Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum() prodrugs for improved intracellular delivery and cytosolic reductive-triggered release

Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 11; no. 12; pp. 2212 - 2221
Main Authors Chen, Sheng-Qi, Song, Gang, He, Chen, Hou, Mei, He, Wei-Dong, Li, Hui-Juan, Haleem, Abdul, Li, Qing-Lin, Hu, Rong-Feng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.03.2020
Subjects
Online AccessGet full text
ISSN1759-9954
1759-9962
DOI10.1039/c9py01838g

Cover

Abstract Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt( iv ) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt( iv ) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt( iv ) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy. Extracellular pH-sensitive Pt( iv )-based nanodrugs enable preferential toxicity to tumor cells via a selectively endocytosed and triggered drug release strategy.
AbstractList Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt( iv ) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt( iv ) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt( iv ) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy. Extracellular pH-sensitive Pt( iv )-based nanodrugs enable preferential toxicity to tumor cells via a selectively endocytosed and triggered drug release strategy.
Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt( iv ) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt( iv ) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt( iv ) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy.
Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce severe systemic toxicity due to the lack of selective toxicity and targeting ability between cancer and normal cells. Here, we report an approach to develop tumor extracellular pH-sensitive nanoparticle (esNP)-loaded Pt(iv) prodrugs (esNP-Pt) having acid-cleavable amide linkages of 2,3-dimethyl maleamidic acid (DMMA) pendants and GSH-cleavable Pt(iv) pendants in micellar shells, thus attaining dual-stimuli responses at two locations. These DMMA pendants could achieve charge reversal for specific cellular uptake and endosomal/lysosomal escape via cleaving their amide linkages at pH ≤ 6.8. Cellular uptake assays showed that esNP exhibited similar cellular uptake to pH-insensitive nanoparticles (isNP) with succinamic acid (SA) pendants at pH 7.4, while they showed 6-fold cellular uptake as isNP at pH 6.8 and 10-fold cellular uptake as esNP at pH 7.4. The loaded Pt(iv) pendants could be reduced and liberate cisplatin. The release rate and the total amount of cisplatin increased 6-fold under the stimuli of 10 mmol GSH. MTT assays demonstrated that esNP-Pt showed preferential inhibition (∼50% inhibition at pH 6.8 against ∼20% inhibition at pH 7.4), indicating preferential toxicity against tumors and weak systemic toxicity. These esNP-Pt possess many favorable traits for preferential toxicity to cancer cells, such as minimized nonspecific uptake in blood circulation, enhanced cellular uptake at the tumor site in response to the tumor extracellular level of pH, improved intracellular drug delivery to the tumor cell cytoplasm (TCC) and the in situ release of cisplatin in response to TCC reductive potential, which make them promising candidates for cancer therapy.
Author Chen, Sheng-Qi
Haleem, Abdul
Song, Gang
Hou, Mei
Li, Hui-Juan
He, Wei-Dong
He, Chen
Li, Qing-Lin
Hu, Rong-Feng
AuthorAffiliation Department of Polymer Science and Engineering
University of Science and Technology of China
Anhui Province; Anhui University of Chinese Medicine
CAS Key Laboratory of Soft Matter Chemistry
Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
Institute of Aerospace Materials and Processing
Key Laboratory of Xin'an Medicine
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Ministry of Education; Engineering Technology Research Center of Modernized Pharmaceutics
– name: CAS Key Laboratory of Soft Matter Chemistry
– name: Institute of Aerospace Materials and Processing
– name: Department of Polymer Science and Engineering
– name: Anhui Province; Anhui University of Chinese Medicine
– name: Key Laboratory of Xin'an Medicine
Author_xml – sequence: 1
  givenname: Sheng-Qi
  surname: Chen
  fullname: Chen, Sheng-Qi
– sequence: 2
  givenname: Gang
  surname: Song
  fullname: Song, Gang
– sequence: 3
  givenname: Chen
  surname: He
  fullname: He, Chen
– sequence: 4
  givenname: Mei
  surname: Hou
  fullname: Hou, Mei
– sequence: 5
  givenname: Wei-Dong
  surname: He
  fullname: He, Wei-Dong
– sequence: 6
  givenname: Hui-Juan
  surname: Li
  fullname: Li, Hui-Juan
– sequence: 7
  givenname: Abdul
  surname: Haleem
  fullname: Haleem, Abdul
– sequence: 8
  givenname: Qing-Lin
  surname: Li
  fullname: Li, Qing-Lin
– sequence: 9
  givenname: Rong-Feng
  surname: Hu
  fullname: Hu, Rong-Feng
BookMark eNp9kU1rFTEUhkOpYK3duC-kuFFhNB_zuSyX2goFXdSFqyE3OTOkZJLxJFOcf9Ofam5vqUXEZJGcnPc8J5z3FTn0wQMhbzj7yJnsPuluXhlvZTsekCPeVF3RdbU4fLpX5UtyEuMty0vyUsj6iNzfLFNACr8SKg3OLU4hna-KCD7aZO-AzsGtE6DV1CsftEK0gMWIakhg6OxUsn6Z3r2nMwaDyxjpkIF2yuFdFlj_nGzAZSauVHlD9ZpCDC6TEcyid92KhHYcIcf5zYGK8Jq8GJSLcPJ4HpPvny9uNlfF9dfLL5vz60JL1qRCbcuqaXkrKsOhVs3WtENTDcAqXhqZdyWNKLelbOpKadZsQXWsFkIwJkrGjTwmb_fc_O-fC8TU34YFfW7ZC9nyrhWtbLLqw16lMcSIMPQz2knh2nPW70zoN923Hw8mXGYx-0usbcrjCruRWPfvktN9CUb9hP7ja86f_S_fz2aQvwGU3KWp
CitedBy_id crossref_primary_10_1016_j_ijpharm_2024_124303
crossref_primary_10_1021_acsabm_1c00351
crossref_primary_10_1039_D1DT04079K
crossref_primary_10_1016_j_jconrel_2023_03_021
crossref_primary_10_1016_j_ccr_2022_214789
crossref_primary_10_1016_j_eurpolymj_2020_109907
crossref_primary_10_1016_j_progpolymsci_2021_101428
crossref_primary_10_1016_j_ccr_2023_215594
Cites_doi 10.1016/j.addr.2014.05.005
10.1016/j.toxlet.2015.06.012
10.1038/nbt.3330
10.1016/j.polymer.2013.01.004
10.1021/acsami.8b11507
10.1021/acsnano.8b05639
10.1039/c3cs60048c
10.1016/j.colsurfb.2011.05.013
10.1021/ja9071282
10.1007/s10853-018-2689-2
10.1016/j.nantod.2017.06.010
10.1021/jacs.5b03078
10.1007/s00018-009-0053-z
10.1002/advs.201800510
10.1038/nrc.2016.108
10.1530/ERC-15-0237
10.1016/j.biomaterials.2014.08.004
10.1039/C5CC03692E
10.2174/092986706776872970
10.1039/C4PY01698J
10.1038/s41467-018-03705-y
10.1002/adhm.201600470
10.1002/anie.200900064
10.1002/anie.200800963
10.1021/acs.accounts.8b00195
10.1021/ic50041a016
10.1016/j.jinorgbio.2018.11.008
10.1021/acsnano.8b04146
10.1016/j.biomaterials.2018.01.043
10.3109/1061186X.2014.928718
10.1002/adma.201706220
10.1016/j.biomaterials.2018.05.052
10.1021/acsnano.8b03900
10.1021/acsami.8b11349
10.1002/anie.201804314
10.1039/C6PY02148D
10.1021/acs.accounts.5b00203
10.1039/C8TB00967H
10.1016/j.progpolymsci.2018.07.004
10.1021/acsnano.7b05108
10.1021/ja071090b
10.1016/j.biomaterials.2019.119498
10.1016/j.jconrel.2017.01.042
10.1016/j.bioorg.2019.102925
10.1007/s11095-012-0958-3
10.1039/c0dt00292e
10.1039/C5TB00576K
10.1016/j.ejphar.2014.07.025
10.1016/j.biomaterials.2011.06.072
10.1002/marc.200800713
10.1039/C7CC06843C
10.1002/pola.28236
10.1039/C7OB02188G
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/c9py01838g
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 2221
ExternalDocumentID 10_1039_C9PY01838G
c9py01838g
GroupedDBID 0-7
0R
29O
4.4
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
HZ
H~N
J3I
JG
O-G
O9-
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ADNWM
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
8FD
JG9
ID FETCH-LOGICAL-c307t-ab45781825d1e6a7bd8f75fe0514d3d3d53d24b43765ac07bea906222002401d3
ISSN 1759-9954
IngestDate Mon Jun 30 03:04:46 EDT 2025
Tue Jul 01 03:34:12 EDT 2025
Thu Apr 24 23:01:00 EDT 2025
Sat Jan 08 03:38:26 EST 2022
Wed Nov 11 00:36:15 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-ab45781825d1e6a7bd8f75fe0514d3d3d53d24b43765ac07bea906222002401d3
Notes 10.1039/c9py01838g
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4574-3468
0000-0002-5680-0942
PQID 2381982837
PQPubID 2047483
PageCount 1
ParticipantIDs proquest_journals_2381982837
crossref_primary_10_1039_C9PY01838G
rsc_primary_c9py01838g
crossref_citationtrail_10_1039_C9PY01838G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-28
PublicationDateYYYYMMDD 2020-03-28
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-28
  day: 28
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Guo (C9PY01838G-(cit29)/*[position()=1]) 2018; 177
Boulikas (C9PY01838G-(cit6)/*[position()=1]) 2003; 10
Kulkarni (C9PY01838G-(cit36)/*[position()=1]) 2013; 30
Abandansari (C9PY01838G-(cit44)/*[position()=1]) 2013; 54
Gibson (C9PY01838G-(cit8)/*[position()=1]) 2019; 191
Zhang (C9PY01838G-(cit52)/*[position()=1]) 2017; 53
Rosenblum (C9PY01838G-(cit16)/*[position()=1]) 2018; 9
Ciampolini (C9PY01838G-(cit47)/*[position()=1]) 1966; 5
Hartshorn (C9PY01838G-(cit17)/*[position()=1]) 2018; 12
Kang (C9PY01838G-(cit53)/*[position()=1]) 2014; 22
Su (C9PY01838G-(cit19)/*[position()=1]) 2018; 10
Song (C9PY01838G-(cit31)/*[position()=1]) 2015; 51
Wheate (C9PY01838G-(cit3)/*[position()=1]) 2010; 39
Lee (C9PY01838G-(cit38)/*[position()=1]) 2007; 129
Kim (C9PY01838G-(cit20)/*[position()=1]) 2018; 12
Deng (C9PY01838G-(cit18)/*[position()=1]) 2018; 10
Jing (C9PY01838G-(cit27)/*[position()=1]) 2018; 53
Blanazs (C9PY01838G-(cit50)/*[position()=1]) 2009; 30
Wang (C9PY01838G-(cit22)/*[position()=1]) 2019; 224
Zeng (C9PY01838G-(cit26)/*[position()=1]) 2018; 5
Jin (C9PY01838G-(cit32)/*[position()=1]) 2019; 13
Zhou (C9PY01838G-(cit14)/*[position()=1]) 2015; 3
Zhou (C9PY01838G-(cit30)/*[position()=1]) 2016; 5
Du (C9PY01838G-(cit43)/*[position()=1]) 2018; 51
Xiao (C9PY01838G-(cit35)/*[position()=1]) 2011; 32
Ge (C9PY01838G-(cit49)/*[position()=1]) 2013; 42
Liu (C9PY01838G-(cit34)/*[position()=1]) 2017; 15
Cong (C9PY01838G-(cit13)/*[position()=1]) 2018; 30
Dhar (C9PY01838G-(cit46)/*[position()=1]) 2009; 131
Wang (C9PY01838G-(cit25)/*[position()=1]) 2019; 13
Hillaireau (C9PY01838G-(cit33)/*[position()=1]) 2009; 66
Lee (C9PY01838G-(cit39)/*[position()=1]) 2008; 47
Apps (C9PY01838G-(cit5)/*[position()=1]) 2015; 22
Abu-Surrah (C9PY01838G-(cit7)/*[position()=1]) 2006; 13
Dasari (C9PY01838G-(cit2)/*[position()=1]) 2014; 740
Su (C9PY01838G-(cit51)/*[position()=1]) 2017; 15
Shi (C9PY01838G-(cit15)/*[position()=1]) 2017; 17
Ghosh (C9PY01838G-(cit1)/*[position()=1]) 2019; 88
Pathak (C9PY01838G-(cit55)/*[position()=1]) 2015; 137
Karasawa (C9PY01838G-(cit4)/*[position()=1]) 2015; 237
Lee (C9PY01838G-(cit40)/*[position()=1]) 2009; 48
Bus (C9PY01838G-(cit54)/*[position()=1]) 2018; 6
Lale (C9PY01838G-(cit42)/*[position()=1]) 2015; 6
Dai (C9PY01838G-(cit24)/*[position()=1]) 2018; 12
Ma (C9PY01838G-(cit10)/*[position()=1]) 2018; 57
Xiao (C9PY01838G-(cit11)/*[position()=1]) 2018; 87
Zhang (C9PY01838G-(cit12)/*[position()=1]) 2017; 8
Kanapathipillai (C9PY01838G-(cit23)/*[position()=1]) 2014; 79–80
Blanco (C9PY01838G-(cit37)/*[position()=1]) 2015; 33
Chen (C9PY01838G-(cit41)/*[position()=1]) 2017; 259
Chen (C9PY01838G-(cit45)/*[position()=1]) 2016; 54
He (C9PY01838G-(cit28)/*[position()=1]) 2014; 35
Zhu (C9PY01838G-(cit21)/*[position()=1]) 2018; 161
Sokolova (C9PY01838G-(cit48)/*[position()=1]) 2011; 87
Wang (C9PY01838G-(cit9)/*[position()=1]) 2015; 48
References_xml – volume: 79–80
  start-page: 107
  year: 2014
  ident: C9PY01838G-(cit23)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2014.05.005
– volume: 237
  start-page: 219
  year: 2015
  ident: C9PY01838G-(cit4)/*[position()=1]
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2015.06.012
– volume: 33
  start-page: 941
  year: 2015
  ident: C9PY01838G-(cit37)/*[position()=1]
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3330
– volume: 54
  start-page: 1329
  year: 2013
  ident: C9PY01838G-(cit44)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.01.004
– volume: 10
  start-page: 31106
  year: 2018
  ident: C9PY01838G-(cit18)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11507
– volume: 13
  start-page: 274
  year: 2019
  ident: C9PY01838G-(cit25)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05639
– volume: 42
  start-page: 7289
  year: 2013
  ident: C9PY01838G-(cit49)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60048c
– volume: 87
  start-page: 146
  year: 2011
  ident: C9PY01838G-(cit48)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2011.05.013
– volume: 131
  start-page: 14652
  year: 2009
  ident: C9PY01838G-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9071282
– volume: 53
  start-page: 14933
  year: 2018
  ident: C9PY01838G-(cit27)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2689-2
– volume: 15
  start-page: 56
  year: 2017
  ident: C9PY01838G-(cit34)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.06.010
– volume: 137
  start-page: 8324
  year: 2015
  ident: C9PY01838G-(cit55)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03078
– volume: 66
  start-page: 2873
  year: 2009
  ident: C9PY01838G-(cit33)/*[position()=1]
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-0053-z
– volume: 10
  start-page: 1663
  year: 2003
  ident: C9PY01838G-(cit6)/*[position()=1]
  publication-title: Oncol. Rep.
– volume: 5
  start-page: 1800510
  year: 2018
  ident: C9PY01838G-(cit26)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800510
– volume: 17
  start-page: 20
  year: 2017
  ident: C9PY01838G-(cit15)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2016.108
– volume: 22
  start-page: R219
  year: 2015
  ident: C9PY01838G-(cit5)/*[position()=1]
  publication-title: Endocr.-Relat. Cancer
  doi: 10.1530/ERC-15-0237
– volume: 35
  start-page: 9546
  year: 2014
  ident: C9PY01838G-(cit28)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.08.004
– volume: 51
  start-page: 11493
  year: 2015
  ident: C9PY01838G-(cit31)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC03692E
– volume: 13
  start-page: 1337
  year: 2006
  ident: C9PY01838G-(cit7)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986706776872970
– volume: 6
  start-page: 2115
  year: 2015
  ident: C9PY01838G-(cit42)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY01698J
– volume: 9
  start-page: 1410
  year: 2018
  ident: C9PY01838G-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03705-y
– volume: 5
  start-page: 2493
  year: 2016
  ident: C9PY01838G-(cit30)/*[position()=1]
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201600470
– volume: 48
  start-page: 5309
  year: 2009
  ident: C9PY01838G-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900064
– volume: 47
  start-page: 5163
  year: 2008
  ident: C9PY01838G-(cit39)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200800963
– volume: 51
  start-page: 2848
  year: 2018
  ident: C9PY01838G-(cit43)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00195
– volume: 5
  start-page: 1150
  year: 1966
  ident: C9PY01838G-(cit47)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50041a016
– volume: 191
  start-page: 77
  year: 2019
  ident: C9PY01838G-(cit8)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2018.11.008
– volume: 12
  start-page: 9702
  year: 2018
  ident: C9PY01838G-(cit20)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b04146
– volume: 161
  start-page: 144
  year: 2018
  ident: C9PY01838G-(cit21)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.043
– volume: 22
  start-page: 658
  year: 2014
  ident: C9PY01838G-(cit53)/*[position()=1]
  publication-title: J. Drug Targeting
  doi: 10.3109/1061186X.2014.928718
– volume: 30
  start-page: 1706220
  year: 2018
  ident: C9PY01838G-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706220
– volume: 177
  start-page: 67
  year: 2018
  ident: C9PY01838G-(cit29)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.05.052
– volume: 12
  start-page: 8423
  year: 2018
  ident: C9PY01838G-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03900
– volume: 10
  start-page: 38700
  year: 2018
  ident: C9PY01838G-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11349
– volume: 57
  start-page: 9098
  year: 2018
  ident: C9PY01838G-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804314
– volume: 8
  start-page: 2410
  year: 2017
  ident: C9PY01838G-(cit12)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY02148D
– volume: 13
  start-page: 954
  year: 2019
  ident: C9PY01838G-(cit32)/*[position()=1]
  publication-title: ACS Nano
– volume: 48
  start-page: 2622
  year: 2015
  ident: C9PY01838G-(cit9)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00203
– volume: 6
  start-page: 6904
  year: 2018
  ident: C9PY01838G-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB00967H
– volume: 87
  start-page: 70
  year: 2018
  ident: C9PY01838G-(cit11)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2018.07.004
– volume: 12
  start-page: 24
  year: 2018
  ident: C9PY01838G-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05108
– volume: 129
  start-page: 5362
  year: 2007
  ident: C9PY01838G-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071090b
– volume: 224
  start-page: 119498
  year: 2019
  ident: C9PY01838G-(cit22)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119498
– volume: 259
  start-page: 105
  year: 2017
  ident: C9PY01838G-(cit41)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2017.01.042
– volume: 88
  start-page: 102925
  year: 2019
  ident: C9PY01838G-(cit1)/*[position()=1]
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2019.102925
– volume: 30
  start-page: 2512
  year: 2013
  ident: C9PY01838G-(cit36)/*[position()=1]
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-012-0958-3
– volume: 39
  start-page: 8113
  year: 2010
  ident: C9PY01838G-(cit3)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt00292e
– volume: 3
  start-page: 4913
  year: 2015
  ident: C9PY01838G-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00576K
– volume: 740
  start-page: 364
  year: 2014
  ident: C9PY01838G-(cit2)/*[position()=1]
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2014.07.025
– volume: 32
  start-page: 7732
  year: 2011
  ident: C9PY01838G-(cit35)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.06.072
– volume: 30
  start-page: 267
  year: 2009
  ident: C9PY01838G-(cit50)/*[position()=1]
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200800713
– volume: 53
  start-page: 12826
  year: 2017
  ident: C9PY01838G-(cit52)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06843C
– volume: 54
  start-page: 3462
  year: 2016
  ident: C9PY01838G-(cit45)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.28236
– volume: 15
  start-page: 8384
  year: 2017
  ident: C9PY01838G-(cit51)/*[position()=1]
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C7OB02188G
SSID ssj0000314236
Score 2.3234336
Snippet Platinum drugs have emerged as the most active anticancer agents in clinical tumor treatment. Although platinum drugs are typically effective, they induce...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2212
SubjectTerms Anticancer properties
Blood circulation
Cancer therapies
Charge reversal
Chemical compounds
Cytoplasm
Drug delivery systems
Drugs
Linkages
Nanoparticles
Platinum
Polymer chemistry
Stimuli
Toxicity
Title Tumor extracellular pH-sensitive polymeric nanocarrier-grafted platinum() prodrugs for improved intracellular delivery and cytosolic reductive-triggered release
URI https://www.proquest.com/docview/2381982837
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFeEF8THQNZggemyZDmo04fp2qsIEBDdNJ4iuzEiSp1aZWm08ofwjN_KneOnaQQJECV0sZJ3Kj3y935evc7Ql76HDnCpctU7HnMF5wzKR3OxGjEZQoeQyKxdvjjp9H00n9_FVz1et9bWUubUr6Ov3XWlfyPVGEM5IpVsv8g2XpSGIDPIF_YgoRh-3cy3lwjYfdtWQgMwOuM0tWUrTEpXacErZaLbZUsn4scrFaB_elYVmBn8AQ7SJfzHBsdhxgcQF1abDJN0IDVk8XyRiEzU3v2RC0wkaMibYq35XKNvMInBRLA4jeyElb7Gfb_1N1Y7F8_xvu9qG7nJLZd5prkgkr7fYH3jH2e13EfkzB8LoyB1VHbKk2gqWGbLjc6rqvm7RgGLFgdz9aEV2qXB2OGzHSVVWqP_aKrh21Mum3N65pdZXarwuvfLITjIcFqPF5tHdBmYdbYwTo7sTm4R_ZdDj5Zn-yfns3efaijd0j67-r-k_WtW-5bb_ymmWDX22mWMHuF7S-j_ZjZfXLPLEDoaYWmB6Sn8ofkzsRK5BH5oVFFd1BF26iiNapoB6qoRdWrY2oRRQFR1CKK7iCKWkRRQBStEUU7EEUNoh6Ty7dns8mUmT4eLAYLUjIhfbALsJANkqEaCS6TMOVBqpB6P_HgFXiJ60sfbF0gYodLJZA923U1Ad8w8Q5IP1_m6gmhfDQUqRAiCcPYT2MVggFKFReOdB3JnWBAju3vHcWG5B57rSwinWzhjaPJ-OKrls35gLyoz11V1C6dZx1ZsUXm0V9HOs4RInHUgByAKOvrG8kPyGH3gWiVpId_uuopuds8H0ekXxYb9Qy83lI-NxD8CdcEuAc
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+extracellular+pH-sensitive+polymeric+nanocarrier-grafted+platinum%28%29+prodrugs+for+improved+intracellular+delivery+and+cytosolic+reductive-triggered+release&rft.jtitle=Polymer+chemistry&rft.au=Chen%2C+Sheng-Qi&rft.au=Song%2C+Gang&rft.au=He%2C+Chen&rft.au=Hou%2C+Mei&rft.date=2020-03-28&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=11&rft.issue=12&rft.spage=2212&rft.epage=2221&rft_id=info:doi/10.1039%2Fc9py01838g&rft.externalDocID=c9py01838g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon