Topology shapes dynamics of higher-order networks
Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potenti...
        Saved in:
      
    
          | Published in | Nature physics Vol. 21; no. 3; pp. 353 - 361 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        01.03.2025
     Nature Publishing Group  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1745-2473 1745-2481 1745-2481  | 
| DOI | 10.1038/s41567-024-02757-w | 
Cover
| Abstract | Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges.
Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area. | 
    
|---|---|
| AbstractList | Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges.Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area. Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges. Higher-order interactions reveal new aspects of the interplay between topology and dynamics in complex systems. This Perspective describes the emerging field of higher-order topological dynamics and discusses the open research questions in the area. Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory of higher-order topological dynamics, which combines higher-order interactions with discrete topology and nonlinear dynamics, has the potential to enhance our understanding of complex systems, such as the brain and the climate, and to advance the development of next-generation AI algorithms. This theoretical framework, which goes beyond traditional node-centric descriptions, encodes the dynamics of a network through topological signals—variables assigned not only to nodes but also to edges, triangles and other higher-order cells. Recent findings show that topological signals lead to the emergence of distinct types of dynamical state and collective phenomena, including topological and Dirac synchronization, pattern formation and triadic percolation. These results offer insights into how topology shapes dynamics, how dynamics learns topology and how topology evolves dynamically. This Perspective primarily aims to guide physicists, mathematicians, computer scientists and network scientists through the emerging field of higher-order topological dynamics, while also outlining future research challenges.  | 
    
| Author | Carletti, Timoteo Millán, Ana P. Muolo, Riccardo Giambagli, Lorenzo Radicchi, Filippo Torres, Joaquín J. Kurths, Jürgen Sun, Hanlin Bianconi, Ginestra  | 
    
| Author_xml | – sequence: 1 givenname: Ana P. orcidid: 0000-0002-2289-5998 surname: Millán fullname: Millán, Ana P. organization: Institute ‘Carlos I’ for Theoretical and Computational Physics and Electromagnetism and Matter Physics Department, University of Granada – sequence: 2 givenname: Hanlin orcidid: 0000-0003-1606-1257 surname: Sun fullname: Sun, Hanlin organization: Nordita, KTH Royal Institute of Technology and Stockholm University – sequence: 3 givenname: Lorenzo orcidid: 0000-0002-0045-6839 surname: Giambagli fullname: Giambagli, Lorenzo organization: Department of Physics, Freie Universiät Berlin, Department of Physics and Astronomy, University of Florence, INFN & CSDC – sequence: 4 givenname: Riccardo orcidid: 0000-0001-9093-7478 surname: Muolo fullname: Muolo, Riccardo organization: Department of Systems and Control Engineering, Institute of Science Tokyo (former Tokyo Tech) – sequence: 5 givenname: Timoteo orcidid: 0000-0003-2596-4503 surname: Carletti fullname: Carletti, Timoteo organization: Department of Mathematics and NaXys, Namur Institute for Complex Systems, University of Namur – sequence: 6 givenname: Joaquín J. orcidid: 0000-0001-6175-9676 surname: Torres fullname: Torres, Joaquín J. organization: Institute ‘Carlos I’ for Theoretical and Computational Physics and Electromagnetism and Matter Physics Department, University of Granada – sequence: 7 givenname: Filippo orcidid: 0000-0002-8352-1287 surname: Radicchi fullname: Radicchi, Filippo organization: Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University – sequence: 8 givenname: Jürgen surname: Kurths fullname: Kurths, Jürgen organization: Potsdam Institute for Climate Impact Research, Department of Physics, Humboldt University of Berlin – sequence: 9 givenname: Ginestra orcidid: 0000-0002-3380-887X surname: Bianconi fullname: Bianconi, Ginestra email: ginestra.bianconi@gmail.com organization: School of Mathematical Sciences, Queen Mary University of London, The Alan Turing Institute, The British Library  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-242012$$DView record from Swedish Publication Index | 
    
| BookMark | eNp9kD1PwzAQhi0EEm3hDzBFYiXg853tdKzKp1SJpbBaSeqkKW0c7EZV_z0pqcrGcLobnvfV6Rmy89rVlrEb4PfAMXkIBFLpmAvqRksd787YADTJWFAC56db4yUbhrDinIQCHDCYu8atXbmPwjJtbIgW-zrdVHmIXBEtq3Jpfez8wvqottud81_hil0U6TrY6-MesY_np_n0NZ69v7xNJ7M4R663MWYIyUKikkSUSY1khRJoMyLUBBZEahUQzxTBWI1BWsjzNCuwgxKVCRyxu7437GzTZqbx1Sb1e-PSyjxWnxPjfGlCawQJDgf8tscb775bG7Zm5Vpfdx8aBK0RkEvqKNFTuXcheFucaoGbg0nTmzSdSfNr0uy6EB4_6eC6tP6v-p_UD_qFdqc | 
    
| Cites_doi | 10.1038/s42005-021-00605-4 10.1016/j.chaos.2023.114296 10.1088/1367-2630/acf33c 10.1007/BFb0013365 10.1038/nature03607 10.1017/9781108770996 10.1103/RevModPhys.88.035006 10.1142/q0033 10.1103/PhysRevLett.127.158301 10.1038/ncomms10138 10.1103/PRXLife.1.023012 10.1073/pnas.1506407112 10.1103/RevModPhys.51.659 10.1017/CBO9780511791383 10.1371/journal.pone.0066506 10.1007/978-1-84996-290-2 10.1007/s10827-016-0608-6 10.1137/21M1414024 10.1088/1751-8121/ad4d2e 10.1016/j.physrep.2023.04.002 10.3389/fncom.2017.00048 10.1140/epjds/s13688-016-0097-x 10.1098/rsif.2014.0873 10.1137/18M1201019 10.1038/nphys1651 10.1063/5.0047608 10.1007/BF01614426 10.1088/1751-8121/ad0fb5 10.1103/PhysRevE.98.052308 10.1140/epjds/s13688-017-0109-5 10.1140/epjd/e2020-100571-8 10.1093/oso/9780198805090.001.0001 10.1126/sciadv.aba8164 10.1016/j.chaos.2023.114312 10.1007/BF02566245 10.1016/j.physrep.2015.10.008 10.3934/fods.2024001 10.1109/IEEECONF59524.2023.10477018 10.1109/SEC54971.2022.00057 10.1103/RevModPhys.80.1275 10.1137/20M1355896 10.1016/j.sigpro.2021.108149 10.1063/5.0080370 10.1103/PhysRevE.101.022308 10.1103/PhysRevE.110.014307 10.1038/s42005-022-00963-7 10.1088/1361-6404/aae790 10.1063/5.0169388 10.1093/pnasnexus/pgae270 10.1063/5.0132468 10.1103/PhysRevE.104.064303 10.1016/j.physrep.2020.05.004 10.1007/978-3-030-91374-8_3 10.1016/S0167-2789(00)00094-4 10.1109/TSP.2020.2981920 10.1038/nature23273 10.1103/PhysRevE.106.064314 10.1103/PhysRevLett.104.048704 10.1007/s00023-009-0001-3 10.1038/s42005-021-00525-3 10.1038/s41567-021-01371-4 10.1143/PTP.69.32 10.1098/rsif.2022.0043 10.1088/2632-072X/ac19be 10.1016/j.aim.2013.05.007 10.1063/5.0037433 10.1103/PhysRevLett.80.2109 10.1073/pnas.0500298102 10.1103/PhysRevLett.130.187401 10.1088/1751-8121/ab9338 10.1093/oso/9780198753919.001.0001 10.1098/rstb.1952.0012 10.1088/1751-8121/ad6f7e 10.1103/PhysRevE.110.064315 10.1038/s41467-019-10431-6 10.1103/PhysRevE.104.064305 10.1006/jfan.1993.1019 10.1063/5.0020034 10.1038/s42005-022-01024-9 10.1098/rspa.2024.0235 10.3389/frai.2021.681108 10.1103/PhysRevE.106.034319 10.1103/PhysRevE.100.032414 10.1103/PhysRevLett.124.218301 10.1088/2632-072X/abbd4c  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Nature Publishing Group Mar 2025  | 
    
| Copyright_xml | – notice: Springer Nature Limited 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Nature Publishing Group Mar 2025  | 
    
| DBID | AAYXX CITATION 7U5 8FD L7M ADTPV AOWAS DG7  | 
    
| DOI | 10.1038/s41567-024-02757-w | 
    
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace SwePub SwePub Articles SWEPUB Stockholms universitet  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1745-2481 | 
    
| EndPage | 361 | 
    
| ExternalDocumentID | oai_DiVA_org_su_242012 10_1038_s41567_024_02757_w  | 
    
| GrantInformation_xml | – fundername: Donald R. and Esther Simon Foundation funderid: https://doi.org/10.13039/100006618 – fundername: Isaac Newton Institute for Mathematical Sciences (Isaac Newton Institute) funderid: https://doi.org/10.13039/100012112 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: KAKENHI JP22K11919; KAKENHI JP22H00516; CREST JP-MJCR1913 funderid: https://doi.org/10.13039/501100001691 – fundername: United States Department of Defense | United States Army | Army Research Institute for the Behavioral and Social Sciences (U.S. Army Research Institute for the Behavioral & Social Sciences) grantid: W911NF-21-1-0194 funderid: https://doi.org/10.13039/100009919 – fundername: United States Department of Defense | U.S. Air Force (United States Air Force) grantid: FA9550-21-1-0446 funderid: https://doi.org/10.13039/100006831  | 
    
| GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA 7U5 8FD L7M ADTPV AOWAS DG7 PHGZM PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c307t-3b318d5365444b5734e2623eb443741e12ae6140b64196915e1ccabf362386b23 | 
    
| ISSN | 1745-2473 1745-2481  | 
    
| IngestDate | Tue Sep 09 23:19:42 EDT 2025 Sat Aug 23 13:09:07 EDT 2025 Wed Oct 01 06:43:42 EDT 2025 Sat Mar 15 01:10:50 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c307t-3b318d5365444b5734e2623eb443741e12ae6140b64196915e1ccabf362386b23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2289-5998 0000-0003-1606-1257 0000-0001-6175-9676 0000-0002-3380-887X 0000-0003-2596-4503 0000-0002-0045-6839 0000-0001-9093-7478 0000-0002-8352-1287  | 
    
| PQID | 3177313054 | 
    
| PQPubID | 27545 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | swepub_primary_oai_DiVA_org_su_242012 proquest_journals_3177313054 crossref_primary_10_1038_s41567_024_02757_w springer_journals_10_1038_s41567_024_02757_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-03-01 | 
    
| PublicationDateYYYYMMDD | 2025-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Nature physics | 
    
| PublicationTitleAbbrev | Nat. Phys | 
    
| PublicationYear | 2025 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group  | 
    
| References | G Bianconi (2757_CR33) 2018; 98 NW Landry (2757_CR16) 2020; 30 B Eckmann (2757_CR78) 1944; 17 F Hensel (2757_CR28) 2021; 4 F Suwayyid (2757_CR100) 2024; 6 A Patania (2757_CR32) 2017; 6 S Boccaletti (2757_CR27) 2023; 1018 MT Schaub (2757_CR58) 2021; 187 JJ Torres (2757_CR38) 2020; 1 L Calmon (2757_CR56) 2023; 25 2757_CR20 2757_CR3 2757_CR6 2757_CR5 PS Skardal (2757_CR74) 2020; 2 2757_CR2 C Giusti (2757_CR7) 2016; 41 2757_CR1 MW Reimann (2757_CR12) 2017; 11 M Reitz (2757_CR80) 2020; 53 E Davies (2757_CR85) 1993; 111 G Palla (2757_CR83) 2005; 435 R Muolo (2757_CR49) 2024; 178 D Eroglu (2757_CR94) 2016; 7 2757_CR37 M Nurisso (2757_CR93) 2024; 34 2757_CR30 S Majhi (2757_CR25) 2022; 19 H Fujisaka (2757_CR72) 1983; 69 D Horak (2757_CR79) 2013; 244 C Ziegler (2757_CR81) 2022; 32 T Carletti (2757_CR107) 2020; 101 S Barbarossa (2757_CR55) 2020; 68 J Wee (2757_CR99) 2023; 13 R Muolo (2757_CR97) 2024; 480 J Grilli (2757_CR17) 2017; 548 S Krishnagopal (2757_CR98) 2023; 177 F Baccini (2757_CR36) 2022; 106 N Otter (2757_CR29) 2017; 6 2757_CR47 F Battiston (2757_CR22) 2021; 17 V Salnikov (2757_CR26) 2018; 40 L Herron (2757_CR53) 2023; 1 L Torres (2757_CR24) 2021; 63 AP Millán (2757_CR41) 2020; 124 H Sun (2757_CR50) 2023; 14 T Carletti (2757_CR42) 2023; 130 N Delporte (2757_CR91) 2023; 57 2757_CR57 2757_CR59 R Ghorbanchian (2757_CR67) 2021; 4 S Krishnagopal (2757_CR82) 2021; 104 2757_CR54 Y Lee (2757_CR35) 2021; 31 2757_CR51 F Battiston (2757_CR23) 2020; 874 C Giusti (2757_CR8) 2015; 112 A Pikovsky (2757_CR69) 2001; 2 G Ferraz de Arruda (2757_CR15) 2021; 4 G Nicoletti (2757_CR105) 2024; 14 M Tumminello (2757_CR18) 2005; 102 L DeVille (2757_CR45) 2021; 31 H Sun (2757_CR52) 2024; 110 S Strogatz (2757_CR70) 2000; 143 2757_CR68 LM Pecora (2757_CR73) 1998; 80 2757_CR101 2757_CR66 2757_CR65 2757_CR60 C Battiloro (2757_CR103) 2024; 10 2757_CR104 2757_CR102 G Bianconi (2757_CR89) 2021; 2 L Calmon (2757_CR46) 2023; 33 J Faskowitz (2757_CR10) 2022; 6 GP Massara (2757_CR19) 2016; 5 Y-Y Liu (2757_CR75) 2016; 88 G Petri (2757_CR31) 2013; 8 G St-Onge (2757_CR14) 2021; 127 A Arnaudon (2757_CR44) 2022; 5 M Singh (2757_CR62) 2020; 6 2757_CR76 C Bick (2757_CR21) 2023; 65 A Turing (2757_CR95) 1952; 237 L Calmon (2757_CR43) 2022; 5 SH Lee (2757_CR106) 2017; 5 I Iacopini (2757_CR13) 2019; 10 JB Kogut (2757_CR63) 1979; 51 FA Rodrigues (2757_CR71) 2016; 610 MT Schaub (2757_CR40) 2020; 62 MC Banuls (2757_CR64) 2020; 74 SN Dorogovtsev (2757_CR4) 2008; 80 S Lloyd (2757_CR87) 2016; 7 G Petri (2757_CR9) 2014; 11 R Wang (2757_CR77) 2024; 110 H Nakao (2757_CR96) 2010; 6 2757_CR86 2757_CR88 L Giambagli (2757_CR48) 2022; 106 FA Santos (2757_CR34) 2019; 100 G Bianconi (2757_CR92) 2024; 57 G Bianconi (2757_CR90) 2023; 57 A Santoro (2757_CR11) 2023; 19 P Becher (2757_CR84) 1982; 15 D Taylor (2757_CR39) 2015; 6 E Katifori (2757_CR61) 2010; 104 L Neuhäuser (2757_CR108) 2021; 104  | 
    
| References_xml | – volume: 4 start-page: 120 year: 2021 ident: 2757_CR67 publication-title: Comm. Phys. doi: 10.1038/s42005-021-00605-4 – ident: 2757_CR37 – volume: 177 start-page: 114296 year: 2023 ident: 2757_CR98 publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2023.114296 – volume: 25 start-page: 093013 year: 2023 ident: 2757_CR56 publication-title: New J. Phys. doi: 10.1088/1367-2630/acf33c – ident: 2757_CR68 doi: 10.1007/BFb0013365 – volume: 435 start-page: 814 year: 2005 ident: 2757_CR83 publication-title: Nature doi: 10.1038/nature03607 – ident: 2757_CR20 doi: 10.1017/9781108770996 – volume: 88 start-page: 035006 year: 2016 ident: 2757_CR75 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.035006 – ident: 2757_CR5 doi: 10.1142/q0033 – volume: 7 year: 2016 ident: 2757_CR94 publication-title: Nat. Commun. – volume: 127 start-page: 158301 year: 2021 ident: 2757_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.158301 – volume: 7 year: 2016 ident: 2757_CR87 publication-title: Nat. Commun. doi: 10.1038/ncomms10138 – volume: 1 start-page: 023012 year: 2023 ident: 2757_CR53 publication-title: PRX Life doi: 10.1103/PRXLife.1.023012 – volume: 112 start-page: 13455 year: 2015 ident: 2757_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1506407112 – volume: 51 start-page: 659 year: 1979 ident: 2757_CR63 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.51.659 – ident: 2757_CR3 doi: 10.1017/CBO9780511791383 – volume: 8 start-page: e66506 year: 2013 ident: 2757_CR31 publication-title: PloS ONE doi: 10.1371/journal.pone.0066506 – ident: 2757_CR66 doi: 10.1007/978-1-84996-290-2 – volume: 5 start-page: 145 year: 2017 ident: 2757_CR106 publication-title: J. Complex Netw. – volume: 41 start-page: 1 year: 2016 ident: 2757_CR7 publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-016-0608-6 – volume: 65 start-page: 686 year: 2023 ident: 2757_CR21 publication-title: SIAM Rev. doi: 10.1137/21M1414024 – volume: 57 start-page: 275002 year: 2023 ident: 2757_CR91 publication-title: J. Phys. A doi: 10.1088/1751-8121/ad4d2e – volume: 19 start-page: 221 year: 2023 ident: 2757_CR11 publication-title: Nat. Phys. – volume: 1018 start-page: 1 year: 2023 ident: 2757_CR27 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2023.04.002 – volume: 11 start-page: 48 year: 2017 ident: 2757_CR12 publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00048 – volume: 6 start-page: 1 year: 2017 ident: 2757_CR32 publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-016-0097-x – ident: 2757_CR102 – volume: 11 start-page: 20140873 year: 2014 ident: 2757_CR9 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0873 – volume: 62 start-page: 353 year: 2020 ident: 2757_CR40 publication-title: SIAM Review doi: 10.1137/18M1201019 – volume: 14 start-page: 021007 year: 2024 ident: 2757_CR105 publication-title: Phys. Rev. X – volume: 6 start-page: 544 year: 2010 ident: 2757_CR96 publication-title: Nat. Phys. doi: 10.1038/nphys1651 – volume: 31 start-page: 041102 year: 2021 ident: 2757_CR35 publication-title: Chaos doi: 10.1063/5.0047608 – volume: 15 start-page: 343 year: 1982 ident: 2757_CR84 publication-title: Z. Phys. C doi: 10.1007/BF01614426 – volume: 57 start-page: 015001 year: 2023 ident: 2757_CR90 publication-title: J. Phys. A doi: 10.1088/1751-8121/ad0fb5 – volume: 98 start-page: 052308 year: 2018 ident: 2757_CR33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.052308 – volume: 6 start-page: 1 year: 2017 ident: 2757_CR29 publication-title: EPJ Data Sci. doi: 10.1140/epjds/s13688-017-0109-5 – volume: 74 start-page: 1 year: 2020 ident: 2757_CR64 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2020-100571-8 – ident: 2757_CR2 doi: 10.1093/oso/9780198805090.001.0001 – volume: 6 start-page: eaba8164 year: 2020 ident: 2757_CR62 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba8164 – volume: 178 start-page: 114312 year: 2024 ident: 2757_CR49 publication-title: Chaos Soliton. Fract. doi: 10.1016/j.chaos.2023.114312 – volume: 17 start-page: 240 year: 1944 ident: 2757_CR78 publication-title: Comment. Math. Helvetici doi: 10.1007/BF02566245 – volume: 610 start-page: 1 year: 2016 ident: 2757_CR71 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.10.008 – volume: 6 start-page: 124 year: 2024 ident: 2757_CR100 publication-title: Found. Data Sci. doi: 10.3934/fods.2024001 – ident: 2757_CR101 doi: 10.1109/IEEECONF59524.2023.10477018 – ident: 2757_CR88 doi: 10.1109/SEC54971.2022.00057 – volume: 80 start-page: 1275 year: 2008 ident: 2757_CR4 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1275 – volume: 63 start-page: 435 year: 2021 ident: 2757_CR24 publication-title: SIAM Rev. doi: 10.1137/20M1355896 – volume: 187 start-page: 108149 year: 2021 ident: 2757_CR58 publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108149 – volume: 2 start-page: 3 year: 2001 ident: 2757_CR69 publication-title: Self – volume: 32 start-page: 023128 year: 2022 ident: 2757_CR81 publication-title: Chaos doi: 10.1063/5.0080370 – volume: 101 start-page: 022308 year: 2020 ident: 2757_CR107 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.022308 – volume: 110 start-page: 014307 year: 2024 ident: 2757_CR77 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.110.014307 – volume: 5 start-page: 211 year: 2022 ident: 2757_CR44 publication-title: Commun. Phys. doi: 10.1038/s42005-022-00963-7 – volume: 6 start-page: 1 year: 2022 ident: 2757_CR10 publication-title: Netw. Neurosci. – volume: 40 start-page: 014001 year: 2018 ident: 2757_CR26 publication-title: Euro. J. Phys. doi: 10.1088/1361-6404/aae790 – volume: 34 start-page: 053118 year: 2024 ident: 2757_CR93 publication-title: Chaos doi: 10.1063/5.0169388 – ident: 2757_CR47 – volume: 13 year: 2023 ident: 2757_CR99 publication-title: Sci. Rep. – ident: 2757_CR51 doi: 10.1093/pnasnexus/pgae270 – volume: 33 start-page: 033117 year: 2023 ident: 2757_CR46 publication-title: Chaos doi: 10.1063/5.0132468 – volume: 104 start-page: 064303 year: 2021 ident: 2757_CR82 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.064303 – volume: 874 start-page: 1 year: 2020 ident: 2757_CR23 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2020.05.004 – ident: 2757_CR30 doi: 10.1007/978-3-030-91374-8_3 – volume: 143 start-page: 1 year: 2000 ident: 2757_CR70 publication-title: Phys. D doi: 10.1016/S0167-2789(00)00094-4 – volume: 10 start-page: 833 year: 2024 ident: 2757_CR103 publication-title: IEEE Trans. Signal Inf. Process. Netw. – ident: 2757_CR59 – ident: 2757_CR76 – ident: 2757_CR104 – volume: 68 start-page: 2992 year: 2020 ident: 2757_CR55 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2981920 – volume: 548 start-page: 210 year: 2017 ident: 2757_CR17 publication-title: Nature doi: 10.1038/nature23273 – volume: 106 start-page: 064314 year: 2022 ident: 2757_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.064314 – volume: 14 year: 2023 ident: 2757_CR50 publication-title: Nat. Commun. – volume: 104 start-page: 048704 year: 2010 ident: 2757_CR61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.048704 – ident: 2757_CR65 – ident: 2757_CR86 doi: 10.1007/s00023-009-0001-3 – ident: 2757_CR1 – volume: 4 start-page: 24 year: 2021 ident: 2757_CR15 publication-title: Commun. Phys. doi: 10.1038/s42005-021-00525-3 – volume: 17 start-page: 1093 year: 2021 ident: 2757_CR22 publication-title: Nat. Phys. doi: 10.1038/s41567-021-01371-4 – volume: 69 start-page: 32 year: 1983 ident: 2757_CR72 publication-title: Progr. Theor. Phys. doi: 10.1143/PTP.69.32 – volume: 19 start-page: 20220043 year: 2022 ident: 2757_CR25 publication-title: J. R. Soc. Interf. doi: 10.1098/rsif.2022.0043 – volume: 2 start-page: 035022 year: 2021 ident: 2757_CR89 publication-title: J. Phys. Complex. doi: 10.1088/2632-072X/ac19be – volume: 244 start-page: 303 year: 2013 ident: 2757_CR79 publication-title: Adv. Math. doi: 10.1016/j.aim.2013.05.007 – ident: 2757_CR54 – volume: 31 start-page: 023137 year: 2021 ident: 2757_CR45 publication-title: Chaos doi: 10.1063/5.0037433 – volume: 80 start-page: 2109 year: 1998 ident: 2757_CR73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.2109 – volume: 102 start-page: 10421 year: 2005 ident: 2757_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0500298102 – volume: 130 start-page: 187401 year: 2023 ident: 2757_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.130.187401 – volume: 53 start-page: 295001 year: 2020 ident: 2757_CR80 publication-title: J. Phys. A doi: 10.1088/1751-8121/ab9338 – ident: 2757_CR6 doi: 10.1093/oso/9780198753919.001.0001 – volume: 237 start-page: 37 year: 1952 ident: 2757_CR95 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.1952.0012 – volume: 57 start-page: 365002 year: 2024 ident: 2757_CR92 publication-title: J. Phys. A doi: 10.1088/1751-8121/ad6f7e – volume: 110 start-page: 064315 year: 2024 ident: 2757_CR52 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.110.064315 – volume: 1 start-page: 015002 year: 2020 ident: 2757_CR38 publication-title: Journal of Physics: Complexity – ident: 2757_CR60 – volume: 10 year: 2019 ident: 2757_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10431-6 – volume: 104 start-page: 064305 year: 2021 ident: 2757_CR108 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.064305 – volume: 111 start-page: 398 year: 1993 ident: 2757_CR85 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1993.1019 – volume: 30 start-page: 103117 year: 2020 ident: 2757_CR16 publication-title: Chaos doi: 10.1063/5.0020034 – volume: 5 start-page: 253 year: 2022 ident: 2757_CR43 publication-title: Commun. Phys. doi: 10.1038/s42005-022-01024-9 – volume: 480 start-page: 20240235 year: 2024 ident: 2757_CR97 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2024.0235 – ident: 2757_CR57 – volume: 6 year: 2015 ident: 2757_CR39 publication-title: Nat. Commun. – volume: 4 start-page: 681108 year: 2021 ident: 2757_CR28 publication-title: Front. Artif. Intell. doi: 10.3389/frai.2021.681108 – volume: 106 start-page: 034319 year: 2022 ident: 2757_CR36 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.034319 – volume: 100 start-page: 032414 year: 2019 ident: 2757_CR34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.032414 – volume: 124 start-page: 218301 year: 2020 ident: 2757_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.218301 – volume: 2 start-page: 015003 year: 2020 ident: 2757_CR74 publication-title: J. Phys. Complex. doi: 10.1088/2632-072X/abbd4c – volume: 5 start-page: 161 year: 2016 ident: 2757_CR19 publication-title: J. Complex Netw.  | 
    
| SSID | ssj0042613 | 
    
| Score | 2.5484376 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | Higher-order networks capture the many-body interactions present in complex systems, shedding light on the interplay between topology and dynamics. The theory... | 
    
| SourceID | swepub proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 353 | 
    
| SubjectTerms | 639/705/1041 639/766/530 639/766/530/2795 639/766/530/2801 Algorithms Atomic Brain research Classical and Continuum Physics Climate change Complex Systems Condensed Matter Physics Dynamical systems Machine learning Many body problem Mathematical and Computational Physics Molecular Network topologies Nonlinear dynamics Optical and Plasma Physics Percolation Perspective Physics Physics and Astronomy Scientists Synchronism Theoretical Topology  | 
    
| Title | Topology shapes dynamics of higher-order networks | 
    
| URI | https://link.springer.com/article/10.1038/s41567-024-02757-w https://www.proquest.com/docview/3177313054 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-242012  | 
    
| Volume | 21 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1745-2481 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2481 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRZV6QS1t1aUU5dCeUm838SPLcSlFq0pdoQoQN8tOHNgDCdosQuXXd_xKwqsCLlHklSZZz3j8TWbmM0JfqOY5KQqKi4JDgGKYtWVJJNYsI1pRTvXYdCP_nvPZEf11wnqJdttdslKj_PrevpLnaBXGQK-mS_YJmm2FwgDcg37hChqG6-N07E44-Bs3Z_JCN3Hhjpe31RlntoADW2rNuHLF3k0fis4tpaf_tNEia9MbaJPniecWkPHBqMsc2cGZNPQabeXOQp4reerbrOulrq7rTo21S-38WYAOl0Xd_8iQsq7KyvvFjDKcUnfqyEj3x9yJK8GZpknPaEjPMxJGepsscQzsd_y3Y2tvTFSZYYAPJsXMMnzV7VYhQ39rE2tLC21SnUyEkyFAhrAyxNVLtJaC6x8P0Np0f3d3HjZsE0QS1zfr_qPvrQIp3---yU380gUlbR79FuesxSmHb9C6DzCiqbOWt-iFrjbQqwOn5XcoCTYTOZuJgs1EdRn1bSYKNvMeHe3_PPwxw_7YDJyDw15hosBPF4xwRilVsOaoTgHkwsqjBPCjTlKpAZSNFaeGGylhOgETUCVAGTLhKiUf0KCqK_0RRZKN-SRnsJkmimZMyh2mMq5oXpKElXxniOIwGeLCsaOIhxUwRFthvoRfRY0A_JoRAFKMDtG3MIfdz_-T9tXNc_tkw5S-tzieinp5KppLAegT4Nfmk97xE3rd2f8WGqyWl_ozwM6V2vZm8w8Kh3pi | 
    
| linkProvider | Library Specific Holdings | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+shapes+dynamics+of+higher-order+networks&rft.jtitle=Nature+physics&rft.au=Mill%C3%A1n%2C+Ana+P.&rft.au=Sun%2C+Hanlin&rft.au=Giambagli%2C+Lorenzo&rft.au=Muolo%2C+Riccardo&rft.date=2025-03-01&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=21&rft.issue=3&rft.spage=353&rft.epage=361&rft_id=info:doi/10.1038%2Fs41567-024-02757-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41567_024_02757_w | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |