Topology shapes dynamics of higher-order networks

Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potenti...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 21; no. 3; pp. 353 - 361
Main Authors Millán, Ana P., Sun, Hanlin, Giambagli, Lorenzo, Muolo, Riccardo, Carletti, Timoteo, Torres, Joaquín J., Radicchi, Filippo, Kurths, Jürgen, Bianconi, Ginestra
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1745-2473
1745-2481
1745-2481
DOI10.1038/s41567-024-02757-w

Cover

Abstract Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges. Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area.
AbstractList Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges.Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area.
Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges. Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area.
Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges.
Author Carletti, Timoteo
Millán, Ana P.
Muolo, Riccardo
Giambagli, Lorenzo
Radicchi, Filippo
Torres, Joaquín J.
Kurths, Jürgen
Sun, Hanlin
Bianconi, Ginestra
Author_xml – sequence: 1
  givenname: Ana P.
  orcidid: 0000-0002-2289-5998
  surname: Millán
  fullname: Millán, Ana P.
  organization: Institute ‘Carlos I’ for Theoretical and Computational Physics and Electromagnetism and Matter Physics Department, University of Granada
– sequence: 2
  givenname: Hanlin
  orcidid: 0000-0003-1606-1257
  surname: Sun
  fullname: Sun, Hanlin
  organization: Nordita, KTH Royal Institute of Technology and Stockholm University
– sequence: 3
  givenname: Lorenzo
  orcidid: 0000-0002-0045-6839
  surname: Giambagli
  fullname: Giambagli, Lorenzo
  organization: Department of Physics, Freie Universiät Berlin, Department of Physics and Astronomy, University of Florence, INFN & CSDC
– sequence: 4
  givenname: Riccardo
  orcidid: 0000-0001-9093-7478
  surname: Muolo
  fullname: Muolo, Riccardo
  organization: Department of Systems and Control Engineering, Institute of Science Tokyo (former Tokyo Tech)
– sequence: 5
  givenname: Timoteo
  orcidid: 0000-0003-2596-4503
  surname: Carletti
  fullname: Carletti, Timoteo
  organization: Department of Mathematics and NaXys, Namur Institute for Complex Systems, University of Namur
– sequence: 6
  givenname: Joaquín J.
  orcidid: 0000-0001-6175-9676
  surname: Torres
  fullname: Torres, Joaquín J.
  organization: Institute ‘Carlos I’ for Theoretical and Computational Physics and Electromagnetism and Matter Physics Department, University of Granada
– sequence: 7
  givenname: Filippo
  orcidid: 0000-0002-8352-1287
  surname: Radicchi
  fullname: Radicchi, Filippo
  organization: Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University
– sequence: 8
  givenname: Jürgen
  surname: Kurths
  fullname: Kurths, Jürgen
  organization: Potsdam Institute for Climate Impact Research, Department of Physics, Humboldt University of Berlin
– sequence: 9
  givenname: Ginestra
  orcidid: 0000-0002-3380-887X
  surname: Bianconi
  fullname: Bianconi, Ginestra
  email: ginestra.bianconi@gmail.com
  organization: School of Mathematical Sciences, Queen Mary University of London, The Alan Turing Institute, The British Library
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-242012$$DView record from Swedish Publication Index
BookMark eNp9kD1PwzAQhi0EEm3hDzBFYiXg853tdKzKp1SJpbBaSeqkKW0c7EZV_z0pqcrGcLobnvfV6Rmy89rVlrEb4PfAMXkIBFLpmAvqRksd787YADTJWFAC56db4yUbhrDinIQCHDCYu8atXbmPwjJtbIgW-zrdVHmIXBEtq3Jpfez8wvqottud81_hil0U6TrY6-MesY_np_n0NZ69v7xNJ7M4R663MWYIyUKikkSUSY1khRJoMyLUBBZEahUQzxTBWI1BWsjzNCuwgxKVCRyxu7437GzTZqbx1Sb1e-PSyjxWnxPjfGlCawQJDgf8tscb775bG7Zm5Vpfdx8aBK0RkEvqKNFTuXcheFucaoGbg0nTmzSdSfNr0uy6EB4_6eC6tP6v-p_UD_qFdqc
Cites_doi 10.1038/s42005-021-00605-4
10.1016/j.chaos.2023.114296
10.1088/1367-2630/acf33c
10.1007/BFb0013365
10.1038/nature03607
10.1017/9781108770996
10.1103/RevModPhys.88.035006
10.1142/q0033
10.1103/PhysRevLett.127.158301
10.1038/ncomms10138
10.1103/PRXLife.1.023012
10.1073/pnas.1506407112
10.1103/RevModPhys.51.659
10.1017/CBO9780511791383
10.1371/journal.pone.0066506
10.1007/978-1-84996-290-2
10.1007/s10827-016-0608-6
10.1137/21M1414024
10.1088/1751-8121/ad4d2e
10.1016/j.physrep.2023.04.002
10.3389/fncom.2017.00048
10.1140/epjds/s13688-016-0097-x
10.1098/rsif.2014.0873
10.1137/18M1201019
10.1038/nphys1651
10.1063/5.0047608
10.1007/BF01614426
10.1088/1751-8121/ad0fb5
10.1103/PhysRevE.98.052308
10.1140/epjds/s13688-017-0109-5
10.1140/epjd/e2020-100571-8
10.1093/oso/9780198805090.001.0001
10.1126/sciadv.aba8164
10.1016/j.chaos.2023.114312
10.1007/BF02566245
10.1016/j.physrep.2015.10.008
10.3934/fods.2024001
10.1109/IEEECONF59524.2023.10477018
10.1109/SEC54971.2022.00057
10.1103/RevModPhys.80.1275
10.1137/20M1355896
10.1016/j.sigpro.2021.108149
10.1063/5.0080370
10.1103/PhysRevE.101.022308
10.1103/PhysRevE.110.014307
10.1038/s42005-022-00963-7
10.1088/1361-6404/aae790
10.1063/5.0169388
10.1093/pnasnexus/pgae270
10.1063/5.0132468
10.1103/PhysRevE.104.064303
10.1016/j.physrep.2020.05.004
10.1007/978-3-030-91374-8_3
10.1016/S0167-2789(00)00094-4
10.1109/TSP.2020.2981920
10.1038/nature23273
10.1103/PhysRevE.106.064314
10.1103/PhysRevLett.104.048704
10.1007/s00023-009-0001-3
10.1038/s42005-021-00525-3
10.1038/s41567-021-01371-4
10.1143/PTP.69.32
10.1098/rsif.2022.0043
10.1088/2632-072X/ac19be
10.1016/j.aim.2013.05.007
10.1063/5.0037433
10.1103/PhysRevLett.80.2109
10.1073/pnas.0500298102
10.1103/PhysRevLett.130.187401
10.1088/1751-8121/ab9338
10.1093/oso/9780198753919.001.0001
10.1098/rstb.1952.0012
10.1088/1751-8121/ad6f7e
10.1103/PhysRevE.110.064315
10.1038/s41467-019-10431-6
10.1103/PhysRevE.104.064305
10.1006/jfan.1993.1019
10.1063/5.0020034
10.1038/s42005-022-01024-9
10.1098/rspa.2024.0235
10.3389/frai.2021.681108
10.1103/PhysRevE.106.034319
10.1103/PhysRevE.100.032414
10.1103/PhysRevLett.124.218301
10.1088/2632-072X/abbd4c
ContentType Journal Article
Copyright Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Nature Publishing Group Mar 2025
Copyright_xml – notice: Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Nature Publishing Group Mar 2025
DBID AAYXX
CITATION
7U5
8FD
L7M
ADTPV
AOWAS
DG7
DOI 10.1038/s41567-024-02757-w
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 361
ExternalDocumentID oai_DiVA_org_su_242012
10_1038_s41567_024_02757_w
GrantInformation_xml – fundername: Donald R. and Esther Simon Foundation
  funderid: https://doi.org/10.13039/100006618
– fundername: Isaac Newton Institute for Mathematical Sciences (Isaac Newton Institute)
  funderid: https://doi.org/10.13039/100012112
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: KAKENHI JP22K11919; KAKENHI JP22H00516; CREST JP-MJCR1913
  funderid: https://doi.org/10.13039/501100001691
– fundername: United States Department of Defense | United States Army | Army Research Institute for the Behavioral and Social Sciences (U.S. Army Research Institute for the Behavioral & Social Sciences)
  grantid: W911NF-21-1-0194
  funderid: https://doi.org/10.13039/100009919
– fundername: United States Department of Defense | U.S. Air Force (United States Air Force)
  grantid: FA9550-21-1-0446
  funderid: https://doi.org/10.13039/100006831
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
7U5
8FD
L7M
ADTPV
AOWAS
DG7
PHGZM
PQGLB
PUEGO
ID FETCH-LOGICAL-c307t-3b318d5365444b5734e2623eb443741e12ae6140b64196915e1ccabf362386b23
ISSN 1745-2473
1745-2481
IngestDate Tue Sep 09 23:19:42 EDT 2025
Sat Aug 23 13:09:07 EDT 2025
Wed Oct 01 06:43:42 EDT 2025
Sat Mar 15 01:10:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c307t-3b318d5365444b5734e2623eb443741e12ae6140b64196915e1ccabf362386b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2289-5998
0000-0003-1606-1257
0000-0001-6175-9676
0000-0002-3380-887X
0000-0003-2596-4503
0000-0002-0045-6839
0000-0001-9093-7478
0000-0002-8352-1287
PQID 3177313054
PQPubID 27545
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_su_242012
proquest_journals_3177313054
crossref_primary_10_1038_s41567_024_02757_w
springer_journals_10_1038_s41567_024_02757_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References G Bianconi (2757_CR33) 2018; 98
NW Landry (2757_CR16) 2020; 30
B Eckmann (2757_CR78) 1944; 17
F Hensel (2757_CR28) 2021; 4
F Suwayyid (2757_CR100) 2024; 6
A Patania (2757_CR32) 2017; 6
S Boccaletti (2757_CR27) 2023; 1018
MT Schaub (2757_CR58) 2021; 187
JJ Torres (2757_CR38) 2020; 1
L Calmon (2757_CR56) 2023; 25
2757_CR20
2757_CR3
2757_CR6
2757_CR5
PS Skardal (2757_CR74) 2020; 2
2757_CR2
C Giusti (2757_CR7) 2016; 41
2757_CR1
MW Reimann (2757_CR12) 2017; 11
M Reitz (2757_CR80) 2020; 53
E Davies (2757_CR85) 1993; 111
G Palla (2757_CR83) 2005; 435
R Muolo (2757_CR49) 2024; 178
D Eroglu (2757_CR94) 2016; 7
2757_CR37
M Nurisso (2757_CR93) 2024; 34
2757_CR30
S Majhi (2757_CR25) 2022; 19
H Fujisaka (2757_CR72) 1983; 69
D Horak (2757_CR79) 2013; 244
C Ziegler (2757_CR81) 2022; 32
T Carletti (2757_CR107) 2020; 101
S Barbarossa (2757_CR55) 2020; 68
J Wee (2757_CR99) 2023; 13
R Muolo (2757_CR97) 2024; 480
J Grilli (2757_CR17) 2017; 548
S Krishnagopal (2757_CR98) 2023; 177
F Baccini (2757_CR36) 2022; 106
N Otter (2757_CR29) 2017; 6
2757_CR47
F Battiston (2757_CR22) 2021; 17
V Salnikov (2757_CR26) 2018; 40
L Herron (2757_CR53) 2023; 1
L Torres (2757_CR24) 2021; 63
AP Millán (2757_CR41) 2020; 124
H Sun (2757_CR50) 2023; 14
T Carletti (2757_CR42) 2023; 130
N Delporte (2757_CR91) 2023; 57
2757_CR57
2757_CR59
R Ghorbanchian (2757_CR67) 2021; 4
S Krishnagopal (2757_CR82) 2021; 104
2757_CR54
Y Lee (2757_CR35) 2021; 31
2757_CR51
F Battiston (2757_CR23) 2020; 874
C Giusti (2757_CR8) 2015; 112
A Pikovsky (2757_CR69) 2001; 2
G Ferraz de Arruda (2757_CR15) 2021; 4
G Nicoletti (2757_CR105) 2024; 14
M Tumminello (2757_CR18) 2005; 102
L DeVille (2757_CR45) 2021; 31
H Sun (2757_CR52) 2024; 110
S Strogatz (2757_CR70) 2000; 143
2757_CR68
LM Pecora (2757_CR73) 1998; 80
2757_CR101
2757_CR66
2757_CR65
2757_CR60
C Battiloro (2757_CR103) 2024; 10
2757_CR104
2757_CR102
G Bianconi (2757_CR89) 2021; 2
L Calmon (2757_CR46) 2023; 33
J Faskowitz (2757_CR10) 2022; 6
GP Massara (2757_CR19) 2016; 5
Y-Y Liu (2757_CR75) 2016; 88
G Petri (2757_CR31) 2013; 8
G St-Onge (2757_CR14) 2021; 127
A Arnaudon (2757_CR44) 2022; 5
M Singh (2757_CR62) 2020; 6
2757_CR76
C Bick (2757_CR21) 2023; 65
A Turing (2757_CR95) 1952; 237
L Calmon (2757_CR43) 2022; 5
SH Lee (2757_CR106) 2017; 5
I Iacopini (2757_CR13) 2019; 10
JB Kogut (2757_CR63) 1979; 51
FA Rodrigues (2757_CR71) 2016; 610
MT Schaub (2757_CR40) 2020; 62
MC Banuls (2757_CR64) 2020; 74
SN Dorogovtsev (2757_CR4) 2008; 80
S Lloyd (2757_CR87) 2016; 7
G Petri (2757_CR9) 2014; 11
R Wang (2757_CR77) 2024; 110
H Nakao (2757_CR96) 2010; 6
2757_CR86
2757_CR88
L Giambagli (2757_CR48) 2022; 106
FA Santos (2757_CR34) 2019; 100
G Bianconi (2757_CR92) 2024; 57
G Bianconi (2757_CR90) 2023; 57
A Santoro (2757_CR11) 2023; 19
P Becher (2757_CR84) 1982; 15
D Taylor (2757_CR39) 2015; 6
E Katifori (2757_CR61) 2010; 104
L Neuhäuser (2757_CR108) 2021; 104
References_xml – volume: 4
  start-page: 120
  year: 2021
  ident: 2757_CR67
  publication-title: Comm. Phys.
  doi: 10.1038/s42005-021-00605-4
– ident: 2757_CR37
– volume: 177
  start-page: 114296
  year: 2023
  ident: 2757_CR98
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2023.114296
– volume: 25
  start-page: 093013
  year: 2023
  ident: 2757_CR56
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/acf33c
– ident: 2757_CR68
  doi: 10.1007/BFb0013365
– volume: 435
  start-page: 814
  year: 2005
  ident: 2757_CR83
  publication-title: Nature
  doi: 10.1038/nature03607
– ident: 2757_CR20
  doi: 10.1017/9781108770996
– volume: 88
  start-page: 035006
  year: 2016
  ident: 2757_CR75
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.035006
– ident: 2757_CR5
  doi: 10.1142/q0033
– volume: 7
  year: 2016
  ident: 2757_CR94
  publication-title: Nat. Commun.
– volume: 127
  start-page: 158301
  year: 2021
  ident: 2757_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.127.158301
– volume: 7
  year: 2016
  ident: 2757_CR87
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10138
– volume: 1
  start-page: 023012
  year: 2023
  ident: 2757_CR53
  publication-title: PRX Life
  doi: 10.1103/PRXLife.1.023012
– volume: 112
  start-page: 13455
  year: 2015
  ident: 2757_CR8
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1506407112
– volume: 51
  start-page: 659
  year: 1979
  ident: 2757_CR63
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.51.659
– ident: 2757_CR3
  doi: 10.1017/CBO9780511791383
– volume: 8
  start-page: e66506
  year: 2013
  ident: 2757_CR31
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0066506
– ident: 2757_CR66
  doi: 10.1007/978-1-84996-290-2
– volume: 5
  start-page: 145
  year: 2017
  ident: 2757_CR106
  publication-title: J. Complex Netw.
– volume: 41
  start-page: 1
  year: 2016
  ident: 2757_CR7
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-016-0608-6
– volume: 65
  start-page: 686
  year: 2023
  ident: 2757_CR21
  publication-title: SIAM Rev.
  doi: 10.1137/21M1414024
– volume: 57
  start-page: 275002
  year: 2023
  ident: 2757_CR91
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ad4d2e
– volume: 19
  start-page: 221
  year: 2023
  ident: 2757_CR11
  publication-title: Nat. Phys.
– volume: 1018
  start-page: 1
  year: 2023
  ident: 2757_CR27
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2023.04.002
– volume: 11
  start-page: 48
  year: 2017
  ident: 2757_CR12
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00048
– volume: 6
  start-page: 1
  year: 2017
  ident: 2757_CR32
  publication-title: EPJ Data Sci.
  doi: 10.1140/epjds/s13688-016-0097-x
– ident: 2757_CR102
– volume: 11
  start-page: 20140873
  year: 2014
  ident: 2757_CR9
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0873
– volume: 62
  start-page: 353
  year: 2020
  ident: 2757_CR40
  publication-title: SIAM Review
  doi: 10.1137/18M1201019
– volume: 14
  start-page: 021007
  year: 2024
  ident: 2757_CR105
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 544
  year: 2010
  ident: 2757_CR96
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1651
– volume: 31
  start-page: 041102
  year: 2021
  ident: 2757_CR35
  publication-title: Chaos
  doi: 10.1063/5.0047608
– volume: 15
  start-page: 343
  year: 1982
  ident: 2757_CR84
  publication-title: Z. Phys. C
  doi: 10.1007/BF01614426
– volume: 57
  start-page: 015001
  year: 2023
  ident: 2757_CR90
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ad0fb5
– volume: 98
  start-page: 052308
  year: 2018
  ident: 2757_CR33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.052308
– volume: 6
  start-page: 1
  year: 2017
  ident: 2757_CR29
  publication-title: EPJ Data Sci.
  doi: 10.1140/epjds/s13688-017-0109-5
– volume: 74
  start-page: 1
  year: 2020
  ident: 2757_CR64
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2020-100571-8
– ident: 2757_CR2
  doi: 10.1093/oso/9780198805090.001.0001
– volume: 6
  start-page: eaba8164
  year: 2020
  ident: 2757_CR62
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba8164
– volume: 178
  start-page: 114312
  year: 2024
  ident: 2757_CR49
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2023.114312
– volume: 17
  start-page: 240
  year: 1944
  ident: 2757_CR78
  publication-title: Comment. Math. Helvetici
  doi: 10.1007/BF02566245
– volume: 610
  start-page: 1
  year: 2016
  ident: 2757_CR71
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.10.008
– volume: 6
  start-page: 124
  year: 2024
  ident: 2757_CR100
  publication-title: Found. Data Sci.
  doi: 10.3934/fods.2024001
– ident: 2757_CR101
  doi: 10.1109/IEEECONF59524.2023.10477018
– ident: 2757_CR88
  doi: 10.1109/SEC54971.2022.00057
– volume: 80
  start-page: 1275
  year: 2008
  ident: 2757_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1275
– volume: 63
  start-page: 435
  year: 2021
  ident: 2757_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/20M1355896
– volume: 187
  start-page: 108149
  year: 2021
  ident: 2757_CR58
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2021.108149
– volume: 2
  start-page: 3
  year: 2001
  ident: 2757_CR69
  publication-title: Self
– volume: 32
  start-page: 023128
  year: 2022
  ident: 2757_CR81
  publication-title: Chaos
  doi: 10.1063/5.0080370
– volume: 101
  start-page: 022308
  year: 2020
  ident: 2757_CR107
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.022308
– volume: 110
  start-page: 014307
  year: 2024
  ident: 2757_CR77
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.110.014307
– volume: 5
  start-page: 211
  year: 2022
  ident: 2757_CR44
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00963-7
– volume: 6
  start-page: 1
  year: 2022
  ident: 2757_CR10
  publication-title: Netw. Neurosci.
– volume: 40
  start-page: 014001
  year: 2018
  ident: 2757_CR26
  publication-title: Euro. J. Phys.
  doi: 10.1088/1361-6404/aae790
– volume: 34
  start-page: 053118
  year: 2024
  ident: 2757_CR93
  publication-title: Chaos
  doi: 10.1063/5.0169388
– ident: 2757_CR47
– volume: 13
  year: 2023
  ident: 2757_CR99
  publication-title: Sci. Rep.
– ident: 2757_CR51
  doi: 10.1093/pnasnexus/pgae270
– volume: 33
  start-page: 033117
  year: 2023
  ident: 2757_CR46
  publication-title: Chaos
  doi: 10.1063/5.0132468
– volume: 104
  start-page: 064303
  year: 2021
  ident: 2757_CR82
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.064303
– volume: 874
  start-page: 1
  year: 2020
  ident: 2757_CR23
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2020.05.004
– ident: 2757_CR30
  doi: 10.1007/978-3-030-91374-8_3
– volume: 143
  start-page: 1
  year: 2000
  ident: 2757_CR70
  publication-title: Phys. D
  doi: 10.1016/S0167-2789(00)00094-4
– volume: 10
  start-page: 833
  year: 2024
  ident: 2757_CR103
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– ident: 2757_CR59
– ident: 2757_CR76
– ident: 2757_CR104
– volume: 68
  start-page: 2992
  year: 2020
  ident: 2757_CR55
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2981920
– volume: 548
  start-page: 210
  year: 2017
  ident: 2757_CR17
  publication-title: Nature
  doi: 10.1038/nature23273
– volume: 106
  start-page: 064314
  year: 2022
  ident: 2757_CR48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.064314
– volume: 14
  year: 2023
  ident: 2757_CR50
  publication-title: Nat. Commun.
– volume: 104
  start-page: 048704
  year: 2010
  ident: 2757_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.048704
– ident: 2757_CR65
– ident: 2757_CR86
  doi: 10.1007/s00023-009-0001-3
– ident: 2757_CR1
– volume: 4
  start-page: 24
  year: 2021
  ident: 2757_CR15
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00525-3
– volume: 17
  start-page: 1093
  year: 2021
  ident: 2757_CR22
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01371-4
– volume: 69
  start-page: 32
  year: 1983
  ident: 2757_CR72
  publication-title: Progr. Theor. Phys.
  doi: 10.1143/PTP.69.32
– volume: 19
  start-page: 20220043
  year: 2022
  ident: 2757_CR25
  publication-title: J. R. Soc. Interf.
  doi: 10.1098/rsif.2022.0043
– volume: 2
  start-page: 035022
  year: 2021
  ident: 2757_CR89
  publication-title: J. Phys. Complex.
  doi: 10.1088/2632-072X/ac19be
– volume: 244
  start-page: 303
  year: 2013
  ident: 2757_CR79
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2013.05.007
– ident: 2757_CR54
– volume: 31
  start-page: 023137
  year: 2021
  ident: 2757_CR45
  publication-title: Chaos
  doi: 10.1063/5.0037433
– volume: 80
  start-page: 2109
  year: 1998
  ident: 2757_CR73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2109
– volume: 102
  start-page: 10421
  year: 2005
  ident: 2757_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0500298102
– volume: 130
  start-page: 187401
  year: 2023
  ident: 2757_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.187401
– volume: 53
  start-page: 295001
  year: 2020
  ident: 2757_CR80
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ab9338
– ident: 2757_CR6
  doi: 10.1093/oso/9780198753919.001.0001
– volume: 237
  start-page: 37
  year: 1952
  ident: 2757_CR95
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.1952.0012
– volume: 57
  start-page: 365002
  year: 2024
  ident: 2757_CR92
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ad6f7e
– volume: 110
  start-page: 064315
  year: 2024
  ident: 2757_CR52
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.110.064315
– volume: 1
  start-page: 015002
  year: 2020
  ident: 2757_CR38
  publication-title: Journal of Physics: Complexity
– ident: 2757_CR60
– volume: 10
  year: 2019
  ident: 2757_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10431-6
– volume: 104
  start-page: 064305
  year: 2021
  ident: 2757_CR108
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.064305
– volume: 111
  start-page: 398
  year: 1993
  ident: 2757_CR85
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1993.1019
– volume: 30
  start-page: 103117
  year: 2020
  ident: 2757_CR16
  publication-title: Chaos
  doi: 10.1063/5.0020034
– volume: 5
  start-page: 253
  year: 2022
  ident: 2757_CR43
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-01024-9
– volume: 480
  start-page: 20240235
  year: 2024
  ident: 2757_CR97
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2024.0235
– ident: 2757_CR57
– volume: 6
  year: 2015
  ident: 2757_CR39
  publication-title: Nat. Commun.
– volume: 4
  start-page: 681108
  year: 2021
  ident: 2757_CR28
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2021.681108
– volume: 106
  start-page: 034319
  year: 2022
  ident: 2757_CR36
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.034319
– volume: 100
  start-page: 032414
  year: 2019
  ident: 2757_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.032414
– volume: 124
  start-page: 218301
  year: 2020
  ident: 2757_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.218301
– volume: 2
  start-page: 015003
  year: 2020
  ident: 2757_CR74
  publication-title: J. Phys. Complex.
  doi: 10.1088/2632-072X/abbd4c
– volume: 5
  start-page: 161
  year: 2016
  ident: 2757_CR19
  publication-title: J. Complex Netw.
SSID ssj0042613
Score 2.5484376
SecondaryResourceType review_article
Snippet Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 353
SubjectTerms 639/705/1041
639/766/530
639/766/530/2795
639/766/530/2801
Algorithms
Atomic
Brain research
Classical and Continuum Physics
Climate change
Complex Systems
Condensed Matter Physics
Dynamical systems
Machine learning
Many body problem
Mathematical and Computational Physics
Molecular
Network topologies
Nonlinear dynamics
Optical and Plasma Physics
Percolation
Perspective
Physics
Physics and Astronomy
Scientists
Synchronism
Theoretical
Topology
Title Topology shapes dynamics of higher-order networks
URI https://link.springer.com/article/10.1038/s41567-024-02757-w
https://www.proquest.com/docview/3177313054
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-242012
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1745-2481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2481
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRZV6QS1t1aUU5dCeUm838SPLcSlFq0pdoQoQN8tOHNgDCdosQuXXd_xKwqsCLlHklSZZz3j8TWbmM0JfqOY5KQqKi4JDgGKYtWVJJNYsI1pRTvXYdCP_nvPZEf11wnqJdttdslKj_PrevpLnaBXGQK-mS_YJmm2FwgDcg37hChqG6-N07E44-Bs3Z_JCN3Hhjpe31RlntoADW2rNuHLF3k0fis4tpaf_tNEia9MbaJPniecWkPHBqMsc2cGZNPQabeXOQp4reerbrOulrq7rTo21S-38WYAOl0Xd_8iQsq7KyvvFjDKcUnfqyEj3x9yJK8GZpknPaEjPMxJGepsscQzsd_y3Y2tvTFSZYYAPJsXMMnzV7VYhQ39rE2tLC21SnUyEkyFAhrAyxNVLtJaC6x8P0Np0f3d3HjZsE0QS1zfr_qPvrQIp3---yU380gUlbR79FuesxSmHb9C6DzCiqbOWt-iFrjbQqwOn5XcoCTYTOZuJgs1EdRn1bSYKNvMeHe3_PPwxw_7YDJyDw15hosBPF4xwRilVsOaoTgHkwsqjBPCjTlKpAZSNFaeGGylhOgETUCVAGTLhKiUf0KCqK_0RRZKN-SRnsJkmimZMyh2mMq5oXpKElXxniOIwGeLCsaOIhxUwRFthvoRfRY0A_JoRAFKMDtG3MIfdz_-T9tXNc_tkw5S-tzieinp5KppLAegT4Nfmk97xE3rd2f8WGqyWl_ozwM6V2vZm8w8Kh3pi
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+shapes+dynamics+of+higher-order+networks&rft.jtitle=Nature+physics&rft.au=Mill%C3%A1n%2C+Ana+P.&rft.au=Sun%2C+Hanlin&rft.au=Giambagli%2C+Lorenzo&rft.au=Muolo%2C+Riccardo&rft.date=2025-03-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=21&rft.issue=3&rft.spage=353&rft.epage=361&rft_id=info:doi/10.1038%2Fs41567-024-02757-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41567_024_02757_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon