A Novel Stereo Camera Fusion Scheme for Generating and Tracking Real-Time 3-D Patient-Specific Head/Face Kinematics and Facial Muscle Movements

Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the de...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 23; no. 9; pp. 9889 - 9897
Main Authors Nguyen, Tan-Nhu, Ballit, Abbass, Dao, Tien-Tuan
Format Journal Article
LanguageEnglish
Published New York The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 01.05.2023
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2023.3259473

Cover

Abstract Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the developed solutions. Deep neural network (DNN)-based methods were employed, but the detected features were in 2-D or not accurate in 3-D. Thus, we developed a novel stereo-fusion scheme for enhancing the accuracy of 3-D features and generating biomechanical heads. Four stereo cameras were employed for detecting 2-D FFs based on DNN-based models. Stereo-triangulated 3-D FFs were fused using the Kalman filter. A head, skull, and muscle network were generated from the fused FFs. We validated the method with 1000 virtual subjects and five computed tomography (CT)-based subjects. The in silico trial errors (mean ± SD) were 2.27 ± 0.29, 3.15 ± 0.23, 1.72 ± 0.13, and 3.08 ± 0.39 mm for the facial head, facial skull, muscle insertion point, and muscle attachment point regions, respectively. The experimental errors were 1.8384 ± 0.1451, 2.6937 ± 0.0575, 1.8271 ± 0.1242, and 3.1428 ± 0.2407 mm. The errors were compatible with those using the Kinect V2.0 sensor and smaller than those using monovision-based 3-D feature detectors. This study has four contributions: 1) a stereo-fusion scheme for reconstructing 3-D FFs from 2-D FFs; 2) an enhancement accuracy for 3-D DNN-based FF detection; 3) a biomechanical head generation from stereo-fusion cameras; and 4) a full validation procedure for 3-D FF detection. The method will be validated with facial palsy patients. Soft-tissue deformation will be integrated with mixed reality technology toward the next generation of face decision support system.
AbstractList Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect V2.0 can detect and track 3-D high-definition (HD) face features (FFs), but the end of production can lead to difficult deployment of the developed solutions. Deep neural network (DNN)-based methods were employed, but the detected features were in 2-D or not accurate in 3-D. Thus, we developed a novel stereo-fusion scheme for enhancing the accuracy of 3-D features and generating biomechanical heads. Four stereo cameras were employed for detecting 2-D FFs based on DNN-based models. Stereo-triangulated 3-D FFs were fused using the Kalman filter. A head, skull, and muscle network were generated from the fused FFs. We validated the method with 1000 virtual subjects and five computed tomography (CT)-based subjects. The in silico trial errors (mean ± SD) were 2.27 ± 0.29, 3.15 ± 0.23, 1.72 ± 0.13, and 3.08 ± 0.39 mm for the facial head, facial skull, muscle insertion point, and muscle attachment point regions, respectively. The experimental errors were 1.8384 ± 0.1451, 2.6937 ± 0.0575, 1.8271 ± 0.1242, and 3.1428 ± 0.2407 mm. The errors were compatible with those using the Kinect V2.0 sensor and smaller than those using monovision-based 3-D feature detectors. This study has four contributions: 1) a stereo-fusion scheme for reconstructing 3-D FFs from 2-D FFs; 2) an enhancement accuracy for 3-D DNN-based FF detection; 3) a biomechanical head generation from stereo-fusion cameras; and 4) a full validation procedure for 3-D FF detection. The method will be validated with facial palsy patients. Soft-tissue deformation will be integrated with mixed reality technology toward the next generation of face decision support system.
Author Ballit, Abbass
Dao, Tien-Tuan
Nguyen, Tan-Nhu
Author_xml – sequence: 1
  givenname: Tan-Nhu
  orcidid: 0000-0003-3343-0886
  surname: Nguyen
  fullname: Nguyen, Tan-Nhu
  organization: Department of Electric Engineering, School of Engineering, Eastern International University, Thu Dau Mot City, Binh Duong, Vietnam
– sequence: 2
  givenname: Abbass
  orcidid: 0000-0001-5852-8973
  surname: Ballit
  fullname: Ballit, Abbass
  organization: UMR 9013, - LaMcube - Laboratoire de Mècanique, Multiphysique, Univ. Lille, CNRS, Centrale Lille, Multiéchelle, France
– sequence: 3
  givenname: Tien-Tuan
  orcidid: 0009-0009-0151-412X
  surname: Dao
  fullname: Dao, Tien-Tuan
  organization: UMR 9013, - LaMcube - Laboratoire de Mècanique, Multiphysique, Univ. Lille, CNRS, Centrale Lille, Multiéchelle, France
BackLink https://hal.science/hal-04149396$$DView record in HAL
BookMark eNp9kc9u3CAQxlGVSs2fPkBvSD314A0YbMNxtc1m22ySqruVekMYDw2pDRvwRupT9JWLs1EOPeTEMPP7Po3mO0FHPnhA6AMlM0qJPP-6ubiZlaRkM1ZWkjfsDTqmVSUK2nBxNNWMFJw1P9-hk5TuCaGyqZpj9HeOb8Ij9HgzQoSAF3qAqPFyn1zweGPuYABsQ8SX4PNgdP4X1r7D26jN7-nzHXRfbF2mWPEZf8sE-LHY7MA46wxege7Ol9oAvnIehjw26ckg95zu8fU-mR7wdd5hyMJ0ht5a3Sd4__yeoh_Li-1iVaxvL78s5uvCMNKMRSvaGiQtGyIIkNoyI6sWZFcBr1qqW8otWF51FeusrTsupW25EJkBIriu2Sn6dPC9073aRTfo-EcF7dRqvlZTj3DKJZP1I83sxwO7i-FhD2lU92EffV5PlYIIUYqakUzRA2ViSCmCfbGlRE0ZqSkjNWWknjPKmuY_jXFjvlHwY9Suf0X5D2cml38
CitedBy_id crossref_primary_10_1021_acssensors_4c03099
Cites_doi 10.1109/AVSS.2009.58
10.1109/WACV.2018.00220
10.1016/j.cmpb.2020.105410
10.1016/j.eswa.2022.117734
10.1109/ICCVW.2017.16
10.1093/bib/bby043
10.1016/j.cmpb.2020.105846
10.1109/CVPRW.2019.00038
10.1017/CBO9780511811685
10.1016/S0140-6736(13)62632-X
10.1145/3130800.3130813
10.1016/j.bjps.2014.01.003
10.1109/CDC.1976.267794
10.1016/j.finel.2013.08.002
10.1002/wsbm.1337
10.1109/JSEN.2010.2101060
10.1016/j.otc.2018.07.001
10.5121/ijcsit.2015.7502
10.1142/S0219519418500203
10.3390/s20061628
10.1007/s10278-013-9622-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
1XC
DOI 10.1109/JSEN.2023.3259473
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 9897
ExternalDocumentID oai:HAL:hal-04149396v1
10_1109_JSEN_2023_3259473
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
AAYXX
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CITATION
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
7SP
7U5
8FD
AARMG
L7M
1XC
ID FETCH-LOGICAL-c307t-b8b6e9127080e06f3c95be9d5e45b1ab14fef45d53dff6d499fb4885bee084a63
ISSN 1530-437X
IngestDate Tue Oct 14 20:28:21 EDT 2025
Mon Jun 30 10:12:35 EDT 2025
Wed Oct 01 05:05:59 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-b8b6e9127080e06f3c95be9d5e45b1ab14fef45d53dff6d499fb4885bee084a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3343-0886
0000-0001-5852-8973
0009-0009-0151-412X
PQID 2808828630
PQPubID 75733
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_04149396v1
proquest_journals_2808828630
crossref_primary_10_1109_JSEN_2023_3259473
crossref_citationtrail_10_1109_JSEN_2023_3259473
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationYear 2023
Publisher The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
casati (ref23) 2013
ref15
ref14
ref11
guo (ref18) 2020
ref10
ref2
ref1
ref16
ref19
edgar (ref22) 0
lugaresi (ref8) 2019
willner (ref21) 2008
ref24
ref26
ref25
ref20
grishchenko (ref17) 2020
ref28
ref27
ref9
ref4
ref3
ref6
ref5
guo (ref7) 2020
References_xml – start-page: 570
  year: 2008
  ident: ref21
  article-title: Kalman filter algorithms for a multi-sensor system
  publication-title: Proc IEEE Conf Decis Control Including 15th Symp Adapt Processes
– ident: ref16
  doi: 10.1109/AVSS.2009.58
– year: 2013
  ident: ref23
  article-title: SFA: A human skin image database based on FERET and AR facial images
  publication-title: Proc IX Workshop de Vis ao Computacional
– start-page: 2
  year: 2020
  ident: ref17
  article-title: Attention mesh: High-fidelity face mesh prediction in real-time
  publication-title: Proc CVPR Workshop Comput Vis Augmented Virtual Reality
– ident: ref14
  doi: 10.1109/WACV.2018.00220
– ident: ref20
  doi: 10.1016/j.cmpb.2020.105410
– start-page: 152
  year: 2020
  ident: ref18
  article-title: Towards fast, accurate and stable 3D dense face alignment
  publication-title: Proc 16th Eur Conf Comput Vis (ECCV)
– ident: ref13
  doi: 10.1016/j.eswa.2022.117734
– ident: ref12
  doi: 10.1109/ICCVW.2017.16
– ident: ref26
  doi: 10.1093/bib/bby043
– ident: ref3
  doi: 10.1016/j.cmpb.2020.105846
– year: 2019
  ident: ref8
  article-title: MediaPipe: A framework for building perception pipelines
  publication-title: arXiv 1906 08172
– ident: ref9
  doi: 10.1109/CVPRW.2019.00038
– start-page: 152
  year: 2020
  ident: ref7
  article-title: Towards fast, accurate and stable 3D dense face alignment
  publication-title: Proc Eur Conf Comput Vis
– ident: ref10
  doi: 10.1017/CBO9780511811685
– ident: ref1
  doi: 10.1016/S0140-6736(13)62632-X
– ident: ref19
  doi: 10.1145/3130800.3130813
– ident: ref6
  doi: 10.1016/j.bjps.2014.01.003
– ident: ref15
  doi: 10.1109/CDC.1976.267794
– ident: ref4
  doi: 10.1016/j.finel.2013.08.002
– ident: ref27
  doi: 10.1002/wsbm.1337
– ident: ref11
  doi: 10.1109/JSEN.2010.2101060
– ident: ref24
  doi: 10.1016/j.otc.2018.07.001
– ident: ref25
  doi: 10.5121/ijcsit.2015.7502
– ident: ref5
  doi: 10.1142/S0219519418500203
– ident: ref2
  doi: 10.3390/s20061628
– year: 0
  ident: ref22
  publication-title: New Mexico Decedent Image Database
– ident: ref28
  doi: 10.1007/s10278-013-9622-7
SSID ssj0019757
Score 2.379841
Snippet Recovery and rehabilitation of facial mimics need enhanced decision support with multimodal biofeedback from 3-D real-time biomechanical head animation. Kinect...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 9889
SubjectTerms Accuracy
Animation
Artificial neural networks
Biofeedback
Biomechanics
Cameras
Computed tomography
Decision support systems
Errors
Head
High definition
Kalman filters
Kinematics
Life Sciences
Mixed reality
Muscles
Real time
Rehabilitation
Skull
Three dimensional models
Title A Novel Stereo Camera Fusion Scheme for Generating and Tracking Real-Time 3-D Patient-Specific Head/Face Kinematics and Facial Muscle Movements
URI https://www.proquest.com/docview/2808828630
https://hal.science/hal-04149396
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLa6cQFcIBggCgNZCHFB5C6J83tZtpZqlHBBJvUuihNnQ5R2rM0keAmejvfhHDtx0w1NwE0UOWli93w5P7bPdwh5BR60U5aBZBFIl3m8hDMeQqjiFqGsCjDBOeYOf0iCyYl3PPNnvd6vzq6lei0GxY8_5pX8j1ShDeSKWbL_IFnzUGiAc5AvHEHCcPwrGQ-tZHkpcWlZXsildZjjDJM1rldKC4A4vmpKb80tvW7zEcE-FV_0trt8zjAJxOLsCNn6MTmSqZL01ecCU5RwROMcvv334I0qdlfN6QxtKqu3XkGXQDEo1nFNCtW6uhhGWiuIkrGcT3c4ap5gwZKz2kpO6--bXLS3-RyCAqWtBFhX4-2n0C2W1qCJjvJld5rC7WwKHLSJblvbH0aqyo9hRBiZoj8rw8Ro1KRytqHT7eRIq6ptAFc405asafMhJg41d2er33U-c4PjuKOs40hXL7puRRQJ6_GnUTLAoQw4xIierriyzdidfMzGJ9Nplo5m6evzbwyLmeGif1PZZYfccsHY2Dqt0CxuxaEioDUDaBbb4a0H19655S7tnOFm3Ss-g3KE0vvkXhPB0KGG4wPSk4s9crfDa7lHbr-TDRP6Q_JzSBVIqQYp1SClGqRUg5QCSOkGpBRERVuQUgNSCiClV0FKEaQHCFG6gah6gIYo1RClBqKPyMl4lB5OWFMFhBVgf9ZMRCKQMW6QiGxpBxUvYl_IuPSl5wsnF45XycrzS5-XVRWUEMFXAqwS3CPtyMsD_pjsLpYL-YRQBzRPgTMQMeceGPbYjYQQQZ7LkIeR7faJ3f7ZWdFQ5GOllnmmQmU7zlA-Gcona-TTJ2_MT841P8xNN78ECZr7kNl9Mpxm2GZ7jhfzOLh0-mS_FXDWfJyrzI0wFI4Cbj-9-fIzcmfz9e2T3fVFLZ-D27wWLxQIfwMN-MH4
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Stereo+Camera+Fusion+Scheme+for+Generating+and+Tracking+Real-Time+3-D+Patient-Specific+Head%2FFace+Kinematics+and+Facial+Muscle+Movements&rft.jtitle=IEEE+sensors+journal&rft.au=Tan-Nhu+Nguyen&rft.au=Ballit%2C+Abbass&rft.au=Tien-Tuan+Dao&rft.date=2023-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=23&rft.issue=9&rft.spage=9889&rft_id=info:doi/10.1109%2FJSEN.2023.3259473&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon