Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability

MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti 3 C 2 T x ) suffer from mechanica...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 33; no. 8; pp. 1085 - 1095
Main Authors Lee, Yeonghyeon, Hong, Yeongbeom, Shim, Bong Sup
Format Journal Article
LanguageEnglish
Published Seoul The Polymer Society of Korea 01.08.2025
Springer Nature B.V
한국고분자학회
Subjects
Online AccessGet full text
ISSN1598-5032
2092-7673
DOI10.1007/s13233-025-00395-6

Cover

Abstract MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti 3 C 2 T x ) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. Graphical abstract We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations
AbstractList MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti3C2Tx) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. KCI Citation Count: 0
MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti 3 C 2 T x ) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. Graphical abstract We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations
MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti3C2Tx) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications.
Author Lee, Yeonghyeon
Hong, Yeongbeom
Shim, Bong Sup
Author_xml – sequence: 1
  givenname: Yeonghyeon
  surname: Lee
  fullname: Lee, Yeonghyeon
  organization: Program in Biomedical Science and Engineering, Inha University
– sequence: 2
  givenname: Yeongbeom
  surname: Hong
  fullname: Hong, Yeongbeom
  organization: Program in Biomedical Science and Engineering, Inha University
– sequence: 3
  givenname: Bong Sup
  orcidid: 0000-0003-3205-6191
  surname: Shim
  fullname: Shim, Bong Sup
  email: bshim@inha.ac.kr
  organization: Program in Biomedical Science and Engineering, Inha University, Department of Chemical Engineering, Inha University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232748$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kUFrFDEYhoO04Lb6BzwFvAnRJN9MZsZbLVULLS1lC95CJvlS084mazIL1r_hHza7I3jz9OXwPA-B94QcxRSRkDeCvxecdx-KAAnAuGwZ5zC0TL0gK8kHyTrVwRFZiXboWctBviQnpTxyrgQIsSK_P4XEQizbkNHRjCH6lC1uMM40eXr9DSNSmzbbVMKM5SOdTYzBUmODoyY6ur64vr1h6Wdw4VctWJym3ZQK0mhi8mHEXGhNUozfTbSV2KCtr2DNdPD3pplDirTMZgxTmJ9fkWNvpoKv_95Tcv_5Yn3-lV3dfLk8P7tiFng3s1YNTd9JaeQ4-lF6VELJzvIe-t54BUNvsO8GgMaP3jkr3GilEmZorWvF6OCUvFu6MXv9ZINOJhzuQ9JPWZ_drS-14F3TAAwVfrvA25x-7LDM-jHtcqz_0yAbCR0MSlVKLpTNqZSMXm9z2Jj8XEN6v5ReltJ1KX1YSu8lWKRS4fiA-V_6P9Yfj3uaPQ
Cites_doi 10.1016/j.carbpol.2020.117470
10.1038/srep45914
10.1007/s00289-020-03160-0
10.1016/j.foodchem.2023.135405
10.1039/C5RA02035B
10.1039/C0NR00583E
10.1021/acsomega.8b03681
10.1021/nn204153h
10.1007/s13233-023-00179-w
10.1021/acs.chemmater.7b02847
10.1016/j.cej.2018.05.148
10.1021/acs.chemrev.9b00348
10.3390/pr11092528
10.1007/s13233-023-00197-8
10.1016/j.compositesa.2021.106417
10.1002/aelm.201600255
10.1007/s13233-024-00266-6
10.3390/ma6051745
10.1016/j.indcrop.2016.02.016
10.1016/j.jcis.2020.05.084
10.1016/j.cej.2024.152289
10.1039/C9TC03309B
10.1016/j.cej.2024.153354
10.1002/adma.202206377
10.1038/s41467-022-33280-2
10.1007/s10924-021-02355-4
10.1021/acs.chemmater.4c01536
10.1021/acsnano.0c04411
10.1016/j.trac.2018.05.021
10.1201/9781003306511-26
10.1007/s13233-024-00273-7
10.1016/j.cej.2022.139823
10.1021/acsami.8b10729
10.1021/acs.chemmater.7b00745
10.1039/C8TA01468J
10.1039/C8TA09810G
10.1021/acsami.2c01597
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Polymer Society of Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to The Polymer Society of Korea 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2025.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s13233-025-00395-6
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
DocumentTitleAlternate Bio‑inspired reinforcement of MXene composites: tannic acid and TEMPO‑oxidized cellulose nanofibers for enhanced mechanical and oxidation stability
EISSN 2092-7673
EndPage 1095
ExternalDocumentID oai_kci_go_kr_ARTI_10744339
10_1007_s13233_025_00395_6
GroupedDBID 06D
0R~
0VY
1N0
203
2JY
2KG
2VQ
3-Y
30V
4.4
406
408
40D
53G
5GY
67Z
8N-
8UJ
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IAO
IHR
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
ZZE
~A9
85H
AAYXX
CITATION
ACYCR
ID FETCH-LOGICAL-c307t-56948722a2bbfb2fe61627c08388af6398ae879334fbfddc1dbc261a95cd51bd3
IEDL.DBID AGYKE
ISSN 1598-5032
IngestDate Wed Aug 27 04:59:32 EDT 2025
Thu Sep 18 00:04:10 EDT 2025
Thu Sep 11 00:05:29 EDT 2025
Sat Aug 23 01:10:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Tannic acid
Nanocomposite
Mechanical stability
Oxidation stability
MXene
Cellulose nanofibers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-56948722a2bbfb2fe61627c08388af6398ae879334fbfddc1dbc261a95cd51bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3205-6191
PQID 3242373966
PQPubID 2044280
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10744339
proquest_journals_3242373966
crossref_primary_10_1007_s13233_025_00395_6
springer_journals_10_1007_s13233_025_00395_6
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Macromolecular research
PublicationTitleAbbrev Macromol. Res
PublicationYear 2025
Publisher The Polymer Society of Korea
Springer Nature B.V
한국고분자학회
Publisher_xml – name: The Polymer Society of Korea
– name: Springer Nature B.V
– name: 한국고분자학회
References AS Levitt (395_CR22) 2019; 7
F Hu (395_CR36) 2022; 14
J Cui (395_CR12) 2024; 493
Z Zhan (395_CR19) 2019; 7
N Rameli (395_CR14) 2024; 32
S Gokulkumar (395_CR17) 2023; 31
Z Fu (395_CR2) 2019; 119
A Isogai (395_CR18) 2011; 3
W Liu (395_CR11) 2023; 410
N Liu (395_CR26) 2022; 13
O Nechyporchuk (395_CR20) 2016; 93
K Missoum (395_CR21) 2013; 6
M Shabanian (395_CR29) 2021; 78
T Wang (395_CR37) 2020; 577
Y Cheng (395_CR8) 2023; 453
A Sinha (395_CR5) 2018; 105
E Jiao (395_CR38) 2021; 146
R Lotfi (395_CR6) 2018; 6
H Zhou (395_CR31) 2022; 34
YC Jee (395_CR23) 2024; 495
A Tsyganov (395_CR33) 2023; 11
A Lipatov (395_CR24) 2016; 2
M Alhabeb (395_CR34) 2017; 29
SM Moon (395_CR16) 2021; 254
Y-T Du (395_CR3) 2018; 10
G Lee (395_CR9) 2020; 14
R Zhang (395_CR35) 2015; 5
Z Yousefi (395_CR15) 2024; 32
Q Yao (395_CR32) 2017; 7
A Shahzad (395_CR4) 2018; 349
AHA Kader (395_CR27) 2022; 30
CJ Zhang (395_CR7) 2017; 29
M Naguib (395_CR1) 2012; 6
M Lai (395_CR10) 2024; 16
CE Shuck (395_CR25) 2023
A Amarasekara (395_CR13) 2023; 31
T Parker (395_CR28) 2024; 36
A Parihar (395_CR30) 2019; 4
References_xml – volume: 254
  start-page: 117470
  year: 2021
  ident: 395_CR16
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2020.117470
– volume: 7
  start-page: 45914
  year: 2017
  ident: 395_CR32
  publication-title: Sci. Rep.
  doi: 10.1038/srep45914
– volume: 78
  start-page: 1331
  issue: 3
  year: 2021
  ident: 395_CR29
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-020-03160-0
– volume: 410
  start-page: 135405
  year: 2023
  ident: 395_CR11
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2023.135405
– volume: 5
  start-page: 40785
  issue: 51
  year: 2015
  ident: 395_CR35
  publication-title: RSC Adv.
  doi: 10.1039/C5RA02035B
– volume: 3
  start-page: 71
  issue: 1
  year: 2011
  ident: 395_CR18
  publication-title: Nanoscale
  doi: 10.1039/C0NR00583E
– volume: 4
  start-page: 8747
  issue: 5
  year: 2019
  ident: 395_CR30
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03681
– volume: 6
  start-page: 1322
  issue: 2
  year: 2012
  ident: 395_CR1
  publication-title: ACS Nano
  doi: 10.1021/nn204153h
– volume: 31
  start-page: 941
  issue: 10
  year: 2023
  ident: 395_CR13
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-023-00179-w
– volume: 29
  start-page: 7633
  issue: 18
  year: 2017
  ident: 395_CR34
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 349
  start-page: 748
  year: 2018
  ident: 395_CR4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.148
– volume: 119
  start-page: 11980
  issue: 23
  year: 2019
  ident: 395_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00348
– volume: 11
  start-page: 2528
  issue: 9
  year: 2023
  ident: 395_CR33
  publication-title: Processes
  doi: 10.3390/pr11092528
– volume: 31
  start-page: 1163
  issue: 12
  year: 2023
  ident: 395_CR17
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-023-00197-8
– volume: 146
  start-page: 106417
  year: 2021
  ident: 395_CR38
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2021.106417
– volume: 2
  start-page: 1600255
  issue: 12
  year: 2016
  ident: 395_CR24
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600255
– volume: 32
  start-page: 861
  issue: 9
  year: 2024
  ident: 395_CR14
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-024-00266-6
– volume: 6
  start-page: 1745
  issue: 5
  year: 2013
  ident: 395_CR21
  publication-title: Materials
  doi: 10.3390/ma6051745
– volume: 16
  start-page: 55555
  issue: 41
  year: 2024
  ident: 395_CR10
  publication-title: ACS Appl. Mater. Interfaces
– volume: 93
  start-page: 2
  year: 2016
  ident: 395_CR20
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2016.02.016
– volume: 577
  start-page: 300
  year: 2020
  ident: 395_CR37
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.084
– volume: 493
  start-page: 152289
  year: 2024
  ident: 395_CR12
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.152289
– volume: 7
  start-page: 9820
  issue: 32
  year: 2019
  ident: 395_CR19
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03309B
– volume: 495
  start-page: 153354
  year: 2024
  ident: 395_CR23
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.153354
– volume: 34
  start-page: 2206377
  issue: 41
  year: 2022
  ident: 395_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206377
– volume: 13
  start-page: 5551
  issue: 1
  year: 2022
  ident: 395_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33280-2
– volume: 30
  start-page: 2366
  issue: 6
  year: 2022
  ident: 395_CR27
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-021-02355-4
– volume: 36
  start-page: 8437
  issue: 17
  year: 2024
  ident: 395_CR28
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.4c01536
– volume: 14
  start-page: 11722
  issue: 9
  year: 2020
  ident: 395_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04411
– volume: 105
  start-page: 424
  year: 2018
  ident: 395_CR5
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.05.021
– start-page: 539
  volume-title: MXenes
  year: 2023
  ident: 395_CR25
  doi: 10.1201/9781003306511-26
– volume: 32
  start-page: 833
  issue: 9
  year: 2024
  ident: 395_CR15
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-024-00273-7
– volume: 453
  start-page: 139823
  year: 2023
  ident: 395_CR8
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139823
– volume: 10
  start-page: 32867
  issue: 38
  year: 2018
  ident: 395_CR3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b10729
– volume: 29
  start-page: 4848
  issue: 11
  year: 2017
  ident: 395_CR7
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00745
– volume: 6
  start-page: 12733
  issue: 26
  year: 2018
  ident: 395_CR6
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01468J
– volume: 7
  start-page: 269
  issue: 1
  year: 2019
  ident: 395_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA09810G
– volume: 14
  start-page: 14640
  year: 2022
  ident: 395_CR36
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c01597
SSID ssj0061311
Score 2.3780394
Snippet MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1085
SubjectTerms Bonding
Cellulose
Cellulose fibers
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Electrical resistivity
Energy storage
Hydrogen embrittlement
Interfacial bonding
Metal carbides
MXenes
Nanochemistry
Nanofibers
Nanotechnology
Oxidation
Oxidation resistance
Physical Chemistry
Polymer Sciences
Soft and Granular Matter
Stability
Surface properties
Tannic acid
고분자공학
Title Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability
URI https://link.springer.com/article/10.1007/s13233-025-00395-6
https://www.proquest.com/docview/3242373966
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232748
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Macromolecular Research, 2025, 33(8), , pp.1085-1095
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: AFBBN
  dateStart: 20020201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: AGYKE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: U2A
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6R9AA98CggAqVaCW6wVbJrb21uoUopoACHRgqn1T6LFbpGiSNB_wZ_mNmNrdAKDj35YO_Y3vk8_mbnsQAvRaacL01GudKeZn5oaen1kJaZV9a43BRpKXv6SZzOsg_zfN4Wha26bPcuJJks9bbYjTMeY445jQWlORU92Mmjg9KHnfG7rx8nnQUWsYVM6pNaFjQfctYWy_xbypUfUi8s_RWueS08mv46J_dg1j3vJtlkcbhu9KG5vNbK8aYvdB_utjSUjDe4eQC3XNiD28fd7m97sPtXo8KH8PttVdMqxKi8s2TpUrtVk1YWSe3JdI4Wk8Ts9JgC5lZvSBO3QjJEmcoSFSw5m0y_fKb1z8pWlyghhgvW3-uVI0EFhLdGEkpQJHHhW0pJIBculiRHBKXxcWTCEEE2m_J5fz2C2cnk7PiUtts5UIOGpKG5KNE7Ykwxrb1m3omRYEcGOWBRKI9MqVCuQHPBM6-9tWZktUH_TpW5sflIW_4Y-qEO7gmQwhY8lsSi8l029EIZBJnnKFGr0pZmAK86ncofm64dctufOU67xGmXadqlGMALVLtcmErGZtvxeF7LxVKiS_FexozVjPNyAPsdLGT7na9koqNHHH3GAbzutLw9_f97Pr3Z5c_gDktAiZmH-9Bvlmv3HNlQow9a8B9Ab8bGfwDiFQMA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5i3WFwGDCYKBtgCW7gqY2dzOE2po6OrYNDK5WT5Z8QFRLUptK2f4N_mGc3UdkEh51ySPyS2M_P3_N77zPAm4wr53PDKVPaU-57luZe92jOvbLGpUbErezRRTac8E_TdNoUhS3abPc2JBkt9brYjSUsxBxTGgpKU5ptwCbvC8E7sHn08evZoLXAWaCQiTypuaBpjyVNscy_pdxYkDbKub-BNW-FR-Oqc_IQJu33rpJNZgfLWh-Y61tUjnf9oUew3cBQcrTSm8dwz5U7sHXcnv62Aw_-Iip8Ar8_FBUtyhCVd5bMXaRbNXFnkVSejKZoMUnITg8pYG7xntThKCRDlCksUaUl48Hoy2daXRa2uEYJIVyw_FEtHClVieqtEYQSFElc-T2mJJCfLpQkBw2K7UPLqEME0WzM5716CpOTwfh4SJvjHKhBQ1LTNMvRO0oSlWjtdeJd1s-SQ4MYUAjlESkJ5QSaC8a99taavtUG_TuVp8amfW3ZLnTKqnTPgAgrWCiJRe_U8Z7PlEEl8wwlapXb3HThbTum8teKtUOu-ZlDt0vsdhm7XWZdeI3DLmemkIFsO1y_VXI2l-hSnMqQscoZy7uw36qFbOb5QkY4esjQZ-zCu3aU17f__87nd3v8FWwNx6NzeX56cbYH95OoNCELcR869XzpXiAyqvXLZiL8ASFCBQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVokfg4ICggFgpYghtY3bUdN-ZWSlctsKWHrrQ3y58QFZxqN5WAv8EfZsa70bYIDpxySDyR8sbxG8_MMyEvlbQxaS-ZsC4xmYaB6eSGTMtkg4-Vr8tW9uRYHU7l-1k1u9TFX6rd-5TksqcBVZpyt3Me0s668U1wgfnHimFzacXUBrkuYa3G8GvK9_p_sUIxmaKYqmtWDQVftc383caVpWkjz9MV1vlHorSsP-O75M6KONK9JdL3yLWYt8jN_f68ti1y-5K04H3y623TsiZjHj0GOo9FINWXvUDaJjqZwT-OYj05Fm3FxRva4eFFnlrfBGpzoKcHk5NPrP3ehOYnWMAN_ouv7SLSbDM4pAPaSMEkjflLKSKg3yI2ESPmZTyOLKhT4J-lAvfHAzIdH5zuH7LVAQzMw9TvWKU0xDOcW-5ccjxFNVJ81wNrq2ubgNvUNtYwwYVMLoXgR8F5iMisrnyoRi6Ih2Qztzk-IrQOtcAmVognoxwmZT24RRJg0VkdtB-QV_23N-dLnQ2zVlRGpAwgZQpSRg3IC4DHnPnGoDw2Xj-35mxuIAg4MlhjKoXQA7Ldw2dWM3NhCoHcFRDlDcjrHtL17X-_8_H_Pf6c3Dh5NzYfj44_PCG3eHEzLBvcJpvd_CI-BSrTuWfFW38D3zLsQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+reinforcement+of+MXene+composites%3A+tannic+acid+and+TEMPO-oxidized+cellulose+nanofibers+for+enhanced+mechanical+and+oxidation+stability&rft.jtitle=Macromolecular+research&rft.au=%EC%9D%B4%EC%98%81%ED%98%84&rft.au=%ED%99%8D%EC%98%81%EB%B2%94&rft.au=%EC%8B%AC%EB%B4%89%EC%84%AD&rft.date=2025-08-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%A0%EB%B6%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-5032&rft.eissn=2092-7673&rft.spage=1085&rft.epage=1095&rft_id=info:doi/10.1007%2Fs13233-025-00395-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10744339
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon