Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum() prodrugs for improved intracellular delivery and cytosolic reductive-triggered release
Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach...
Saved in:
Published in | Polymer chemistry Vol. 11; no. 12; pp. 2212 - 2221 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1759-9954 1759-9962 |
DOI | 10.1039/c9py01838g |
Cover
Abstract | Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt(
iv
) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt(
iv
) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape
via
cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt(
iv
) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the
in situ
release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy.
Extracellular pH-sensitive Pt(
iv
)-based nanodrugs enable preferential toxicity to tumor cells
via
a selectively endocytosed and triggered drug release strategy. |
---|---|
AbstractList | Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt(
iv
) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt(
iv
) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape
via
cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt(
iv
) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the
in situ
release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy.
Extracellular pH-sensitive Pt(
iv
)-based nanodrugs enable preferential toxicity to tumor cells
via
a selectively endocytosed and triggered drug release strategy. Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt( iv ) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt( iv ) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt( iv ) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy. Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt(iv) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt(iv) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt(iv) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy. |
Author | Chen, Sheng-Qi Haleem, Abdul Song, Gang Hou, Mei Li, Hui-Juan He, Wei-Dong He, Chen Li, Qing-Lin Hu, Rong-Feng |
AuthorAffiliation | Department of Polymer Science and Engineering University of Science and Technology of China Anhui Province; Anhui University of Chinese Medicine CAS Key Laboratory of Soft Matter Chemistry Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics Institute of Aerospace Materials and Processing Key Laboratory of Xin'an Medicine |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics – name: CAS Key Laboratory of Soft Matter Chemistry – name: Institute of Aerospace Materials and Processing – name: Department of Polymer Science and Engineering – name: Anhui Province; Anhui University of Chinese Medicine – name: Key Laboratory of Xin'an Medicine |
Author_xml | – sequence: 1 givenname: Sheng-Qi surname: Chen fullname: Chen, Sheng-Qi – sequence: 2 givenname: Gang surname: Song fullname: Song, Gang – sequence: 3 givenname: Chen surname: He fullname: He, Chen – sequence: 4 givenname: Mei surname: Hou fullname: Hou, Mei – sequence: 5 givenname: Wei-Dong surname: He fullname: He, Wei-Dong – sequence: 6 givenname: Hui-Juan surname: Li fullname: Li, Hui-Juan – sequence: 7 givenname: Abdul surname: Haleem fullname: Haleem, Abdul – sequence: 8 givenname: Qing-Lin surname: Li fullname: Li, Qing-Lin – sequence: 9 givenname: Rong-Feng surname: Hu fullname: Hu, Rong-Feng |
BookMark | eNp9kU1rFTEUhkOpYK3duC-kuFFhNB_zuSyX2goFXdSFqyE3OTOkZJLxJFOcf9Ofam5vqUXEZJGcnPc8J5z3FTn0wQMhbzj7yJnsPuluXhlvZTsekCPeVF3RdbU4fLpX5UtyEuMty0vyUsj6iNzfLFNACr8SKg3OLU4hna-KCD7aZO-AzsGtE6DV1CsftEK0gMWIakhg6OxUsn6Z3r2nMwaDyxjpkIF2yuFdFlj_nGzAZSauVHlD9ZpCDC6TEcyid92KhHYcIcf5zYGK8Jq8GJSLcPJ4HpPvny9uNlfF9dfLL5vz60JL1qRCbcuqaXkrKsOhVs3WtENTDcAqXhqZdyWNKLelbOpKadZsQXWsFkIwJkrGjTwmb_fc_O-fC8TU34YFfW7ZC9nyrhWtbLLqw16lMcSIMPQz2knh2nPW70zoN923Hw8mXGYx-0usbcrjCruRWPfvktN9CUb9hP7ja86f_S_fz2aQvwGU3KWp |
CitedBy_id | crossref_primary_10_1016_j_ijpharm_2024_124303 crossref_primary_10_1021_acsabm_1c00351 crossref_primary_10_1039_D1DT04079K crossref_primary_10_1016_j_jconrel_2023_03_021 crossref_primary_10_1016_j_ccr_2022_214789 crossref_primary_10_1016_j_eurpolymj_2020_109907 crossref_primary_10_1016_j_progpolymsci_2021_101428 crossref_primary_10_1016_j_ccr_2023_215594 |
Cites_doi | 10.1016/j.addr.2014.05.005 10.1016/j.toxlet.2015.06.012 10.1038/nbt.3330 10.1016/j.polymer.2013.01.004 10.1021/acsami.8b11507 10.1021/acsnano.8b05639 10.1039/c3cs60048c 10.1016/j.colsurfb.2011.05.013 10.1021/ja9071282 10.1007/s10853-018-2689-2 10.1016/j.nantod.2017.06.010 10.1021/jacs.5b03078 10.1007/s00018-009-0053-z 10.1002/advs.201800510 10.1038/nrc.2016.108 10.1530/ERC-15-0237 10.1016/j.biomaterials.2014.08.004 10.1039/C5CC03692E 10.2174/092986706776872970 10.1039/C4PY01698J 10.1038/s41467-018-03705-y 10.1002/adhm.201600470 10.1002/anie.200900064 10.1002/anie.200800963 10.1021/acs.accounts.8b00195 10.1021/ic50041a016 10.1016/j.jinorgbio.2018.11.008 10.1021/acsnano.8b04146 10.1016/j.biomaterials.2018.01.043 10.3109/1061186X.2014.928718 10.1002/adma.201706220 10.1016/j.biomaterials.2018.05.052 10.1021/acsnano.8b03900 10.1021/acsami.8b11349 10.1002/anie.201804314 10.1039/C6PY02148D 10.1021/acs.accounts.5b00203 10.1039/C8TB00967H 10.1016/j.progpolymsci.2018.07.004 10.1021/acsnano.7b05108 10.1021/ja071090b 10.1016/j.biomaterials.2019.119498 10.1016/j.jconrel.2017.01.042 10.1016/j.bioorg.2019.102925 10.1007/s11095-012-0958-3 10.1039/c0dt00292e 10.1039/C5TB00576K 10.1016/j.ejphar.2014.07.025 10.1016/j.biomaterials.2011.06.072 10.1002/marc.200800713 10.1039/C7CC06843C 10.1002/pola.28236 10.1039/C7OB02188G |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/c9py01838g |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 2221 |
ExternalDocumentID | 10_1039_C9PY01838G c9py01838g |
GroupedDBID | 0-7 0R 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- HZ H~N J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ADNWM AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c307t-ab45781825d1e6a7bd8f75fe0514d3d3d53d24b43765ac07bea906222002401d3 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 03:04:46 EDT 2025 Tue Jul 01 03:34:12 EDT 2025 Thu Apr 24 23:01:00 EDT 2025 Sat Jan 08 03:38:26 EST 2022 Wed Nov 11 00:36:15 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c307t-ab45781825d1e6a7bd8f75fe0514d3d3d53d24b43765ac07bea906222002401d3 |
Notes | 10.1039/c9py01838g Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4574-3468 0000-0002-5680-0942 |
PQID | 2381982837 |
PQPubID | 2047483 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2381982837 crossref_primary_10_1039_C9PY01838G rsc_primary_c9py01838g crossref_citationtrail_10_1039_C9PY01838G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-28 |
PublicationDateYYYYMMDD | 2020-03-28 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Guo (C9PY01838G-(cit29)/*[position()=1]) 2018; 177 Boulikas (C9PY01838G-(cit6)/*[position()=1]) 2003; 10 Kulkarni (C9PY01838G-(cit36)/*[position()=1]) 2013; 30 Abandansari (C9PY01838G-(cit44)/*[position()=1]) 2013; 54 Gibson (C9PY01838G-(cit8)/*[position()=1]) 2019; 191 Zhang (C9PY01838G-(cit52)/*[position()=1]) 2017; 53 Rosenblum (C9PY01838G-(cit16)/*[position()=1]) 2018; 9 Ciampolini (C9PY01838G-(cit47)/*[position()=1]) 1966; 5 Hartshorn (C9PY01838G-(cit17)/*[position()=1]) 2018; 12 Kang (C9PY01838G-(cit53)/*[position()=1]) 2014; 22 Su (C9PY01838G-(cit19)/*[position()=1]) 2018; 10 Song (C9PY01838G-(cit31)/*[position()=1]) 2015; 51 Wheate (C9PY01838G-(cit3)/*[position()=1]) 2010; 39 Lee (C9PY01838G-(cit38)/*[position()=1]) 2007; 129 Kim (C9PY01838G-(cit20)/*[position()=1]) 2018; 12 Deng (C9PY01838G-(cit18)/*[position()=1]) 2018; 10 Jing (C9PY01838G-(cit27)/*[position()=1]) 2018; 53 Blanazs (C9PY01838G-(cit50)/*[position()=1]) 2009; 30 Wang (C9PY01838G-(cit22)/*[position()=1]) 2019; 224 Zeng (C9PY01838G-(cit26)/*[position()=1]) 2018; 5 Jin (C9PY01838G-(cit32)/*[position()=1]) 2019; 13 Zhou (C9PY01838G-(cit14)/*[position()=1]) 2015; 3 Zhou (C9PY01838G-(cit30)/*[position()=1]) 2016; 5 Du (C9PY01838G-(cit43)/*[position()=1]) 2018; 51 Xiao (C9PY01838G-(cit35)/*[position()=1]) 2011; 32 Ge (C9PY01838G-(cit49)/*[position()=1]) 2013; 42 Liu (C9PY01838G-(cit34)/*[position()=1]) 2017; 15 Cong (C9PY01838G-(cit13)/*[position()=1]) 2018; 30 Dhar (C9PY01838G-(cit46)/*[position()=1]) 2009; 131 Wang (C9PY01838G-(cit25)/*[position()=1]) 2019; 13 Hillaireau (C9PY01838G-(cit33)/*[position()=1]) 2009; 66 Lee (C9PY01838G-(cit39)/*[position()=1]) 2008; 47 Apps (C9PY01838G-(cit5)/*[position()=1]) 2015; 22 Abu-Surrah (C9PY01838G-(cit7)/*[position()=1]) 2006; 13 Dasari (C9PY01838G-(cit2)/*[position()=1]) 2014; 740 Su (C9PY01838G-(cit51)/*[position()=1]) 2017; 15 Shi (C9PY01838G-(cit15)/*[position()=1]) 2017; 17 Ghosh (C9PY01838G-(cit1)/*[position()=1]) 2019; 88 Pathak (C9PY01838G-(cit55)/*[position()=1]) 2015; 137 Karasawa (C9PY01838G-(cit4)/*[position()=1]) 2015; 237 Lee (C9PY01838G-(cit40)/*[position()=1]) 2009; 48 Bus (C9PY01838G-(cit54)/*[position()=1]) 2018; 6 Lale (C9PY01838G-(cit42)/*[position()=1]) 2015; 6 Dai (C9PY01838G-(cit24)/*[position()=1]) 2018; 12 Ma (C9PY01838G-(cit10)/*[position()=1]) 2018; 57 Xiao (C9PY01838G-(cit11)/*[position()=1]) 2018; 87 Zhang (C9PY01838G-(cit12)/*[position()=1]) 2017; 8 Kanapathipillai (C9PY01838G-(cit23)/*[position()=1]) 2014; 79–80 Blanco (C9PY01838G-(cit37)/*[position()=1]) 2015; 33 Chen (C9PY01838G-(cit41)/*[position()=1]) 2017; 259 Chen (C9PY01838G-(cit45)/*[position()=1]) 2016; 54 He (C9PY01838G-(cit28)/*[position()=1]) 2014; 35 Zhu (C9PY01838G-(cit21)/*[position()=1]) 2018; 161 Sokolova (C9PY01838G-(cit48)/*[position()=1]) 2011; 87 Wang (C9PY01838G-(cit9)/*[position()=1]) 2015; 48 |
References_xml | – volume: 79–80 start-page: 107 year: 2014 ident: C9PY01838G-(cit23)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/j.addr.2014.05.005 – volume: 237 start-page: 219 year: 2015 ident: C9PY01838G-(cit4)/*[position()=1] publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2015.06.012 – volume: 33 start-page: 941 year: 2015 ident: C9PY01838G-(cit37)/*[position()=1] publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3330 – volume: 54 start-page: 1329 year: 2013 ident: C9PY01838G-(cit44)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2013.01.004 – volume: 10 start-page: 31106 year: 2018 ident: C9PY01838G-(cit18)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11507 – volume: 13 start-page: 274 year: 2019 ident: C9PY01838G-(cit25)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b05639 – volume: 42 start-page: 7289 year: 2013 ident: C9PY01838G-(cit49)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60048c – volume: 87 start-page: 146 year: 2011 ident: C9PY01838G-(cit48)/*[position()=1] publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2011.05.013 – volume: 131 start-page: 14652 year: 2009 ident: C9PY01838G-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9071282 – volume: 53 start-page: 14933 year: 2018 ident: C9PY01838G-(cit27)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2689-2 – volume: 15 start-page: 56 year: 2017 ident: C9PY01838G-(cit34)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2017.06.010 – volume: 137 start-page: 8324 year: 2015 ident: C9PY01838G-(cit55)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03078 – volume: 66 start-page: 2873 year: 2009 ident: C9PY01838G-(cit33)/*[position()=1] publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-0053-z – volume: 10 start-page: 1663 year: 2003 ident: C9PY01838G-(cit6)/*[position()=1] publication-title: Oncol. Rep. – volume: 5 start-page: 1800510 year: 2018 ident: C9PY01838G-(cit26)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201800510 – volume: 17 start-page: 20 year: 2017 ident: C9PY01838G-(cit15)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2016.108 – volume: 22 start-page: R219 year: 2015 ident: C9PY01838G-(cit5)/*[position()=1] publication-title: Endocr.-Relat. Cancer doi: 10.1530/ERC-15-0237 – volume: 35 start-page: 9546 year: 2014 ident: C9PY01838G-(cit28)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.08.004 – volume: 51 start-page: 11493 year: 2015 ident: C9PY01838G-(cit31)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC03692E – volume: 13 start-page: 1337 year: 2006 ident: C9PY01838G-(cit7)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/092986706776872970 – volume: 6 start-page: 2115 year: 2015 ident: C9PY01838G-(cit42)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C4PY01698J – volume: 9 start-page: 1410 year: 2018 ident: C9PY01838G-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-018-03705-y – volume: 5 start-page: 2493 year: 2016 ident: C9PY01838G-(cit30)/*[position()=1] publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201600470 – volume: 48 start-page: 5309 year: 2009 ident: C9PY01838G-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900064 – volume: 47 start-page: 5163 year: 2008 ident: C9PY01838G-(cit39)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200800963 – volume: 51 start-page: 2848 year: 2018 ident: C9PY01838G-(cit43)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00195 – volume: 5 start-page: 1150 year: 1966 ident: C9PY01838G-(cit47)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/ic50041a016 – volume: 191 start-page: 77 year: 2019 ident: C9PY01838G-(cit8)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2018.11.008 – volume: 12 start-page: 9702 year: 2018 ident: C9PY01838G-(cit20)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b04146 – volume: 161 start-page: 144 year: 2018 ident: C9PY01838G-(cit21)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.043 – volume: 22 start-page: 658 year: 2014 ident: C9PY01838G-(cit53)/*[position()=1] publication-title: J. Drug Targeting doi: 10.3109/1061186X.2014.928718 – volume: 30 start-page: 1706220 year: 2018 ident: C9PY01838G-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201706220 – volume: 177 start-page: 67 year: 2018 ident: C9PY01838G-(cit29)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.05.052 – volume: 12 start-page: 8423 year: 2018 ident: C9PY01838G-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b03900 – volume: 10 start-page: 38700 year: 2018 ident: C9PY01838G-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11349 – volume: 57 start-page: 9098 year: 2018 ident: C9PY01838G-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804314 – volume: 8 start-page: 2410 year: 2017 ident: C9PY01838G-(cit12)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C6PY02148D – volume: 13 start-page: 954 year: 2019 ident: C9PY01838G-(cit32)/*[position()=1] publication-title: ACS Nano – volume: 48 start-page: 2622 year: 2015 ident: C9PY01838G-(cit9)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00203 – volume: 6 start-page: 6904 year: 2018 ident: C9PY01838G-(cit54)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00967H – volume: 87 start-page: 70 year: 2018 ident: C9PY01838G-(cit11)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2018.07.004 – volume: 12 start-page: 24 year: 2018 ident: C9PY01838G-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b05108 – volume: 129 start-page: 5362 year: 2007 ident: C9PY01838G-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071090b – volume: 224 start-page: 119498 year: 2019 ident: C9PY01838G-(cit22)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119498 – volume: 259 start-page: 105 year: 2017 ident: C9PY01838G-(cit41)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2017.01.042 – volume: 88 start-page: 102925 year: 2019 ident: C9PY01838G-(cit1)/*[position()=1] publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2019.102925 – volume: 30 start-page: 2512 year: 2013 ident: C9PY01838G-(cit36)/*[position()=1] publication-title: Pharm. Res. doi: 10.1007/s11095-012-0958-3 – volume: 39 start-page: 8113 year: 2010 ident: C9PY01838G-(cit3)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/c0dt00292e – volume: 3 start-page: 4913 year: 2015 ident: C9PY01838G-(cit14)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00576K – volume: 740 start-page: 364 year: 2014 ident: C9PY01838G-(cit2)/*[position()=1] publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2014.07.025 – volume: 32 start-page: 7732 year: 2011 ident: C9PY01838G-(cit35)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.072 – volume: 30 start-page: 267 year: 2009 ident: C9PY01838G-(cit50)/*[position()=1] publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200800713 – volume: 53 start-page: 12826 year: 2017 ident: C9PY01838G-(cit52)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC06843C – volume: 54 start-page: 3462 year: 2016 ident: C9PY01838G-(cit45)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.28236 – volume: 15 start-page: 8384 year: 2017 ident: C9PY01838G-(cit51)/*[position()=1] publication-title: Org. Biomol. Chem. doi: 10.1039/C7OB02188G |
SSID | ssj0000314236 |
Score | 2.3234336 |
Snippet | Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2212 |
SubjectTerms | Anticancer properties Blood circulation Cancer therapies Charge reversal Chemical compounds Cytoplasm Drug delivery systems Drugs Linkages Nanoparticles Platinum Polymer chemistry Stimuli Toxicity |
Title | Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum() prodrugs for improved intracellular delivery and cytosolic reductive-triggered release |
URI | https://www.proquest.com/docview/2381982837 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFeEF8THQNZggemyZDmo04fp2qsIEBDdNJ4iuzEiSp1aZWm08ofwjN_KneOnaQQJECV0sZJ3Kj3y935evc7Ql76HDnCpctU7HnMF5wzKR3OxGjEZQoeQyKxdvjjp9H00n9_FVz1et9bWUubUr6Ov3XWlfyPVGEM5IpVsv8g2XpSGIDPIF_YgoRh-3cy3lwjYfdtWQgMwOuM0tWUrTEpXacErZaLbZUsn4scrFaB_elYVmBn8AQ7SJfzHBsdhxgcQF1abDJN0IDVk8XyRiEzU3v2RC0wkaMibYq35XKNvMInBRLA4jeyElb7Gfb_1N1Y7F8_xvu9qG7nJLZd5prkgkr7fYH3jH2e13EfkzB8LoyB1VHbKk2gqWGbLjc6rqvm7RgGLFgdz9aEV2qXB2OGzHSVVWqP_aKrh21Mum3N65pdZXarwuvfLITjIcFqPF5tHdBmYdbYwTo7sTm4R_ZdDj5Zn-yfns3efaijd0j67-r-k_WtW-5bb_ymmWDX22mWMHuF7S-j_ZjZfXLPLEDoaYWmB6Sn8ofkzsRK5BH5oVFFd1BF26iiNapoB6qoRdWrY2oRRQFR1CKK7iCKWkRRQBStEUU7EEUNoh6Ty7dns8mUmT4eLAYLUjIhfbALsJANkqEaCS6TMOVBqpB6P_HgFXiJ60sfbF0gYodLJZA923U1Ad8w8Q5IP1_m6gmhfDQUqRAiCcPYT2MVggFKFReOdB3JnWBAju3vHcWG5B57rSwinWzhjaPJ-OKrls35gLyoz11V1C6dZx1ZsUXm0V9HOs4RInHUgByAKOvrG8kPyGH3gWiVpId_uuopuds8H0ekXxYb9Qy83lI-NxD8CdcEuAc |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+extracellular+pH-sensitive+polymeric+nanocarrier-grafted+platinum%28%29+prodrugs+for+improved+intracellular+delivery+and+cytosolic+reductive-triggered+release&rft.jtitle=Polymer+chemistry&rft.au=Chen%2C+Sheng-Qi&rft.au=Song%2C+Gang&rft.au=He%2C+Chen&rft.au=Hou%2C+Mei&rft.date=2020-03-28&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=11&rft.issue=12&rft.spage=2212&rft.epage=2221&rft_id=info:doi/10.1039%2Fc9py01838g&rft.externalDocID=c9py01838g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |