Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation

In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a...

Full description

Saved in:
Bibliographic Details
Published inCommunications in theoretical physics Vol. 63; no. 5; pp. 525 - 534
Main Author 柳伟 邱德勤 贺劲松
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text
ISSN0253-6102
1572-9494
DOI10.1088/0253-6102/63/5/525

Cover

Abstract In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
AbstractList In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrodinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters alpha and beta which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrödinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters α and β which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
Author 柳伟 邱德勤 贺劲松
AuthorAffiliation School of Mathematical Sciences, University of Science and Technologe of China, Hefei 230026, China Department of Mathematics, Ningbo University, Ningbo 315211, China
Author_xml – sequence: 1
  fullname: 柳伟 邱德勤 贺劲松
BookMark eNp9kEtLAzEUhYNUsK3-AVfBlZtx8miSyVJKtUKxohWXIZ2500amkzaZCvrrnT7owoWrC5fzHQ5fD3VqXwNC15TcUZJlKWGCJ5ISlkqeilQwcYa6VCiW6IEedFD3FLhAvRg_CSFMSdpFs4nPbeV-oMAvwa8hNA4i9iV-9Yst4A_7Bbj0AVs8doslhGQaCgj42deVq8EG_JYvgy9cvWi_o83WNs7Xl-i8tFWEq-Pto_eH0Ww4TibTx6fh_STJOVHNfg5oVWhthVCcEs1IQTkD0HReZsRywrW1c12UcpBBofNS5nJgZQbA5rrkfXR76F0Hv9lCbMzKxRyqytbgt9FQpTnTRCrRRrNDNA8-xgClyV2zH9sE6ypDidmJNDtPZjfMSG6EaUW2KPuDroNb2fD9P3RzhJa-XmxaPydKSkFVxqnivyJ3gtY
CitedBy_id crossref_primary_10_1088_0253_6102_64_6_605
crossref_primary_10_1088_0253_6102_68_3_290
crossref_primary_10_1103_PhysRevE_93_062219
crossref_primary_10_1088_1572_9494_abcfb6
crossref_primary_10_1016_j_ijleo_2018_12_148
crossref_primary_10_1007_s11071_019_04956_0
crossref_primary_10_1142_S0217984918503098
crossref_primary_10_1371_journal_pone_0192281
crossref_primary_10_1016_j_cnsns_2016_07_021
crossref_primary_10_21597_jist_861864
crossref_primary_10_1016_j_chaos_2018_06_029
crossref_primary_10_1007_s12043_017_1392_1
crossref_primary_10_1016_j_chaos_2024_115743
crossref_primary_10_1007_s00339_022_06206_4
crossref_primary_10_1088_0253_6102_66_4_374
crossref_primary_10_1016_j_spmi_2017_12_007
Cites_doi 10.1088/2040-8978/15/6/064001
10.1140/epjst/e2010-01247-6
10.1140/epjst/e2010-01252-9
10.1007/BF00739422
10.1103/PhysRevE.85.026601
10.1063/1.1666399
10.1016/j.physrep.2013.03.001
10.1017/S0334270000003891
10.1016/j.cnsns.2014.04.002
10.1016/j.physleta.2012.03.032
10.1016/j.nonrwa.2012.04.010
10.1016/j.physleta.2013.11.031
10.1063/1.529658
10.1063/1.4824706
10.1088/0253-6102/62/5/12
10.1103/PhysRevE.86.026606
10.1007/s11425-006-2025-1
10.1016/j.aop.2013.04.004
10.1038/nphys1740
10.1016/j.physleta.2008.12.036
10.1103/PhysRevE.86.066603
10.1103/PhysRevE.80.026601
10.1103/PhysRevE.84.056611
10.1103/PhysRevA.89.013835
10.1103/PhysRevLett.106.204502
10.1088/0253-6102/62/3/14
10.1088/2040-8978/15/6/060201
10.1088/0253-6102/59/3/12
10.1088/0253-6102/59/6/13
10.1038/nature06402
10.1088/0253-6102/56/6/04
10.1103/PhysRevLett.112.124101
10.1103/PhysRevE.89.012907
10.1103/PhysRevE.81.046602
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/0253-6102/63/5/525
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
DocumentTitleAlternate Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation
EISSN 1572-9494
EndPage 534
ExternalDocumentID 10_1088_0253_6102_63_5_525
665178317
GroupedDBID 02O
042
1JI
1WK
2B.
2C.
2RA
4.4
5B3
5GY
5VR
5VS
7.M
92E
92I
92L
92Q
93N
AAGCD
AAJIO
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
CW9
DU5
E3Z
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
FRP
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NS0
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ADEQX
AEINN
AOAED
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c307t-6102e97d99a557310920d132ee91bf80a3039aab9df648ed9cf6c64a68ee2b9f3
ISSN 0253-6102
IngestDate Fri Sep 05 13:57:59 EDT 2025
Wed Oct 01 02:21:59 EDT 2025
Thu Apr 24 23:11:56 EDT 2025
Wed Feb 14 10:29:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-6102e97d99a557310920d132ee91bf80a3039aab9df648ed9cf6c64a68ee2b9f3
Notes rogue wave, higher-order nonlinear Schr6dinger equation, Darboux transformation
11-2592/O3
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the Darboux transformation and confirm the decomposition rule of the rogue wave solutions up to fourth-order. These solutions have two parameters a and ;3 which denote the contribution of the higher-order terms (dispersions and nonlinear effects) included in the HONLS equation. Two localized properties, i.e., length and width of the first-order rogue wave solution are expressed by above two parameters, which show analytically a remarkable influence of higher-order terms on the rogue wave. Moreover, profiles of the higher-order rogue wave solutions demonstrate graphically a strong compression effect along t-direction given by higher-order terms.
LIU Wei , QIU De-Qin , HE Jing-Song ( 1School of Mathematical Sciences, University of Science and Technologe of China, Hefei 230026, China 2Department of Mathematics, Ningbo University, Ningbo 315211, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793290675
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1793290675
crossref_citationtrail_10_1088_0253_6102_63_5_525
crossref_primary_10_1088_0253_6102_63_5_525
chongqing_primary_665178317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Communications in theoretical physics
PublicationTitleAlternate Communications in Theoretical Physics
PublicationYear 2015
References Akhmediev (ctp_63_5_525bib19) 2013; 15
Peregrine (ctp_63_5_525bib03) 1983; 25
He (ctp_63_5_525bib06) 2014; 89
Zhao (ctp_63_5_525bib46) 2015; 20
Ma (ctp_63_5_525bib45) 2014; 62
He (ctp_63_5_525bib48) 2006; 12
Coillet (ctp_63_5_525bib25) 2014; 89
Bandelow (ctp_63_5_525bib37) 2012; 376
Chen (ctp_63_5_525bib41) 2014; 62
Wang (ctp_63_5_525bib40) 2011; 56
Dubard (ctp_63_5_525bib05) 2010; 185
Ankiewicz (ctp_63_5_525bib11) 2010; 81
He (ctp_63_5_525bib34) 2012; 86
Porsezian (ctp_63_5_525bib16) 1992; 33
Chabchoub (ctp_63_5_525bib27) 2013; 25
He (ctp_63_5_525bib09) 2013; 87
Xu (ctp_63_5_525bib31) 2012; 53
Tao (ctp_63_5_525bib51) 2012; 85
Ankiewicz (ctp_63_5_525bib18) 2014; 89
Guo (ctp_63_5_525bib36) 2011; 28
He (ctp_63_5_525bib32) 2012; 81
Hirota (ctp_63_5_525bib10) 1973; 14
Zhao (ctp_63_5_525bib50) 2014; 89
Wang (ctp_63_5_525bib17) 2013; 87
Onoratoa (ctp_63_5_525bib21) 2013; 528
Zhai (ctp_63_5_525bib39) 2013; 14
Ablowitz (ctp_63_5_525bib47) 1991
Kibler (ctp_63_5_525bib24) 2010; 6
Xu (ctp_63_5_525bib29) 2011; 44
Faddeev (ctp_63_5_525bib15) 1994; 32
Chen (ctp_63_5_525bib14) 2013; 87
Ohta (ctp_63_5_525bib08) 2012; 468
Akhmediev (ctp_63_5_525bib22) 2009; 373
Chabchoub (ctp_63_5_525bib26) 2011; 106
Liu (ctp_63_5_525bib43) 2013; 59
Kedziora (ctp_63_5_525bib49) 2011; 84
Bandelow (ctp_63_5_525bib42) 2012; 86
Guo (ctp_63_5_525bib44) 2013; 59
Yang (ctp_63_5_525bib12) 2012; 85
Bludov (ctp_63_5_525bib35) 2010; 185
Zakharov (ctp_63_5_525bib02) 1972; 34
Akhmediev (ctp_63_5_525bib04) 2009; 80
Solli (ctp_63_5_525bib23) 2007; 450
Guo (ctp_63_5_525bib07) 2012; 85
Chabchoub (ctp_63_5_525bib28) 2014; 112
Ankiewicz (ctp_63_5_525bib01) 2014; 378
DeVore (ctp_63_5_525bib20) 2013; 15
He (ctp_63_5_525bib33) 2014; 31
Barnoio (ctp_63_5_525bib38) 2014; 113
Li (ctp_63_5_525bib13) 2013; 334
Zhang (ctp_63_5_525bib30)
References_xml – volume: 468
  start-page: 1716
  year: 2012
  ident: ctp_63_5_525bib08
– volume: 15
  year: 2013
  ident: ctp_63_5_525bib20
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/15/6/064001
– volume: 185
  start-page: 169
  year: 2010
  ident: ctp_63_5_525bib35
  publication-title: Eur. J. Phys. Spec. Top.
  doi: 10.1140/epjst/e2010-01247-6
– volume: 185
  start-page: 247
  year: 2010
  ident: ctp_63_5_525bib05
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2010-01252-9
– volume: 87
  year: 2013
  ident: ctp_63_5_525bib09
  publication-title: Phys. Rev. E
– volume: 32
  start-page: 125
  year: 1994
  ident: ctp_63_5_525bib15
  publication-title: Lett. Math. Phys.
  doi: 10.1007/BF00739422
– volume: 85
  year: 2012
  ident: ctp_63_5_525bib51
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.026601
– volume: 14
  start-page: 805
  year: 1973
  ident: ctp_63_5_525bib10
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666399
– volume: 528
  start-page: 47
  year: 2013
  ident: ctp_63_5_525bib21
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2013.03.001
– volume: 25
  start-page: 16
  year: 1983
  ident: ctp_63_5_525bib03
  publication-title: J. Aust. Math. Soc. Series B
  doi: 10.1017/S0334270000003891
– volume: 85
  year: 2012
  ident: ctp_63_5_525bib12
  publication-title: Phys. Rev. E
– volume: 20
  start-page: 9
  year: 2015
  ident: ctp_63_5_525bib46
  publication-title: Commun. Nonlinear. Sci. Numer. Simulat
  doi: 10.1016/j.cnsns.2014.04.002
– volume: 53
  year: 2012
  ident: ctp_63_5_525bib31
  publication-title: J. Math. Phys.
– volume: 31
  year: 2014
  ident: ctp_63_5_525bib33
  publication-title: Chin. Phys. Lett.
– volume: 113
  year: 2014
  ident: ctp_63_5_525bib38
  publication-title: Phys. Rev. Lett.
– volume: 376
  start-page: 1558
  year: 2012
  ident: ctp_63_5_525bib37
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2012.03.032
– volume: 34
  start-page: 62
  year: 1972
  ident: ctp_63_5_525bib02
  publication-title: J. Exp. Theor. Phys.
– volume: 89
  year: 2014
  ident: ctp_63_5_525bib06
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 14
  year: 2013
  ident: ctp_63_5_525bib39
  publication-title: Nonlinear Anal-Real
  doi: 10.1016/j.nonrwa.2012.04.010
– volume: 378
  start-page: 358
  year: 2014
  ident: ctp_63_5_525bib01
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2013.11.031
– volume: 33
  start-page: 1807
  year: 1992
  ident: ctp_63_5_525bib16
  publication-title: J. Math. Phys.
  doi: 10.1063/1.529658
– ident: ctp_63_5_525bib30
– volume: 25
  year: 2013
  ident: ctp_63_5_525bib27
  publication-title: Phys. Fluids.
  doi: 10.1063/1.4824706
– volume: 62
  start-page: 701
  year: 2014
  ident: ctp_63_5_525bib45
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/62/5/12
– volume: 86
  year: 2012
  ident: ctp_63_5_525bib42
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.026606
– year: 1991
  ident: ctp_63_5_525bib47
– volume: 28
  year: 2011
  ident: ctp_63_5_525bib36
  publication-title: Chin. Phys. Lett.
– volume: 12
  start-page: 1867
  year: 2006
  ident: ctp_63_5_525bib48
  publication-title: Science in China Series A: Mathematics.
  doi: 10.1007/s11425-006-2025-1
– volume: 334
  start-page: 198
  year: 2013
  ident: ctp_63_5_525bib13
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2013.04.004
– volume: 6
  start-page: 790
  year: 2010
  ident: ctp_63_5_525bib24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1740
– volume: 85
  year: 2012
  ident: ctp_63_5_525bib07
  publication-title: Phys. Rev. E
– volume: 373
  start-page: 675
  year: 2009
  ident: ctp_63_5_525bib22
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.12.036
– volume: 86
  year: 2012
  ident: ctp_63_5_525bib34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.066603
– volume: 80
  year: 2009
  ident: ctp_63_5_525bib04
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.026601
– volume: 44
  year: 2011
  ident: ctp_63_5_525bib29
  publication-title: J. Phys. A: Math and Theor.
– volume: 84
  year: 2011
  ident: ctp_63_5_525bib49
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.056611
– volume: 89
  year: 2014
  ident: ctp_63_5_525bib25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.89.013835
– volume: 106
  year: 2011
  ident: ctp_63_5_525bib26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.204502
– volume: 81
  year: 2012
  ident: ctp_63_5_525bib32
  publication-title: J. Phys. Soc. Jpn.
– volume: 62
  start-page: 373
  year: 2014
  ident: ctp_63_5_525bib41
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/62/3/14
– volume: 89
  year: 2014
  ident: ctp_63_5_525bib50
  publication-title: Phys. Rev. E
– volume: 87
  year: 2013
  ident: ctp_63_5_525bib14
  publication-title: Phys. Rev. E
– volume: 87
  year: 2013
  ident: ctp_63_5_525bib17
  publication-title: Phys. Rev. E
– volume: 15
  year: 2013
  ident: ctp_63_5_525bib19
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/15/6/060201
– volume: 59
  start-page: 311
  year: 2013
  ident: ctp_63_5_525bib43
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/59/3/12
– volume: 59
  start-page: 723
  year: 2013
  ident: ctp_63_5_525bib44
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/59/6/13
– volume: 450
  start-page: 1054
  year: 2007
  ident: ctp_63_5_525bib23
  publication-title: Nature (London)
  doi: 10.1038/nature06402
– volume: 56
  start-page: 995
  year: 2011
  ident: ctp_63_5_525bib40
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/56/6/04
– volume: 112
  year: 2014
  ident: ctp_63_5_525bib28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.124101
– volume: 89
  year: 2014
  ident: ctp_63_5_525bib18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.012907
– volume: 81
  year: 2010
  ident: ctp_63_5_525bib11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.046602
SSID ssj0002761
Score 2.1259413
Snippet In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higherorder nonlinear Schr6dinger equation (HONLS) by the...
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrödinger equation (HONLS) by the...
In this paper, we provide determinant representation of the n-th order rogue wave solutions for a higher-order nonlinear Schrodinger equation (HONLS) by the...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 525
SubjectTerms Determinants
Dispersions
Longitudinal waves
Mathematical analysis
NLS方程
Nonlinearity
Representations
Schroedinger equation
Transformations
局部化性质
行列式表示
达布变换
非线性Schrodinger方程
非线性效应
高阶非线性薛定谔方程
高阶项
Title Localized Properties of Rogue Wave for a Higher-Order Nonlinear Schrodinger Equation
URI http://lib.cqvip.com/qk/83837X/201505/665178317.html
https://www.proquest.com/docview/1793290675
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 1572-9494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002761
  issn: 0253-6102
  databaseCode: IOP
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIIXPgYTZYCMhJ-q0nzZsR-TkWog2BDqxN4s23XQJJRua_uyf4B_m7PjpqlAE_ASWRf78nE_3TnO-XcIvc1ibSOIA2OlbOKWbgS0Yj42CU0VN1mifTmgzyfs-Cz7eE7PB4Ofvayl9Uq_Mzd_3FfyP1YFGdjV7ZL9B8t2SkEAbbAvHMHCcPwrG39ygejixvp8_0uXId1SyH516zGjbyowequQzTE-dTybo5OWHUNdOwpO8J8tFWF1td4aKcxWSZUTERHOSMVJUZGycBIuSCF6p4TPlihCn2JKqikpj4KEl6SMScWIYITnYTjv8mf9Geiekirzg6YjrzDxoygp4aK5a4CeIhs5jWXm7wNEBSkTr-A99OsvX8R0mywYvByAAr5fox2XHHzeRf-nt_evtN0lHUI1bddBf4sC4Dk9YUbQDG3m6Ckci0anYIdjmzEa5xymUnfQ3QTCg6sB8uH0SxfSQeZLL240ht1XcJ1JJ5uwdEIn1NVcvw-Rq_l-Bebbne3sBns_g5k9Rg_DpwcuWhw9QQPb7KNH4TMEBye_3Ef3fFawWT5Fsw5geAswvKixBxh2AMMAMKxwH2C4AxjuAQxvAPYMnU2r2dHxOJThGBsIACv_cFbkcyEUpbljkk2ieZwm1opY1zxSMAsSSmkxr1nG7VyYmhmWKcatTbSo0wO01ywa-xzhmhtT5zZOaa3BDTCVaRvrNDcJjIqsHqLD7tXJy5ZuRXbGGaJ48zKlCQz2rpDKD-kzKTiXzhjS3a9kqaQSjDFEo27MRuFtvd9sbCTBzbp_Z6qxi_VSujjmKiPk9MWt93iIHmxR_hLtra7X9hVMW1f6tYfUL1stfZg
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Properties+of+Rogue+Wave+for+a+Higher-Order+Nonlinear+Schrodinger+Equation&rft.jtitle=%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E9%80%9A%E8%AE%AF%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E6%9F%B3%E4%BC%9F+%E9%82%B1%E5%BE%B7%E5%8B%A4+%E8%B4%BA%E5%8A%B2%E6%9D%BE&rft.date=2015-05-01&rft.issn=0253-6102&rft.volume=63&rft.issue=5&rft.spage=525&rft.epage=534&rft_id=info:doi/10.1088%2F0253-6102%2F63%2F5%2F525&rft.externalDocID=665178317
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F83837X%2F83837X.jpg