Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a...
Saved in:
| Published in | Communications in theoretical physics Vol. 63; no. 5; pp. 525 - 534 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.05.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0253-6102 1572-9494 |
| DOI | 10.1088/0253-6102/63/5/525 |
Cover
| Abstract | In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms. |
|---|---|
| AbstractList | In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms. In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrodinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters alpha and beta which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms. In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrödinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters α and β which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms. |
| Author | 柳伟 邱德勤 贺劲松 |
| AuthorAffiliation | School of Mathematical Sciences, University of Science and Technologe of China, Hefei 230026, China Department of Mathematics, Ningbo University, Ningbo 315211, China |
| Author_xml | – sequence: 1 fullname: 柳伟 邱德勤 贺劲松 |
| BookMark | eNp9kEtLAzEUhYNUsK3-AVfBlZtx8miSyVJKtUKxohWXIZ2500amkzaZCvrrnT7owoWrC5fzHQ5fD3VqXwNC15TcUZJlKWGCJ5ISlkqeilQwcYa6VCiW6IEedFD3FLhAvRg_CSFMSdpFs4nPbeV-oMAvwa8hNA4i9iV-9Yst4A_7Bbj0AVs8doslhGQaCgj42deVq8EG_JYvgy9cvWi_o83WNs7Xl-i8tFWEq-Pto_eH0Ww4TibTx6fh_STJOVHNfg5oVWhthVCcEs1IQTkD0HReZsRywrW1c12UcpBBofNS5nJgZQbA5rrkfXR76F0Hv9lCbMzKxRyqytbgt9FQpTnTRCrRRrNDNA8-xgClyV2zH9sE6ypDidmJNDtPZjfMSG6EaUW2KPuDroNb2fD9P3RzhJa-XmxaPydKSkFVxqnivyJ3gtY |
| CitedBy_id | crossref_primary_10_1088_0253_6102_64_6_605 crossref_primary_10_1088_0253_6102_68_3_290 crossref_primary_10_1103_PhysRevE_93_062219 crossref_primary_10_1088_1572_9494_abcfb6 crossref_primary_10_1016_j_ijleo_2018_12_148 crossref_primary_10_1007_s11071_019_04956_0 crossref_primary_10_1142_S0217984918503098 crossref_primary_10_1371_journal_pone_0192281 crossref_primary_10_1016_j_cnsns_2016_07_021 crossref_primary_10_21597_jist_861864 crossref_primary_10_1016_j_chaos_2018_06_029 crossref_primary_10_1007_s12043_017_1392_1 crossref_primary_10_1016_j_chaos_2024_115743 crossref_primary_10_1007_s00339_022_06206_4 crossref_primary_10_1088_0253_6102_66_4_374 crossref_primary_10_1016_j_spmi_2017_12_007 |
| Cites_doi | 10.1088/2040-8978/15/6/064001 10.1140/epjst/e2010-01247-6 10.1140/epjst/e2010-01252-9 10.1007/BF00739422 10.1103/PhysRevE.85.026601 10.1063/1.1666399 10.1016/j.physrep.2013.03.001 10.1017/S0334270000003891 10.1016/j.cnsns.2014.04.002 10.1016/j.physleta.2012.03.032 10.1016/j.nonrwa.2012.04.010 10.1016/j.physleta.2013.11.031 10.1063/1.529658 10.1063/1.4824706 10.1088/0253-6102/62/5/12 10.1103/PhysRevE.86.026606 10.1007/s11425-006-2025-1 10.1016/j.aop.2013.04.004 10.1038/nphys1740 10.1016/j.physleta.2008.12.036 10.1103/PhysRevE.86.066603 10.1103/PhysRevE.80.026601 10.1103/PhysRevE.84.056611 10.1103/PhysRevA.89.013835 10.1103/PhysRevLett.106.204502 10.1088/0253-6102/62/3/14 10.1088/2040-8978/15/6/060201 10.1088/0253-6102/59/3/12 10.1088/0253-6102/59/6/13 10.1038/nature06402 10.1088/0253-6102/56/6/04 10.1103/PhysRevLett.112.124101 10.1103/PhysRevE.89.012907 10.1103/PhysRevE.81.046602 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1088/0253-6102/63/5/525 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Physics |
| DocumentTitleAlternate | Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation |
| EISSN | 1572-9494 |
| EndPage | 534 |
| ExternalDocumentID | 10_1088_0253_6102_63_5_525 665178317 |
| GroupedDBID | 02O 042 1JI 1WK 2B. 2C. 2RA 4.4 5B3 5GY 5VR 5VS 7.M 92E 92I 92L 92Q 93N AAGCD AAJIO AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 CW9 DU5 E3Z EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE FRP HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NS0 NT- NT. P2P PJBAE Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ADEQX AEINN AOAED CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c307t-6102e97d99a557310920d132ee91bf80a3039aab9df648ed9cf6c64a68ee2b9f3 |
| ISSN | 0253-6102 |
| IngestDate | Fri Sep 05 13:57:59 EDT 2025 Wed Oct 01 02:21:59 EDT 2025 Thu Apr 24 23:11:56 EDT 2025 Wed Feb 14 10:29:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c307t-6102e97d99a557310920d132ee91bf80a3039aab9df648ed9cf6c64a68ee2b9f3 |
| Notes | rogue wave, higher-order nonlinear Schr6dinger equation, Darboux transformation 11-2592/O3 In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms. LIU Wei , QIU De-Qin , HE Jing-Song ( 1School of Mathematical Sciences, University of Science and Technologe of China, Hefei 230026, China 2Department of Mathematics, Ningbo University, Ningbo 315211, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1793290675 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1793290675 crossref_citationtrail_10_1088_0253_6102_63_5_525 crossref_primary_10_1088_0253_6102_63_5_525 chongqing_primary_665178317 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-01 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Communications in theoretical physics |
| PublicationTitleAlternate | Communications in Theoretical Physics |
| PublicationYear | 2015 |
| References | Akhmediev (ctp_63_5_525bib19) 2013; 15 Peregrine (ctp_63_5_525bib03) 1983; 25 He (ctp_63_5_525bib06) 2014; 89 Zhao (ctp_63_5_525bib46) 2015; 20 Ma (ctp_63_5_525bib45) 2014; 62 He (ctp_63_5_525bib48) 2006; 12 Coillet (ctp_63_5_525bib25) 2014; 89 Bandelow (ctp_63_5_525bib37) 2012; 376 Chen (ctp_63_5_525bib41) 2014; 62 Wang (ctp_63_5_525bib40) 2011; 56 Dubard (ctp_63_5_525bib05) 2010; 185 Ankiewicz (ctp_63_5_525bib11) 2010; 81 He (ctp_63_5_525bib34) 2012; 86 Porsezian (ctp_63_5_525bib16) 1992; 33 Chabchoub (ctp_63_5_525bib27) 2013; 25 He (ctp_63_5_525bib09) 2013; 87 Xu (ctp_63_5_525bib31) 2012; 53 Tao (ctp_63_5_525bib51) 2012; 85 Ankiewicz (ctp_63_5_525bib18) 2014; 89 Guo (ctp_63_5_525bib36) 2011; 28 He (ctp_63_5_525bib32) 2012; 81 Hirota (ctp_63_5_525bib10) 1973; 14 Zhao (ctp_63_5_525bib50) 2014; 89 Wang (ctp_63_5_525bib17) 2013; 87 Onoratoa (ctp_63_5_525bib21) 2013; 528 Zhai (ctp_63_5_525bib39) 2013; 14 Ablowitz (ctp_63_5_525bib47) 1991 Kibler (ctp_63_5_525bib24) 2010; 6 Xu (ctp_63_5_525bib29) 2011; 44 Faddeev (ctp_63_5_525bib15) 1994; 32 Chen (ctp_63_5_525bib14) 2013; 87 Ohta (ctp_63_5_525bib08) 2012; 468 Akhmediev (ctp_63_5_525bib22) 2009; 373 Chabchoub (ctp_63_5_525bib26) 2011; 106 Liu (ctp_63_5_525bib43) 2013; 59 Kedziora (ctp_63_5_525bib49) 2011; 84 Bandelow (ctp_63_5_525bib42) 2012; 86 Guo (ctp_63_5_525bib44) 2013; 59 Yang (ctp_63_5_525bib12) 2012; 85 Bludov (ctp_63_5_525bib35) 2010; 185 Zakharov (ctp_63_5_525bib02) 1972; 34 Akhmediev (ctp_63_5_525bib04) 2009; 80 Solli (ctp_63_5_525bib23) 2007; 450 Guo (ctp_63_5_525bib07) 2012; 85 Chabchoub (ctp_63_5_525bib28) 2014; 112 Ankiewicz (ctp_63_5_525bib01) 2014; 378 DeVore (ctp_63_5_525bib20) 2013; 15 He (ctp_63_5_525bib33) 2014; 31 Barnoio (ctp_63_5_525bib38) 2014; 113 Li (ctp_63_5_525bib13) 2013; 334 Zhang (ctp_63_5_525bib30) |
| References_xml | – volume: 468 start-page: 1716 year: 2012 ident: ctp_63_5_525bib08 – volume: 15 year: 2013 ident: ctp_63_5_525bib20 publication-title: J. Opt. doi: 10.1088/2040-8978/15/6/064001 – volume: 185 start-page: 169 year: 2010 ident: ctp_63_5_525bib35 publication-title: Eur. J. Phys. Spec. Top. doi: 10.1140/epjst/e2010-01247-6 – volume: 185 start-page: 247 year: 2010 ident: ctp_63_5_525bib05 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2010-01252-9 – volume: 87 year: 2013 ident: ctp_63_5_525bib09 publication-title: Phys. Rev. E – volume: 32 start-page: 125 year: 1994 ident: ctp_63_5_525bib15 publication-title: Lett. Math. Phys. doi: 10.1007/BF00739422 – volume: 85 year: 2012 ident: ctp_63_5_525bib51 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.026601 – volume: 14 start-page: 805 year: 1973 ident: ctp_63_5_525bib10 publication-title: J. Math. Phys. doi: 10.1063/1.1666399 – volume: 528 start-page: 47 year: 2013 ident: ctp_63_5_525bib21 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2013.03.001 – volume: 25 start-page: 16 year: 1983 ident: ctp_63_5_525bib03 publication-title: J. Aust. Math. Soc. Series B doi: 10.1017/S0334270000003891 – volume: 85 year: 2012 ident: ctp_63_5_525bib12 publication-title: Phys. Rev. E – volume: 20 start-page: 9 year: 2015 ident: ctp_63_5_525bib46 publication-title: Commun. Nonlinear. Sci. Numer. Simulat doi: 10.1016/j.cnsns.2014.04.002 – volume: 53 year: 2012 ident: ctp_63_5_525bib31 publication-title: J. Math. Phys. – volume: 31 year: 2014 ident: ctp_63_5_525bib33 publication-title: Chin. Phys. Lett. – volume: 113 year: 2014 ident: ctp_63_5_525bib38 publication-title: Phys. Rev. Lett. – volume: 376 start-page: 1558 year: 2012 ident: ctp_63_5_525bib37 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2012.03.032 – volume: 34 start-page: 62 year: 1972 ident: ctp_63_5_525bib02 publication-title: J. Exp. Theor. Phys. – volume: 89 year: 2014 ident: ctp_63_5_525bib06 publication-title: Phys. Rev. E – volume: 14 start-page: 14 year: 2013 ident: ctp_63_5_525bib39 publication-title: Nonlinear Anal-Real doi: 10.1016/j.nonrwa.2012.04.010 – volume: 378 start-page: 358 year: 2014 ident: ctp_63_5_525bib01 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.11.031 – volume: 33 start-page: 1807 year: 1992 ident: ctp_63_5_525bib16 publication-title: J. Math. Phys. doi: 10.1063/1.529658 – ident: ctp_63_5_525bib30 – volume: 25 year: 2013 ident: ctp_63_5_525bib27 publication-title: Phys. Fluids. doi: 10.1063/1.4824706 – volume: 62 start-page: 701 year: 2014 ident: ctp_63_5_525bib45 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/62/5/12 – volume: 86 year: 2012 ident: ctp_63_5_525bib42 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.026606 – year: 1991 ident: ctp_63_5_525bib47 – volume: 28 year: 2011 ident: ctp_63_5_525bib36 publication-title: Chin. Phys. Lett. – volume: 12 start-page: 1867 year: 2006 ident: ctp_63_5_525bib48 publication-title: Science in China Series A: Mathematics. doi: 10.1007/s11425-006-2025-1 – volume: 334 start-page: 198 year: 2013 ident: ctp_63_5_525bib13 publication-title: Ann. Phys. doi: 10.1016/j.aop.2013.04.004 – volume: 6 start-page: 790 year: 2010 ident: ctp_63_5_525bib24 publication-title: Nat. Phys. doi: 10.1038/nphys1740 – volume: 85 year: 2012 ident: ctp_63_5_525bib07 publication-title: Phys. Rev. E – volume: 373 start-page: 675 year: 2009 ident: ctp_63_5_525bib22 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.12.036 – volume: 86 year: 2012 ident: ctp_63_5_525bib34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.066603 – volume: 80 year: 2009 ident: ctp_63_5_525bib04 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.026601 – volume: 44 year: 2011 ident: ctp_63_5_525bib29 publication-title: J. Phys. A: Math and Theor. – volume: 84 year: 2011 ident: ctp_63_5_525bib49 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.056611 – volume: 89 year: 2014 ident: ctp_63_5_525bib25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.89.013835 – volume: 106 year: 2011 ident: ctp_63_5_525bib26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.204502 – volume: 81 year: 2012 ident: ctp_63_5_525bib32 publication-title: J. Phys. Soc. Jpn. – volume: 62 start-page: 373 year: 2014 ident: ctp_63_5_525bib41 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/62/3/14 – volume: 89 year: 2014 ident: ctp_63_5_525bib50 publication-title: Phys. Rev. E – volume: 87 year: 2013 ident: ctp_63_5_525bib14 publication-title: Phys. Rev. E – volume: 87 year: 2013 ident: ctp_63_5_525bib17 publication-title: Phys. Rev. E – volume: 15 year: 2013 ident: ctp_63_5_525bib19 publication-title: J. Opt. doi: 10.1088/2040-8978/15/6/060201 – volume: 59 start-page: 311 year: 2013 ident: ctp_63_5_525bib43 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/59/3/12 – volume: 59 start-page: 723 year: 2013 ident: ctp_63_5_525bib44 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/59/6/13 – volume: 450 start-page: 1054 year: 2007 ident: ctp_63_5_525bib23 publication-title: Nature (London) doi: 10.1038/nature06402 – volume: 56 start-page: 995 year: 2011 ident: ctp_63_5_525bib40 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/56/6/04 – volume: 112 year: 2014 ident: ctp_63_5_525bib28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.124101 – volume: 89 year: 2014 ident: ctp_63_5_525bib18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.012907 – volume: 81 year: 2010 ident: ctp_63_5_525bib11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.046602 |
| SSID | ssj0002761 |
| Score | 2.1259413 |
| Snippet | In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the... In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrödinger equation (HONLS) by the... In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrodinger equation (HONLS) by the... |
| SourceID | proquest crossref chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 525 |
| SubjectTerms | Determinants Dispersions Longitudinal waves Mathematical analysis NLS方程 Nonlinearity Representations Schroedinger equation Transformations 局部化性质 行列式表示 达布变换 非线性Schrodinger方程 非线性效应 高阶非线性薛定谔方程 高阶项 |
| Title | Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation |
| URI | http://lib.cqvip.com/qk/83837X/201505/665178317.html https://www.proquest.com/docview/1793290675 |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 1572-9494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002761 issn: 0253-6102 databaseCode: IOP dateStart: 19820101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIIXPgYTZYCMhJ-q0nzZsR-TkWog2BDqxN4s23XQJJRua_uyf4B_m7PjpqlAE_ASWRf78nE_3TnO-XcIvc1ibSOIA2OlbOKWbgS0Yj42CU0VN1mifTmgzyfs-Cz7eE7PB4Ofvayl9Uq_Mzd_3FfyP1YFGdjV7ZL9B8t2SkEAbbAvHMHCcPwrG39ygejixvp8_0uXId1SyH516zGjbyowequQzTE-dTybo5OWHUNdOwpO8J8tFWF1td4aKcxWSZUTERHOSMVJUZGycBIuSCF6p4TPlihCn2JKqikpj4KEl6SMScWIYITnYTjv8mf9Geiekirzg6YjrzDxoygp4aK5a4CeIhs5jWXm7wNEBSkTr-A99OsvX8R0mywYvByAAr5fox2XHHzeRf-nt_evtN0lHUI1bddBf4sC4Dk9YUbQDG3m6Ckci0anYIdjmzEa5xymUnfQ3QTCg6sB8uH0SxfSQeZLL240ht1XcJ1JJ5uwdEIn1NVcvw-Rq_l-Bebbne3sBns_g5k9Rg_DpwcuWhw9QQPb7KNH4TMEBye_3Ef3fFawWT5Fsw5geAswvKixBxh2AMMAMKxwH2C4AxjuAQxvAPYMnU2r2dHxOJThGBsIACv_cFbkcyEUpbljkk2ieZwm1opY1zxSMAsSSmkxr1nG7VyYmhmWKcatTbSo0wO01ywa-xzhmhtT5zZOaa3BDTCVaRvrNDcJjIqsHqLD7tXJy5ZuRXbGGaJ48zKlCQz2rpDKD-kzKTiXzhjS3a9kqaQSjDFEo27MRuFtvd9sbCTBzbp_Z6qxi_VSujjmKiPk9MWt93iIHmxR_hLtra7X9hVMW1f6tYfUL1stfZg |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Properties+of+Rogue+Wave+for+a+Higher-Order+Nonlinear+Schrodinger+Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9F%B3%E4%BC%9F+%E9%82%B1%E5%BE%B7%E5%8B%A4+%E8%B4%BA%E5%8A%B2%E6%9D%BE&rft.date=2015-05-01&rft.issn=0253-6102&rft.volume=63&rft.issue=5&rft.spage=525&rft.epage=534&rft_id=info:doi/10.1088%2F0253-6102%2F63%2F5%2F525&rft.externalDocID=665178317 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg |