Aircraft conceptual design by genetic/gradient-guided optimization

In the present article, which describes the results of a Ph.D. research study (Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-guided Algorithm., Ph.D. Dissertation, Delft University of Technology, Bos, A....

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 11; no. 3; pp. 377 - 382
Main Author Bos, A.H.W
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.1998
Subjects
Online AccessGet full text
ISSN0952-1976
1873-6769
DOI10.1016/S0952-1976(98)00009-8

Cover

Abstract In the present article, which describes the results of a Ph.D. research study (Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-guided Algorithm., Ph.D. Dissertation, Delft University of Technology, Bos, A.H.W., 1996b. Multidisciplinary Design Optimization of a Supersonic Transport Aircraft using a Hybrid Genetic/Guided-based Algorithm. AIAA 96-4055), a new design procedure based on the combination of a genetic and a gradient-guided optimization algorithm is presented. The procedure was applied to the design of a second-generation supersonic transport aircraft since the interdisciplinary couplings are particularly strong for this kind of aeroplane. Furthermore, since the design space for the defined design problem is extremely small (and even non-existent in cases where all the environmental constraints are imposed) it is very hard—if not impossible—to realize a feasible design by means of classic design procedures. It was established that the method presented here can actually be used as a practical design tool, since it is capable of generating a feasible design from scratch without the necessity to create a baseline design first. The optimization methods minimize constraint violations, and thus actually create a design instead of just adapting a baseline designed according to more traditional methods.
AbstractList In the present article, which describes the results of a Ph.D. research study (Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-guided Algorithm., Ph.D. Dissertation, Delft University of Technology, Bos, A.H.W., 1996b. Multidisciplinary Design Optimization of a Supersonic Transport Aircraft using a Hybrid Genetic/Guided-based Algorithm. AIAA 96-4055), a new design procedure based on the combination of a genetic and a gradient-guided optimization algorithm is presented. The procedure was applied to the design of a second-generation supersonic transport aircraft since the interdisciplinary couplings are particularly strong for this kind of aeroplane. Furthermore, since the design space for the defined design problem is extremely small (and even non-existent in cases where all the environmental constraints are imposed) it is very hard—if not impossible—to realize a feasible design by means of classic design procedures. It was established that the method presented here can actually be used as a practical design tool, since it is capable of generating a feasible design from scratch without the necessity to create a baseline design first. The optimization methods minimize constraint violations, and thus actually create a design instead of just adapting a baseline designed according to more traditional methods.
Author Bos, A.H.W
Author_xml – sequence: 1
  givenname: A.H.W
  surname: Bos
  fullname: Bos, A.H.W
  organization: Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands
BookMark eNqFkE1LAzEQhoNUsK3-BGGPeojNx242wYPU4hcUPKjnkE0mS6TdLdlUqL_e7VY8eOlc5vI-LzPPBI2atgGELim5oYSK2RtRBcNUleJKyWvSj8LyBI2pLDkWpVAjNP6LnKFJ1332GS5zMUb38xBtND5ltm0sbNLWrDIHXaibrNplNTSQgp3V0bgATcL1NjhwWbtJYR2-TQptc45OvVl1cPG7p-jj8eF98YyXr08vi_kSW07KhAvOFTfAQAKvmM9ZrggX1JvKVIoaLz1nzJROEWkM82VOmSi4IK7IgTNF-RTdHnptbLsugtc2pOGCFE1YaUr0XocedOj9r1pJPejQsqeLf_QmhrWJu6Pc3YGD_rWvAFF3tjdhwYUINmnXhiMNP3aDegE
CitedBy_id crossref_primary_10_1007_s10796_008_9112_5
crossref_primary_10_1016_j_ast_2017_02_016
crossref_primary_10_1016_j_compstruct_2013_04_025
crossref_primary_10_1002_cae_22216
crossref_primary_10_2514_1_J051835
crossref_primary_10_2208_jscej_2000_658_93
crossref_primary_10_1016_j_ast_2014_06_012
crossref_primary_10_3724_SP_J_1249_2013_02173
crossref_primary_10_1016_j_asoc_2017_09_030
crossref_primary_10_1088_0964_1726_19_4_045007
crossref_primary_10_1016_j_enconman_2019_01_098
crossref_primary_10_1016_j_aei_2007_10_001
crossref_primary_10_1016_j_asr_2014_10_027
crossref_primary_10_1080_10426910802612270
crossref_primary_10_1016_j_ast_2020_106440
crossref_primary_10_1007_s00500_015_1651_3
crossref_primary_10_3390_aerospace9030160
Cites_doi 10.2514/6.1996-4055
ContentType Journal Article
Copyright 1998 Elsevier Science Ltd
Copyright_xml – notice: 1998 Elsevier Science Ltd
DBID AAYXX
CITATION
DOI 10.1016/S0952-1976(98)00009-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
EndPage 382
ExternalDocumentID 10_1016_S0952_1976_98_00009_8
S0952197698000098
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c307t-53393ae2e8e3b2f42490361fabab91af8f322a7d908aa2f741265360d54e32913
IEDL.DBID AIKHN
ISSN 0952-1976
IngestDate Wed Oct 01 01:50:51 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
Fri Feb 23 02:26:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords multidisciplinary design optimization
computer aided design
genetic algorithms
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-53393ae2e8e3b2f42490361fabab91af8f322a7d908aa2f741265360d54e32913
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_S0952_1976_98_00009_8
crossref_primary_10_1016_S0952_1976_98_00009_8
elsevier_sciencedirect_doi_10_1016_S0952_1976_98_00009_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-06-01
PublicationDateYYYYMMDD 1998-06-01
PublicationDate_xml – month: 06
  year: 1998
  text: 1998-06-01
  day: 01
PublicationDecade 1990
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 1998
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sobieszczanski-Sobieski, J., 1982. A Linear Decomposition Method for Large Optimization Problems—Blueprint for Development. NASA TM 83248
Bos, A.H.W., 1996b. Multidisciplinary Design Optimization of a Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-Based Algorithm. AIAA 96-4055
Grefenstette, J.J., 1990. A User’s Guide to GENESIS. Version 5.0
Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, U.S.A.
Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-guided Algorithm. Ph.D. dissertation, Delft University of Technology
Sobieszczanski-Sobieski, J., 1988. Optimization by Decomposition: a Step from Hierarchic to Non-hierarchic Systems. NASA CP-3031 part 1
10.1016/S0952-1976(98)00009-8_BIB3
10.1016/S0952-1976(98)00009-8_BIB4
10.1016/S0952-1976(98)00009-8_BIB5
10.1016/S0952-1976(98)00009-8_BIB6
10.1016/S0952-1976(98)00009-8_BIB1
10.1016/S0952-1976(98)00009-8_BIB2
References_xml – reference: Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-guided Algorithm. Ph.D. dissertation, Delft University of Technology
– reference: Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, U.S.A.
– reference: Sobieszczanski-Sobieski, J., 1982. A Linear Decomposition Method for Large Optimization Problems—Blueprint for Development. NASA TM 83248
– reference: Sobieszczanski-Sobieski, J., 1988. Optimization by Decomposition: a Step from Hierarchic to Non-hierarchic Systems. NASA CP-3031 part 1
– reference: Bos, A.H.W., 1996b. Multidisciplinary Design Optimization of a Supersonic Transport Aircraft using a Hybrid Genetic/Gradient-Based Algorithm. AIAA 96-4055
– reference: Grefenstette, J.J., 1990. A User’s Guide to GENESIS. Version 5.0
– ident: 10.1016/S0952-1976(98)00009-8_BIB5
– ident: 10.1016/S0952-1976(98)00009-8_BIB6
– ident: 10.1016/S0952-1976(98)00009-8_BIB2
  doi: 10.2514/6.1996-4055
– ident: 10.1016/S0952-1976(98)00009-8_BIB4
– ident: 10.1016/S0952-1976(98)00009-8_BIB1
  doi: 10.2514/6.1996-4055
– ident: 10.1016/S0952-1976(98)00009-8_BIB3
SSID ssj0003846
Score 1.6143973
Snippet In the present article, which describes the results of a Ph.D. research study (Bos, A.H.W., 1996a. Multidisciplinary Design Optimization of a Second-Generation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 377
SubjectTerms computer aided design
genetic algorithms
multidisciplinary design optimization
Title Aircraft conceptual design by genetic/gradient-guided optimization
URI https://dx.doi.org/10.1016/S0952-1976(98)00009-8
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRHlYEBBrdJnDT2WCqqQkUHoKJbZCdOVQnaKqQDC7-dc-K0ICGQmBKdcqfo7Lv7bN1nA1wkVESRmwTERixKNGAn0pcxETF3pUcVtZXeGrgfdQZj727iTyrQK7kwuq3S5P4ip-fZ2kjaxpvt5WzWfkRwgOEWdDjLgQ6rQh3rD2M1qHdvh4PROiFTVvB18HuiFTZEnsJILrzk7Cq3Q9jPJepL2envwrbBi1a3-KU9qKj5PuwY7GiZyHxDUXk9Qyk7gOvuLI1SkWRWVHATV2gozjs2LPlu4czRBMb2NM27vjIyXc1itLnAJPJq2JmHMO7fPPUGxFyZQCIM1owgeONUKFcxRaWbeLi4whLlJEIKyR2RsAQDWAQxt5kQOESe43Z82rFj31PU5Q49gtp8MVfHYPkxl1Kh6yJHeRqo4MqEBxTfpZPYjmiAV3opjMx54vpai5dw0ziGzg21c0POwty5IWtAa622LA7U-EuBlUMQfpsZISb931VP_q96ClsF-1Dvt5xBLUtX6hzhRyabUG19OE0zyfRz-PA8_AQIdtQ2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjSjPDAwwuHk4D3ssFahA24VW6mbZiVNFgrYK6cDCb-ecOBQkBBJbdPKdorPv_Nm6z4fQZUpEHHtphB3AolgDdiwDmWCRME_6RBFH6auBwTDsjf2HSTBpoG7NhdFllSb3Vzm9zNZGYhtv2osss58AHEC4RSGjJdCha2jdD7xIn8Da76s6D0Irtg6Mxnr4isZTmSiFV4xel1Yw_XmD-rLp3O2gLYMWrU71Q7uooWZ7aNsgR8vE5SuI6uYMtWwf3XSyPM5FWlhxxUxcgqGkrNew5JsF60bTF-1pXtZ8FXi6zBKwOYcU8mK4mQdofHc76vawaZiAYwjVAgN0Y0QoT1FFpJf6cLSCDcpNhRSSuSKlKYSviBLmUCFggnzXCwMSOkngK-Ixlxyi5mw-U0fIChImpQLXxa7yNUyBcwmLCHxLN3Vc0UJ-7SUem9fEdVOLZ74qGwPncu1czigvnctpC7U_1RbVcxp_KdB6Cvi3dcEh5f-uevx_1Qu00RsN-rx_P3w8QZsVD1HfvJyiZpEv1RkAkUKelwvtAxy_01s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+conceptual+design+by+genetic%2Fgradient-guided+optimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Bos%2C+A.H.W&rft.date=1998-06-01&rft.issn=0952-1976&rft.volume=11&rft.issue=3&rft.spage=377&rft.epage=382&rft_id=info:doi/10.1016%2FS0952-1976%2898%2900009-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0952_1976_98_00009_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon