A Novel Stereo Camera Fusion Scheme for Generating and Tracking Real-Time 3-D Patient-Specific Head/Face Kinematics and Facial Muscle Movements
Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the de...
Saved in:
| Published in | IEEE sensors journal Vol. 23; no. 9; pp. 9889 - 9897 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
01.05.2023
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1530-437X 1558-1748 |
| DOI | 10.1109/JSEN.2023.3259473 |
Cover
| Abstract | Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the developed solutions. Deep neural network (DNN)-based methods were employed, but the detected features were in 2-D or not accurate in 3-D. Thus, we developed a novel stereo-fusion scheme for enhancing the accuracy of 3-D features and generating biomechanical heads. Four stereo cameras were employed for detecting 2-D FFs based on DNN-based models. Stereo-triangulated 3-D FFs were fused using the Kalman filter. A head, skull, and muscle network were generated from the fused FFs. We validated the method with 1000 virtual subjects and five computed tomography (CT)-based subjects. The in silico trial errors (mean ± SD) were 2.27 ± 0.29, 3.15 ± 0.23, 1.72 ± 0.13, and 3.08 ± 0.39 mm for the facial head, facial skull, muscle insertion point, and muscle attachment point regions, respectively. The experimental errors were 1.8384 ± 0.1451, 2.6937 ± 0.0575, 1.8271 ± 0.1242, and 3.1428 ± 0.2407 mm. The errors were compatible with those using the Kinect V2.0 sensor and smaller than those using monovision-based 3-D feature detectors. This study has four contributions: 1) a stereo-fusion scheme for reconstructing 3-D FFs from 2-D FFs; 2) an enhancement accuracy for 3-D DNN-based FF detection; 3) a biomechanical head generation from stereo-fusion cameras; and 4) a full validation procedure for 3-D FF detection. The method will be validated with facial palsy patients. Soft-tissue deformation will be integrated with mixed reality technology toward the next generation of face decision support system. |
|---|---|
| AbstractList | Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the developed solutions. Deep neural network (DNN)-based methods were employed, but the detected features were in 2-D or not accurate in 3-D. Thus, we developed a novel stereo-fusion scheme for enhancing the accuracy of 3-D features and generating biomechanical heads. Four stereo cameras were employed for detecting 2-D FFs based on DNN-based models. Stereo-triangulated 3-D FFs were fused using the Kalman filter. A head, skull, and muscle network were generated from the fused FFs. We validated the method with 1000 virtual subjects and five computed tomography (CT)-based subjects. The in silico trial errors (mean ± SD) were 2.27 ± 0.29, 3.15 ± 0.23, 1.72 ± 0.13, and 3.08 ± 0.39 mm for the facial head, facial skull, muscle insertion point, and muscle attachment point regions, respectively. The experimental errors were 1.8384 ± 0.1451, 2.6937 ± 0.0575, 1.8271 ± 0.1242, and 3.1428 ± 0.2407 mm. The errors were compatible with those using the Kinect V2.0 sensor and smaller than those using monovision-based 3-D feature detectors. This study has four contributions: 1) a stereo-fusion scheme for reconstructing 3-D FFs from 2-D FFs; 2) an enhancement accuracy for 3-D DNN-based FF detection; 3) a biomechanical head generation from stereo-fusion cameras; and 4) a full validation procedure for 3-D FF detection. The method will be validated with facial palsy patients. Soft-tissue deformation will be integrated with mixed reality technology toward the next generation of face decision support system. |
| Author | Ballit, Abbass Dao, Tien-Tuan Nguyen, Tan-Nhu |
| Author_xml | – sequence: 1 givenname: Tan-Nhu orcidid: 0000-0003-3343-0886 surname: Nguyen fullname: Nguyen, Tan-Nhu organization: Department of Electric Engineering, School of Engineering, Eastern International University, Thu Dau Mot City, Binh Duong, Vietnam – sequence: 2 givenname: Abbass orcidid: 0000-0001-5852-8973 surname: Ballit fullname: Ballit, Abbass organization: UMR 9013, - LaMcube - Laboratoire de Mècanique, Multiphysique, Univ. Lille, CNRS, Centrale Lille, Multiéchelle, France – sequence: 3 givenname: Tien-Tuan orcidid: 0009-0009-0151-412X surname: Dao fullname: Dao, Tien-Tuan organization: UMR 9013, - LaMcube - Laboratoire de Mècanique, Multiphysique, Univ. Lille, CNRS, Centrale Lille, Multiéchelle, France |
| BackLink | https://hal.science/hal-04149396$$DView record in HAL |
| BookMark | eNp9kc9u3CAQxlGVSs2fPkBvSD314A0YbMNxtc1m22ySqruVekMYDw2pDRvwRupT9JWLs1EOPeTEMPP7Po3mO0FHPnhA6AMlM0qJPP-6ubiZlaRkM1ZWkjfsDTqmVSUK2nBxNNWMFJw1P9-hk5TuCaGyqZpj9HeOb8Ij9HgzQoSAF3qAqPFyn1zweGPuYABsQ8SX4PNgdP4X1r7D26jN7-nzHXRfbF2mWPEZf8sE-LHY7MA46wxege7Ol9oAvnIehjw26ckg95zu8fU-mR7wdd5hyMJ0ht5a3Sd4__yeoh_Li-1iVaxvL78s5uvCMNKMRSvaGiQtGyIIkNoyI6sWZFcBr1qqW8otWF51FeusrTsupW25EJkBIriu2Sn6dPC9073aRTfo-EcF7dRqvlZTj3DKJZP1I83sxwO7i-FhD2lU92EffV5PlYIIUYqakUzRA2ViSCmCfbGlRE0ZqSkjNWWknjPKmuY_jXFjvlHwY9Suf0X5D2cml38 |
| CitedBy_id | crossref_primary_10_1021_acssensors_4c03099 |
| Cites_doi | 10.1109/AVSS.2009.58 10.1109/WACV.2018.00220 10.1016/j.cmpb.2020.105410 10.1016/j.eswa.2022.117734 10.1109/ICCVW.2017.16 10.1093/bib/bby043 10.1016/j.cmpb.2020.105846 10.1109/CVPRW.2019.00038 10.1017/CBO9780511811685 10.1016/S0140-6736(13)62632-X 10.1145/3130800.3130813 10.1016/j.bjps.2014.01.003 10.1109/CDC.1976.267794 10.1016/j.finel.2013.08.002 10.1002/wsbm.1337 10.1109/JSEN.2010.2101060 10.1016/j.otc.2018.07.001 10.5121/ijcsit.2015.7502 10.1142/S0219519418500203 10.3390/s20061628 10.1007/s10278-013-9622-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SP 7U5 8FD L7M 1XC |
| DOI | 10.1109/JSEN.2023.3259473 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 9897 |
| ExternalDocumentID | oai:HAL:hal-04149396v1 10_1109_JSEN_2023_3259473 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH AAYXX ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CITATION CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ 7SP 7U5 8FD AARMG L7M 1XC |
| ID | FETCH-LOGICAL-c307t-b8b6e9127080e06f3c95be9d5e45b1ab14fef45d53dff6d499fb4885bee084a63 |
| ISSN | 1530-437X |
| IngestDate | Tue Oct 14 20:28:21 EDT 2025 Mon Jun 30 10:12:35 EDT 2025 Wed Oct 01 05:05:59 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c307t-b8b6e9127080e06f3c95be9d5e45b1ab14fef45d53dff6d499fb4885bee084a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3343-0886 0000-0001-5852-8973 0009-0009-0151-412X |
| PQID | 2808828630 |
| PQPubID | 75733 |
| PageCount | 9 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04149396v1 proquest_journals_2808828630 crossref_primary_10_1109_JSEN_2023_3259473 crossref_citationtrail_10_1109_JSEN_2023_3259473 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE sensors journal |
| PublicationYear | 2023 |
| Publisher | The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 casati (ref23) 2013 ref15 ref14 ref11 guo (ref18) 2020 ref10 ref2 ref1 ref16 ref19 edgar (ref22) 0 lugaresi (ref8) 2019 willner (ref21) 2008 ref24 ref26 ref25 ref20 grishchenko (ref17) 2020 ref28 ref27 ref9 ref4 ref3 ref6 ref5 guo (ref7) 2020 |
| References_xml | – start-page: 570 year: 2008 ident: ref21 article-title: Kalman filter algorithms for a multi-sensor system publication-title: Proc IEEE Conf Decis Control Including 15th Symp Adapt Processes – ident: ref16 doi: 10.1109/AVSS.2009.58 – year: 2013 ident: ref23 article-title: SFA: A human skin image database based on FERET and AR facial images publication-title: Proc IX Workshop de Vis ao Computacional – start-page: 2 year: 2020 ident: ref17 article-title: Attention mesh: High-fidelity face mesh prediction in real-time publication-title: Proc CVPR Workshop Comput Vis Augmented Virtual Reality – ident: ref14 doi: 10.1109/WACV.2018.00220 – ident: ref20 doi: 10.1016/j.cmpb.2020.105410 – start-page: 152 year: 2020 ident: ref18 article-title: Towards fast, accurate and stable 3D dense face alignment publication-title: Proc 16th Eur Conf Comput Vis (ECCV) – ident: ref13 doi: 10.1016/j.eswa.2022.117734 – ident: ref12 doi: 10.1109/ICCVW.2017.16 – ident: ref26 doi: 10.1093/bib/bby043 – ident: ref3 doi: 10.1016/j.cmpb.2020.105846 – year: 2019 ident: ref8 article-title: MediaPipe: A framework for building perception pipelines publication-title: arXiv 1906 08172 – ident: ref9 doi: 10.1109/CVPRW.2019.00038 – start-page: 152 year: 2020 ident: ref7 article-title: Towards fast, accurate and stable 3D dense face alignment publication-title: Proc Eur Conf Comput Vis – ident: ref10 doi: 10.1017/CBO9780511811685 – ident: ref1 doi: 10.1016/S0140-6736(13)62632-X – ident: ref19 doi: 10.1145/3130800.3130813 – ident: ref6 doi: 10.1016/j.bjps.2014.01.003 – ident: ref15 doi: 10.1109/CDC.1976.267794 – ident: ref4 doi: 10.1016/j.finel.2013.08.002 – ident: ref27 doi: 10.1002/wsbm.1337 – ident: ref11 doi: 10.1109/JSEN.2010.2101060 – ident: ref24 doi: 10.1016/j.otc.2018.07.001 – ident: ref25 doi: 10.5121/ijcsit.2015.7502 – ident: ref5 doi: 10.1142/S0219519418500203 – ident: ref2 doi: 10.3390/s20061628 – year: 0 ident: ref22 publication-title: New Mexico Decedent Image Database – ident: ref28 doi: 10.1007/s10278-013-9622-7 |
| SSID | ssj0019757 |
| Score | 2.379841 |
| Snippet | Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect... |
| SourceID | hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 9889 |
| SubjectTerms | Accuracy Animation Artificial neural networks Biofeedback Biomechanics Cameras Computed tomography Decision support systems Errors Head High definition Kalman filters Kinematics Life Sciences Mixed reality Muscles Real time Rehabilitation Skull Three dimensional models |
| Title | A Novel Stereo Camera Fusion Scheme for Generating and Tracking Real-Time 3-D Patient-Specific Head/Face Kinematics and Facial Muscle Movements |
| URI | https://www.proquest.com/docview/2808828630 https://hal.science/hal-04149396 |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLa6cQFcIBggCgNZCHFB5C6J83tZtpZqlHBBJvUuihNnQ5R2rM0keAmejvfhHDtx0w1NwE0UOWli93w5P7bPdwh5BR60U5aBZBFIl3m8hDMeQqjiFqGsCjDBOeYOf0iCyYl3PPNnvd6vzq6lei0GxY8_5pX8j1ShDeSKWbL_IFnzUGiAc5AvHEHCcPwrGQ-tZHkpcWlZXsildZjjDJM1rldKC4A4vmpKb80tvW7zEcE-FV_0trt8zjAJxOLsCNn6MTmSqZL01ecCU5RwROMcvv334I0qdlfN6QxtKqu3XkGXQDEo1nFNCtW6uhhGWiuIkrGcT3c4ap5gwZKz2kpO6--bXLS3-RyCAqWtBFhX4-2n0C2W1qCJjvJld5rC7WwKHLSJblvbH0aqyo9hRBiZoj8rw8Ro1KRytqHT7eRIq6ptAFc405asafMhJg41d2er33U-c4PjuKOs40hXL7puRRQJ6_GnUTLAoQw4xIierriyzdidfMzGJ9Nplo5m6evzbwyLmeGif1PZZYfccsHY2Dqt0CxuxaEioDUDaBbb4a0H19655S7tnOFm3Ss-g3KE0vvkXhPB0KGG4wPSk4s9crfDa7lHbr-TDRP6Q_JzSBVIqQYp1SClGqRUg5QCSOkGpBRERVuQUgNSCiClV0FKEaQHCFG6gah6gIYo1RClBqKPyMl4lB5OWFMFhBVgf9ZMRCKQMW6QiGxpBxUvYl_IuPSl5wsnF45XycrzS5-XVRWUEMFXAqwS3CPtyMsD_pjsLpYL-YRQBzRPgTMQMeceGPbYjYQQQZ7LkIeR7faJ3f7ZWdFQ5GOllnmmQmU7zlA-Gcona-TTJ2_MT841P8xNN78ECZr7kNl9Mpxm2GZ7jhfzOLh0-mS_FXDWfJyrzI0wFI4Cbj-9-fIzcmfz9e2T3fVFLZ-D27wWLxQIfwMN-MH4 |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Stereo+Camera+Fusion+Scheme+for+Generating+and+Tracking+Real-Time+3-D+Patient-Specific+Head%2FFace+Kinematics+and+Facial+Muscle+Movements&rft.jtitle=IEEE+sensors+journal&rft.au=Tan-Nhu+Nguyen&rft.au=Ballit%2C+Abbass&rft.au=Tien-Tuan+Dao&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=9&rft.spage=9889&rft_id=info:doi/10.1109%2FJSEN.2023.3259473&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |