROPEC.2018.8661459
10.23919/SPA.2017.8166870
10.1016/j.jtice.2019.09.017
10.3390/s19040771
10.1016/S0098-1354(02)00161-8
10.1016/j.ifacol.2018.11.560
10.1016/j.eswa.2007.12.010
10.1177/0954406218780508
10.1016/j.measurement.2016.02.024
10.1049/iet-est.2014.0042
10.1109/TIM.2019.2900885
10.1134/S2075108720010046
10.1109/ChiCC.2015.7260639
10.1007/s10845-019-01511-x
10.1109/ACCESS.2018.2888950
10.1177/0278364915596233
10.1177/1461348419861822
10.1109/DASC.2017.8102037
10.1002/etep.2577
10.1016/S1532-0464(03)00034-0
10.1016/S0098-1354(02)00160-6
10.1109/ICSENS.2018.8589572
10.1109/ICIEA.2016.7603846
10.1007/11554028_120
10.1201/9781351174664-382
10.1109/TII.2009.2030793
10.1007/s00521-018-3911-5
10.1016/j.enbuild.2016.09.039
10.1109/ETFA.2016.7733537
10.1006/mssp.2001.1454
10.1007/BF01189880
10.1016/j.trpro.2017.05.131
10.1053/j.jvca.2021.03.049
10.1016/j.asoc.2019.105524
10.1007/s00500-013-1055-1
10.1109/TSM.2007.907607
10.1007/s10462-011-9272-4
10.12783/shm2017/14091
10.1186/s41601-017-0063-z
10.1016/j.eswa.2009.10.041
10.1109/ICRA.2014.6906588
10.1016/j.jprocont.2010.07.002
10.3390/s17102243
10.1109/TMECH.2019.2947250
10.1016/j.solener.2018.07.089
10.1016/j.patrec.2004.08.005
10.1016/j.ifacol.2017.08.468
10.1016/j.enbuild.2018.10.016
10.1017/aer.2019.149
10.23919/ACC45564.2020.9148044
10.23919/ECC.2019.8796198
10.1109/ICUAS.2017.7991445
10.1016/j.compchemeng.2020.106964
10.3390/robotics8030059
10.1007/s42452-019-1356-9
10.1017/CBO9780511801389
ContentType Journal Article
Copyright 2023 SAE International
COPYRIGHT 2023 SAE International
Copyright SAE International, a Pennsylvania Not-for Profit 2023
Copyright_xml – notice: 2023 SAE International
– notice: COPYRIGHT 2023 SAE International
– notice: Copyright SAE International, a Pennsylvania Not-for Profit 2023
DBID AAYXX
CITATION
ISR
DOI 10.4271/01-16-01-0004
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1946-3901
EndPage 73
ExternalDocumentID A759844254
10_4271_01_16_01_0004
01_16_01_0004
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 6P2
ABJNI
ACGFS
ADNWM
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
EBS
EJD
ESX
HCIFZ
IAO
ISR
ITC
L7B
P2P
PV9
PYD
RHI
RZL
AAYXX
CITATION
IVC
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c307t-c1341a3518a8fb71194918b0902b41485aae29357dd64dab26c4ce179f156c7c3
ISSN 1946-3855
IngestDate Sat Jul 26 00:04:59 EDT 2025
Mon Oct 20 17:07:46 EDT 2025
Thu Oct 16 16:14:25 EDT 2025
Thu Oct 02 04:29:29 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Thu Apr 18 22:56:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-c1341a3518a8fb71194918b0902b41485aae29357dd64dab26c4ce179f156c7c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2804815548
PQPubID 5013117
PageCount 17
ParticipantIDs proquest_journals_2804815548
gale_infotracacademiconefile_A759844254
gale_incontextgauss_ISR_A759844254
crossref_primary_10_4271_01_16_01_0004
crossref_citationtrail_10_4271_01_16_01_0004
sae_internationaljournals_01_16_01_0004
PublicationCentury 2000
PublicationDate 20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 20230301
  day: 01
PublicationDecade 2020
PublicationPlace Warrendale
PublicationPlace_xml – name: Warrendale
PublicationTitle SAE International journal of aerospace
PublicationYear 2023
Publisher SAE International
SAE International, a Pennsylvania Not-for Profit
Publisher_xml – name: SAE International
– name: SAE International, a Pennsylvania Not-for Profit
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref0
ref2
ref1
ref39
ref38
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref49
  doi: 10.1016/j.neucom.2018.08.046
– ident: ref70
  doi: 10.1007/BF00941472
– ident: ref5
  doi: 10.1007/978-90-481-9707-1_43
– ident: ref39
  doi: 10.1186/s41256-020-00175-y
– ident: ref43
– ident: ref21
  doi: 10.1016/j.conengprac.2017.06.011
– ident: ref24
– ident: ref27
  doi: 10.1504/IJDSS.2015.070158
– ident: ref10
  doi: 10.1109/TII.2008.2002920
– ident: ref68
  doi: 10.1109/ICCSSE.2019.00010
– ident: ref57
  doi: 10.23919/WAC.2018.8430428
– ident: ref7
  doi: 10.1007/978-1-4471-4799-2
– ident: ref51
  doi: 10.1109/YAC.2017.7967520
– ident: ref60
  doi: 10.1109/ROPEC.2018.8661459
– ident: ref56
  doi: 10.23919/SPA.2017.8166870
– ident: ref17
  doi: 10.1016/j.jtice.2019.09.017
– ident: ref47
  doi: 10.3390/s19040771
– ident: ref6
  doi: 10.1016/S0098-1354(02)00161-8
– ident: ref4
  doi: 10.1016/j.ifacol.2018.11.560
– ident: ref15
  doi: 10.1016/j.eswa.2007.12.010
– ident: ref52
  doi: 10.1177/0954406218780508
– ident: ref41
  doi: 10.1016/j.measurement.2016.02.024
– ident: ref53
  doi: 10.1049/iet-est.2014.0042
– ident: ref36
  doi: 10.1109/TIM.2019.2900885
– ident: ref50
  doi: 10.1134/S2075108720010046
– ident: ref61
  doi: 10.1109/ChiCC.2015.7260639
– ident: ref30
  doi: 10.1007/s10845-019-01511-x
– ident: ref25
  doi: 10.1109/ACCESS.2018.2888950
– ident: ref2
  doi: 10.1177/0278364915596233
– ident: ref31
  doi: 10.1177/1461348419861822
– ident: ref44
  doi: 10.1109/DASC.2017.8102037
– ident: ref26
  doi: 10.1002/etep.2577
– ident: ref20
  doi: 10.1016/S1532-0464(03)00034-0
– ident: ref3
  doi: 10.1016/S0098-1354(02)00160-6
– ident: ref65
  doi: 10.1109/ICSENS.2018.8589572
– ident: ref22
  doi: 10.1109/ICIEA.2016.7603846
– ident: ref35
  doi: 10.1007/11554028_120
– ident: ref45
– ident: ref14
  doi: 10.1201/9781351174664-382
– ident: ref8
  doi: 10.1109/TII.2009.2030793
– ident: ref40
  doi: 10.1007/s00521-018-3911-5
– ident: ref12
  doi: 10.1016/j.enbuild.2016.09.039
– ident: ref63
  doi: 10.1109/ETFA.2016.7733537
– ident: ref29
  doi: 10.1006/mssp.2001.1454
– ident: ref37
  doi: 10.1007/BF01189880
– ident: ref0
  doi: 10.1016/j.trpro.2017.05.131
– ident: ref38
  doi: 10.1053/j.jvca.2021.03.049
– ident: ref69
  doi: 10.1016/j.asoc.2019.105524
– ident: ref23
  doi: 10.1007/s00500-013-1055-1
– ident: ref18
  doi: 10.1109/TSM.2007.907607
– ident: ref11
  doi: 10.1007/s10462-011-9272-4
– ident: ref54
  doi: 10.12783/shm2017/14091
– ident: ref19
  doi: 10.1186/s41601-017-0063-z
– ident: ref42
  doi: 10.1016/j.eswa.2009.10.041
– ident: ref1
  doi: 10.1109/ICRA.2014.6906588
– ident: ref9
  doi: 10.1016/j.jprocont.2010.07.002
– ident: ref48
  doi: 10.3390/s17102243
– ident: ref62
  doi: 10.1109/TMECH.2019.2947250
– ident: ref46
– ident: ref13
  doi: 10.1016/j.solener.2018.07.089
– ident: ref33
  doi: 10.1016/j.patrec.2004.08.005
– ident: ref66
  doi: 10.1016/j.ifacol.2017.08.468
– ident: ref32
  doi: 10.1016/j.enbuild.2018.10.016
– ident: ref67
  doi: 10.1017/aer.2019.149
– ident: ref59
  doi: 10.23919/ACC45564.2020.9148044
– ident: ref55
  doi: 10.23919/ECC.2019.8796198
– ident: ref64
  doi: 10.1109/ICUAS.2017.7991445
– ident: ref34
  doi: 10.1016/j.compchemeng.2020.106964
– ident: ref58
  doi: 10.3390/robotics8030059
– ident: ref16
  doi: 10.1007/s42452-019-1356-9
– ident: ref28
  doi: 10.1017/CBO9780511801389
SSID ssj0067028
Score 2.2455842
Snippet Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to...
Statistical machine learning classification methods have been widely used in the fault detection analysis in several engineering domains. This motivates us to...
SourceID proquest
gale
crossref
sae
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Algorithms
Artificial intelligence
Artificial neural networks
Classification
Computation
Computer simulation
Damage detection
Data-driven fault diagnosis
Drone aircraft
Fault detection
Fault diagnosis
Machine learning
Motors
Neural networks
Propellers
Propulsion systems
Supervised learning
Unmanned aerial vehicles
Title Supervised Learning Classification Applications in Fault Detection and Diagnosis: An Overview of Implementations in Unmanned Aerial Systems
URI https://doi.org/10.4271/01-16-01-0004
https://www.proquest.com/docview/2804815548
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1946-3901
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0067028
  issn: 1946-3855
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdK9wIPiL-iMJCFEDxAIE4c2-WtoE4FsYHWTdpbZDvOCNrSak152Ffgo_AlOcdOmhSQBi9RZFmOk_v5zr7c_Q6hZ1koeaYMCZLcpuSMQxkosMoBY1wBnExscntQ3D9gs2P68SQ5GQx-dqKW1pV6rS__mFfyP1KFNpCrzZL9B8m2g0ID3IN84QoShuuVZDxfL-1SX8Gm8VPj4qirXNr4HyfZybIfMb4n12cVaJnK-BrhNhLZhdsVK-8l_PzdjuoSWmr24HOfoOSGOC7PpdXOLyf1O_ZIz_02dz6ZbvkaOwwV0oBlhqN6C6m5LJzLdV9-y1oE2l8ntc8HlGOxcZxf-sb1amWKFtnzrxfS1YWewet7xHtnRhRvorn8X7St2XU085iyIBaO07dV3ew3iDo97Eivt80DjTipUx4C4twooSt93Kfh_jA_7Dc6emCejAUFDUevoZ0ITEg4RDvvpgdfDhvDz3hYl_JtZ-ooXe1D3_Qe2dsCbW8ELPWNNJ09ztEtdNMfTvDEIe02GpjyDrrRoay8i35sMIcbzOE-5nAXc7gocY053GIOA-Zwi7m3eFLiBnF4keMtxNkBGsRhhzjsEXcPHe9Nj97PAl_QI9BgSqpAW_ZAGSdESJErTuBLjYlQNjRYUTiXJ1Ia2H4mPMsYzaSKmKbagMnIScI01_F9NCwXpXmAcKQkz0UWxYpTOs6IEFpwTVSUM5klIR2hV803TrVnu7dFV85SOPVakaQhSQmzVyuSEXredl86mpe_dXxqBZZa6pTSxmadSsB7CphJNwgZoRe-U76Ah2rpU11g6pZtrddztxF86hfiKo1ETeKUUAEDARjSorsk2m69eT28yrweoeubRbeLhtXF2jyGPXWlnngs_wK7etCP
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+Classification+Applications+in+Fault+Detection+and+Diagnosis%3A+An+Overview+of+Implementations+in+Unmanned+Aerial+Systems&rft.jtitle=SAE+International+journal+of+aerospace&rft.au=Saied%2C+Majd&rft.au=Attieh%2C+Hadi&rft.au=Mazeh%2C+Hussein&rft.au=Shraim%2C+Hassan&rft.date=2023-03-01&rft.pub=SAE+International&rft.issn=1946-3855&rft.volume=16&rft.issue=1&rft.spage=57&rft_id=info:doi/10.4271%2F01-16-01-0004&rft.externalDBID=ISR&rft.externalDocID=A759844254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-3855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-3855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-3855&client=summon