Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability
MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti 3 C 2 T x ) suffer from mechanica...
Saved in:
Published in | Macromolecular research Vol. 33; no. 8; pp. 1085 - 1095 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.08.2025
Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-025-00395-6 |
Cover
Abstract | MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti
3
C
2
T
x
) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications.
Graphical abstract
We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations |
---|---|
AbstractList | MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti3C2Tx) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. KCI Citation Count: 0 MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti 3 C 2 T x ) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. Graphical abstract We integrated tannic acid (TA) and TEMPO-oxidized cellulose nanofibers (TOCN) with MXene to overcome its inherent poor oxidative stability and durability. The resulting MXene/TA/TOCN composite demonstrated enhanced stability in an acidic solution and under ultrasonication, highlighting our approach to address its critical limitations MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making them highly attractive for applications in energy storage, catalysis, and sensing. However, MXenes (e.g., Ti3C2Tx) suffer from mechanical brittleness and poor oxidation stability, limiting their applicability and long-term durability. In this study, we present a composite integrating MXene with TEMPO-oxidized cellulose nanofibers (TOCN) derived from tunicate and tannic acid (TA). TOCN possesses high mechanical strength due to the high crystallinity of tunicate, while carboxyl groups introduced by TEMPO-mediated oxidation facilitate improved interfacial bonding with MXene layers. TA, a natural polyphenol with excellent oxidation resistance, further integrates MXene and TOCN by strong hydrogen bonding. The fabricated MXene/TA/TOCN composite demonstrated significantly improved mechanical strength of 98.3 MPa and oxidation resistance while maintaining good electrical conductivity (81.4 S/cm). This synergistic integration of TA and TOCN highlights the potential of MXene/TA/TOCN for energy storage devices and flexible electronic applications. |
Author | Lee, Yeonghyeon Hong, Yeongbeom Shim, Bong Sup |
Author_xml | – sequence: 1 givenname: Yeonghyeon surname: Lee fullname: Lee, Yeonghyeon organization: Program in Biomedical Science and Engineering, Inha University – sequence: 2 givenname: Yeongbeom surname: Hong fullname: Hong, Yeongbeom organization: Program in Biomedical Science and Engineering, Inha University – sequence: 3 givenname: Bong Sup orcidid: 0000-0003-3205-6191 surname: Shim fullname: Shim, Bong Sup email: bshim@inha.ac.kr organization: Program in Biomedical Science and Engineering, Inha University, Department of Chemical Engineering, Inha University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232748$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kUFrFDEYhoO04Lb6BzwFvAnRJN9MZsZbLVULLS1lC95CJvlS084mazIL1r_hHza7I3jz9OXwPA-B94QcxRSRkDeCvxecdx-KAAnAuGwZ5zC0TL0gK8kHyTrVwRFZiXboWctBviQnpTxyrgQIsSK_P4XEQizbkNHRjCH6lC1uMM40eXr9DSNSmzbbVMKM5SOdTYzBUmODoyY6ur64vr1h6Wdw4VctWJym3ZQK0mhi8mHEXGhNUozfTbSV2KCtr2DNdPD3pplDirTMZgxTmJ9fkWNvpoKv_95Tcv_5Yn3-lV3dfLk8P7tiFng3s1YNTd9JaeQ4-lF6VELJzvIe-t54BUNvsO8GgMaP3jkr3GilEmZorWvF6OCUvFu6MXv9ZINOJhzuQ9JPWZ_drS-14F3TAAwVfrvA25x-7LDM-jHtcqz_0yAbCR0MSlVKLpTNqZSMXm9z2Jj8XEN6v5ReltJ1KX1YSu8lWKRS4fiA-V_6P9Yfj3uaPQ |
Cites_doi | 10.1016/j.carbpol.2020.117470 10.1038/srep45914 10.1007/s00289-020-03160-0 10.1016/j.foodchem.2023.135405 10.1039/C5RA02035B 10.1039/C0NR00583E 10.1021/acsomega.8b03681 10.1021/nn204153h 10.1007/s13233-023-00179-w 10.1021/acs.chemmater.7b02847 10.1016/j.cej.2018.05.148 10.1021/acs.chemrev.9b00348 10.3390/pr11092528 10.1007/s13233-023-00197-8 10.1016/j.compositesa.2021.106417 10.1002/aelm.201600255 10.1007/s13233-024-00266-6 10.3390/ma6051745 10.1016/j.indcrop.2016.02.016 10.1016/j.jcis.2020.05.084 10.1016/j.cej.2024.152289 10.1039/C9TC03309B 10.1016/j.cej.2024.153354 10.1002/adma.202206377 10.1038/s41467-022-33280-2 10.1007/s10924-021-02355-4 10.1021/acs.chemmater.4c01536 10.1021/acsnano.0c04411 10.1016/j.trac.2018.05.021 10.1201/9781003306511-26 10.1007/s13233-024-00273-7 10.1016/j.cej.2022.139823 10.1021/acsami.8b10729 10.1021/acs.chemmater.7b00745 10.1039/C8TA01468J 10.1039/C8TA09810G 10.1021/acsami.2c01597 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Polymer Society of Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to The Polymer Society of Korea 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2025. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-025-00395-6 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
DocumentTitleAlternate | Bio‑inspired reinforcement of MXene composites: tannic acid and TEMPO‑oxidized cellulose nanofibers for enhanced mechanical and oxidation stability |
EISSN | 2092-7673 |
EndPage | 1095 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10744339 10_1007_s13233_025_00395_6 |
GroupedDBID | 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ZZE ~A9 85H AAYXX CITATION ACYCR |
ID | FETCH-LOGICAL-c307t-56948722a2bbfb2fe61627c08388af6398ae879334fbfddc1dbc261a95cd51bd3 |
IEDL.DBID | AGYKE |
ISSN | 1598-5032 |
IngestDate | Wed Aug 27 04:59:32 EDT 2025 Thu Sep 18 00:04:10 EDT 2025 Thu Sep 11 00:05:29 EDT 2025 Sat Aug 23 01:10:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Tannic acid Nanocomposite Mechanical stability Oxidation stability MXene Cellulose nanofibers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-56948722a2bbfb2fe61627c08388af6398ae879334fbfddc1dbc261a95cd51bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3205-6191 |
PQID | 3242373966 |
PQPubID | 2044280 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10744339 proquest_journals_3242373966 crossref_primary_10_1007_s13233_025_00395_6 springer_journals_10_1007_s13233_025_00395_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2025 |
Publisher | The Polymer Society of Korea Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer Nature B.V – name: 한국고분자학회 |
References | AS Levitt (395_CR22) 2019; 7 F Hu (395_CR36) 2022; 14 J Cui (395_CR12) 2024; 493 Z Zhan (395_CR19) 2019; 7 N Rameli (395_CR14) 2024; 32 S Gokulkumar (395_CR17) 2023; 31 Z Fu (395_CR2) 2019; 119 A Isogai (395_CR18) 2011; 3 W Liu (395_CR11) 2023; 410 N Liu (395_CR26) 2022; 13 O Nechyporchuk (395_CR20) 2016; 93 K Missoum (395_CR21) 2013; 6 M Shabanian (395_CR29) 2021; 78 T Wang (395_CR37) 2020; 577 Y Cheng (395_CR8) 2023; 453 A Sinha (395_CR5) 2018; 105 E Jiao (395_CR38) 2021; 146 R Lotfi (395_CR6) 2018; 6 H Zhou (395_CR31) 2022; 34 YC Jee (395_CR23) 2024; 495 A Tsyganov (395_CR33) 2023; 11 A Lipatov (395_CR24) 2016; 2 M Alhabeb (395_CR34) 2017; 29 SM Moon (395_CR16) 2021; 254 Y-T Du (395_CR3) 2018; 10 G Lee (395_CR9) 2020; 14 R Zhang (395_CR35) 2015; 5 Z Yousefi (395_CR15) 2024; 32 Q Yao (395_CR32) 2017; 7 A Shahzad (395_CR4) 2018; 349 AHA Kader (395_CR27) 2022; 30 CJ Zhang (395_CR7) 2017; 29 M Naguib (395_CR1) 2012; 6 M Lai (395_CR10) 2024; 16 CE Shuck (395_CR25) 2023 A Amarasekara (395_CR13) 2023; 31 T Parker (395_CR28) 2024; 36 A Parihar (395_CR30) 2019; 4 |
References_xml | – volume: 254 start-page: 117470 year: 2021 ident: 395_CR16 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2020.117470 – volume: 7 start-page: 45914 year: 2017 ident: 395_CR32 publication-title: Sci. Rep. doi: 10.1038/srep45914 – volume: 78 start-page: 1331 issue: 3 year: 2021 ident: 395_CR29 publication-title: Polym. Bull. doi: 10.1007/s00289-020-03160-0 – volume: 410 start-page: 135405 year: 2023 ident: 395_CR11 publication-title: Food Chem. doi: 10.1016/j.foodchem.2023.135405 – volume: 5 start-page: 40785 issue: 51 year: 2015 ident: 395_CR35 publication-title: RSC Adv. doi: 10.1039/C5RA02035B – volume: 3 start-page: 71 issue: 1 year: 2011 ident: 395_CR18 publication-title: Nanoscale doi: 10.1039/C0NR00583E – volume: 4 start-page: 8747 issue: 5 year: 2019 ident: 395_CR30 publication-title: ACS Omega doi: 10.1021/acsomega.8b03681 – volume: 6 start-page: 1322 issue: 2 year: 2012 ident: 395_CR1 publication-title: ACS Nano doi: 10.1021/nn204153h – volume: 31 start-page: 941 issue: 10 year: 2023 ident: 395_CR13 publication-title: Macromol. Res. doi: 10.1007/s13233-023-00179-w – volume: 29 start-page: 7633 issue: 18 year: 2017 ident: 395_CR34 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 349 start-page: 748 year: 2018 ident: 395_CR4 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.148 – volume: 119 start-page: 11980 issue: 23 year: 2019 ident: 395_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00348 – volume: 11 start-page: 2528 issue: 9 year: 2023 ident: 395_CR33 publication-title: Processes doi: 10.3390/pr11092528 – volume: 31 start-page: 1163 issue: 12 year: 2023 ident: 395_CR17 publication-title: Macromol. Res. doi: 10.1007/s13233-023-00197-8 – volume: 146 start-page: 106417 year: 2021 ident: 395_CR38 publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2021.106417 – volume: 2 start-page: 1600255 issue: 12 year: 2016 ident: 395_CR24 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600255 – volume: 32 start-page: 861 issue: 9 year: 2024 ident: 395_CR14 publication-title: Macromol. Res. doi: 10.1007/s13233-024-00266-6 – volume: 6 start-page: 1745 issue: 5 year: 2013 ident: 395_CR21 publication-title: Materials doi: 10.3390/ma6051745 – volume: 16 start-page: 55555 issue: 41 year: 2024 ident: 395_CR10 publication-title: ACS Appl. Mater. Interfaces – volume: 93 start-page: 2 year: 2016 ident: 395_CR20 publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2016.02.016 – volume: 577 start-page: 300 year: 2020 ident: 395_CR37 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.084 – volume: 493 start-page: 152289 year: 2024 ident: 395_CR12 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.152289 – volume: 7 start-page: 9820 issue: 32 year: 2019 ident: 395_CR19 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03309B – volume: 495 start-page: 153354 year: 2024 ident: 395_CR23 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.153354 – volume: 34 start-page: 2206377 issue: 41 year: 2022 ident: 395_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.202206377 – volume: 13 start-page: 5551 issue: 1 year: 2022 ident: 395_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33280-2 – volume: 30 start-page: 2366 issue: 6 year: 2022 ident: 395_CR27 publication-title: J. Polym. Environ. doi: 10.1007/s10924-021-02355-4 – volume: 36 start-page: 8437 issue: 17 year: 2024 ident: 395_CR28 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.4c01536 – volume: 14 start-page: 11722 issue: 9 year: 2020 ident: 395_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.0c04411 – volume: 105 start-page: 424 year: 2018 ident: 395_CR5 publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2018.05.021 – start-page: 539 volume-title: MXenes year: 2023 ident: 395_CR25 doi: 10.1201/9781003306511-26 – volume: 32 start-page: 833 issue: 9 year: 2024 ident: 395_CR15 publication-title: Macromol. Res. doi: 10.1007/s13233-024-00273-7 – volume: 453 start-page: 139823 year: 2023 ident: 395_CR8 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139823 – volume: 10 start-page: 32867 issue: 38 year: 2018 ident: 395_CR3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b10729 – volume: 29 start-page: 4848 issue: 11 year: 2017 ident: 395_CR7 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00745 – volume: 6 start-page: 12733 issue: 26 year: 2018 ident: 395_CR6 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01468J – volume: 7 start-page: 269 issue: 1 year: 2019 ident: 395_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09810G – volume: 14 start-page: 14640 year: 2022 ident: 395_CR36 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c01597 |
SSID | ssj0061311 |
Score | 2.3780394 |
Snippet | MXenes, two-dimensional (2D) metal carbides, and nitrides exhibit exceptional electrical conductivity, hydrophilicity, and tunable surface properties, making... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1085 |
SubjectTerms | Bonding Cellulose Cellulose fibers Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Electrical resistivity Energy storage Hydrogen embrittlement Interfacial bonding Metal carbides MXenes Nanochemistry Nanofibers Nanotechnology Oxidation Oxidation resistance Physical Chemistry Polymer Sciences Soft and Granular Matter Stability Surface properties Tannic acid 고분자공학 |
Title | Bio-inspired reinforcement of MXene composites: tannic acid and TEMPO-oxidized cellulose nanofibers for enhanced mechanical and oxidation stability |
URI | https://link.springer.com/article/10.1007/s13233-025-00395-6 https://www.proquest.com/docview/3242373966 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003232748 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2025, 33(8), , pp.1085-1095 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2092-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: AFBBN dateStart: 20020201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2092-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2092-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: U2A dateStart: 20020201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6R9AA98CggAqVaCW6wVbJrb21uoUopoACHRgqn1T6LFbpGiSNB_wZ_mNmNrdAKDj35YO_Y3vk8_mbnsQAvRaacL01GudKeZn5oaen1kJaZV9a43BRpKXv6SZzOsg_zfN4Wha26bPcuJJks9bbYjTMeY445jQWlORU92Mmjg9KHnfG7rx8nnQUWsYVM6pNaFjQfctYWy_xbypUfUi8s_RWueS08mv46J_dg1j3vJtlkcbhu9KG5vNbK8aYvdB_utjSUjDe4eQC3XNiD28fd7m97sPtXo8KH8PttVdMqxKi8s2TpUrtVk1YWSe3JdI4Wk8Ts9JgC5lZvSBO3QjJEmcoSFSw5m0y_fKb1z8pWlyghhgvW3-uVI0EFhLdGEkpQJHHhW0pJIBculiRHBKXxcWTCEEE2m_J5fz2C2cnk7PiUtts5UIOGpKG5KNE7Ykwxrb1m3omRYEcGOWBRKI9MqVCuQHPBM6-9tWZktUH_TpW5sflIW_4Y-qEO7gmQwhY8lsSi8l029EIZBJnnKFGr0pZmAK86ncofm64dctufOU67xGmXadqlGMALVLtcmErGZtvxeF7LxVKiS_FexozVjPNyAPsdLGT7na9koqNHHH3GAbzutLw9_f97Pr3Z5c_gDktAiZmH-9Bvlmv3HNlQow9a8B9Ab8bGfwDiFQMA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH5i3WFwGDCYKBtgCW7gqY2dzOE2po6OrYNDK5WT5Z8QFRLUptK2f4N_mGc3UdkEh51ySPyS2M_P3_N77zPAm4wr53PDKVPaU-57luZe92jOvbLGpUbErezRRTac8E_TdNoUhS3abPc2JBkt9brYjSUsxBxTGgpKU5ptwCbvC8E7sHn08evZoLXAWaCQiTypuaBpjyVNscy_pdxYkDbKub-BNW-FR-Oqc_IQJu33rpJNZgfLWh-Y61tUjnf9oUew3cBQcrTSm8dwz5U7sHXcnv62Aw_-Iip8Ar8_FBUtyhCVd5bMXaRbNXFnkVSejKZoMUnITg8pYG7xntThKCRDlCksUaUl48Hoy2daXRa2uEYJIVyw_FEtHClVieqtEYQSFElc-T2mJJCfLpQkBw2K7UPLqEME0WzM5716CpOTwfh4SJvjHKhBQ1LTNMvRO0oSlWjtdeJd1s-SQ4MYUAjlESkJ5QSaC8a99taavtUG_TuVp8amfW3ZLnTKqnTPgAgrWCiJRe_U8Z7PlEEl8wwlapXb3HThbTum8teKtUOu-ZlDt0vsdhm7XWZdeI3DLmemkIFsO1y_VXI2l-hSnMqQscoZy7uw36qFbOb5QkY4esjQZ-zCu3aU17f__87nd3v8FWwNx6NzeX56cbYH95OoNCELcR869XzpXiAyqvXLZiL8ASFCBQg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVokfg4ICggFgpYghtY3bUdN-ZWSlctsKWHrrQ3y58QFZxqN5WAv8EfZsa70bYIDpxySDyR8sbxG8_MMyEvlbQxaS-ZsC4xmYaB6eSGTMtkg4-Vr8tW9uRYHU7l-1k1u9TFX6rd-5TksqcBVZpyt3Me0s668U1wgfnHimFzacXUBrkuYa3G8GvK9_p_sUIxmaKYqmtWDQVftc383caVpWkjz9MV1vlHorSsP-O75M6KONK9JdL3yLWYt8jN_f68ti1y-5K04H3y623TsiZjHj0GOo9FINWXvUDaJjqZwT-OYj05Fm3FxRva4eFFnlrfBGpzoKcHk5NPrP3ehOYnWMAN_ouv7SLSbDM4pAPaSMEkjflLKSKg3yI2ESPmZTyOLKhT4J-lAvfHAzIdH5zuH7LVAQzMw9TvWKU0xDOcW-5ccjxFNVJ81wNrq2ubgNvUNtYwwYVMLoXgR8F5iMisrnyoRi6Ih2Qztzk-IrQOtcAmVognoxwmZT24RRJg0VkdtB-QV_23N-dLnQ2zVlRGpAwgZQpSRg3IC4DHnPnGoDw2Xj-35mxuIAg4MlhjKoXQA7Ldw2dWM3NhCoHcFRDlDcjrHtL17X-_8_H_Pf6c3Dh5NzYfj44_PCG3eHEzLBvcJpvd_CI-BSrTuWfFW38D3zLsQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-inspired+reinforcement+of+MXene+composites%3A+tannic+acid+and+TEMPO-oxidized+cellulose+nanofibers+for+enhanced+mechanical+and+oxidation+stability&rft.jtitle=Macromolecular+research&rft.au=%EC%9D%B4%EC%98%81%ED%98%84&rft.au=%ED%99%8D%EC%98%81%EB%B2%94&rft.au=%EC%8B%AC%EB%B4%89%EC%84%AD&rft.date=2025-08-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%A0%EB%B6%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-5032&rft.eissn=2092-7673&rft.spage=1085&rft.epage=1095&rft_id=info:doi/10.1007%2Fs13233-025-00395-6&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10744339 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |