GriT-DBSCAN: A spatial clustering algorithm for very large databases

•A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and e...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 142; p. 109658
Main Authors Huang, Xiaogang, Ma, Tiefeng, Liu, Conan, Liu, Shuangzhe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2023.109658

Cover

Abstract •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and experimentally. DBSCAN is a fundamental spatial clustering algorithm with numerous practical applications. However, a bottleneck of DBSCAN is its O(n2) worst-case time complexity. To address this limitation, we propose a new grid-based algorithm for exact DBSCAN in Euclidean space called GriT-DBSCAN, which is based on the following two techniques. First, we introduce grid tree to organize the non-empty grids for the purpose of efficient non-empty neighboring grids queries. Second, by utilizing the spatial relationships among points, we propose a technique that iteratively prunes unnecessary distance calculations when determining whether the minimum distance between two sets is less than or equal to a certain threshold. We theoretically demonstrate that GriT-DBSCAN has excellent reliability in terms of time complexity. In addition, we obtain two variants of GriT-DBSCAN by incorporating heuristics, or by combining the second technique with an existing algorithm. Experiments are conducted on both synthetic and real-world data sets to evaluate the efficiency of GriT-DBSCAN and its variants. The results show that our algorithms outperform existing algorithms.
AbstractList •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and experimentally. DBSCAN is a fundamental spatial clustering algorithm with numerous practical applications. However, a bottleneck of DBSCAN is its O(n2) worst-case time complexity. To address this limitation, we propose a new grid-based algorithm for exact DBSCAN in Euclidean space called GriT-DBSCAN, which is based on the following two techniques. First, we introduce grid tree to organize the non-empty grids for the purpose of efficient non-empty neighboring grids queries. Second, by utilizing the spatial relationships among points, we propose a technique that iteratively prunes unnecessary distance calculations when determining whether the minimum distance between two sets is less than or equal to a certain threshold. We theoretically demonstrate that GriT-DBSCAN has excellent reliability in terms of time complexity. In addition, we obtain two variants of GriT-DBSCAN by incorporating heuristics, or by combining the second technique with an existing algorithm. Experiments are conducted on both synthetic and real-world data sets to evaluate the efficiency of GriT-DBSCAN and its variants. The results show that our algorithms outperform existing algorithms.
ArticleNumber 109658
Author Liu, Conan
Liu, Shuangzhe
Huang, Xiaogang
Ma, Tiefeng
Author_xml – sequence: 1
  givenname: Xiaogang
  surname: Huang
  fullname: Huang, Xiaogang
  organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China
– sequence: 2
  givenname: Tiefeng
  orcidid: 0000-0003-3464-6080
  surname: Ma
  fullname: Ma, Tiefeng
  email: matiefeng@swufe.edu.cn
  organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China
– sequence: 3
  givenname: Conan
  surname: Liu
  fullname: Liu, Conan
  organization: UNSW Business School, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 4
  givenname: Shuangzhe
  surname: Liu
  fullname: Liu, Shuangzhe
  organization: Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8TJO0C6G2WoWiC-s6JJlkTJlOShILfXunjCsXurpwLt-B843AoA2tBeAWowlGmN3tJgeVTagnBBHaRTM2FRdgiAWnxRSXZACGCFFcUILoFRiltEMI8-4xBKt19Nti9fC-XLzO4QKmrsmrBprmK2UbfVtD1dQh-vy5hy5EeLTxBBsVawsrlZVWyaZrcOlUk-zNzx2Dj6fH7fK52LytX5aLTWEoYrlwiBjtmBDUYG40I6XGDFPHCcXVzJTCca6YLgWeaUUYVZyVdKq1ZYQJZxQdg7LvNTGkFK2Th-j3Kp4kRvJsQu5kb0KeTcjeRIfNf2HG525maHNUvvkPvu9h2w07ehtlMt62xlY-WpNlFfzfBd_kyX1N
CitedBy_id crossref_primary_10_2478_acss_2024_0003
crossref_primary_10_1109_ACCESS_2024_3365424
crossref_primary_10_3390_app14209501
crossref_primary_10_1109_ACCESS_2023_3307412
crossref_primary_10_1016_j_engappai_2024_108551
crossref_primary_10_1371_journal_pone_0293662
crossref_primary_10_1002_eng2_70037
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1061_JPSEA2_PSENG_1589
Cites_doi 10.1109/TPAMI.2020.3023125
10.1016/j.patcog.2022.108568
10.1016/0304-3975(85)90224-5
10.1016/j.patcog.2019.01.034
10.1016/j.patcog.2016.03.008
10.1016/j.patrec.2009.08.008
10.1016/j.eswa.2019.05.030
10.1016/j.patcog.2023.109307
10.1016/0022-0000(79)90042-4
10.1145/3083897
10.1016/j.patcog.2020.107624
10.1016/j.patcog.2018.05.030
10.1109/TSMC.2019.2956527
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2023.109658
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2023_109658
S003132032300359X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-f02cbf6883c17cb624b1613f7231d9c48f77a6b4819ba263a76435bbe6268fca3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Wed Oct 01 05:13:55 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Fri Feb 23 02:37:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords DBSCAN
Indexing methods
Spatial databases
Clustering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-f02cbf6883c17cb624b1613f7231d9c48f77a6b4819ba263a76435bbe6268fca3
ORCID 0000-0003-3464-6080
ParticipantIDs crossref_primary_10_1016_j_patcog_2023_109658
crossref_citationtrail_10_1016_j_patcog_2023_109658
elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gan, Tao (bib0006) 2015
Varma, Zisserman (bib0028) 2003; vol. 2
Chen, Zhou, Pei, Yu, Chen, Liu, Du, Xiong (bib0015) 2019; 51
Viswanath, Babu (bib0019) 2009; 30
Mai, Assent, Storgaard (bib0012) 2016
Jang, Jiang (bib0022) 2019
Borah, Bhattacharyya (bib0008) 2004
Jiang, Jang, Lacki (bib0024) 2020; 33
Hartigan (bib0020) 1975
Chen, Tang, Bouguila, Wang, Du, Li (bib0007) 2018; 83
Viswanath, Pinkesh (bib0018) 2006
Beygelzimer, Kakade, Langford (bib0029) 2006
Liu (bib0021) 2006
Y. Chen, BLOCK-DBSCAN, [Online]. Available
Mai, Jacobsen, Amer-Yahia, Spence, Tran, Assent, Nguyen (bib0013) 2020; 44
Chen, Xie, Liang, Liu (bib0001) 2023; 137
D. Dua, C. Graff, UCI machine learning repository, 2017. [Online]. Available
Ester, Kriegel, Sander, Xu (bib0004) 1996
Tarjan (bib0030) 1979; 18
Gonzalez (bib0023) 1985; 38
Yin, Zhang, Xie, Ma, Guo (bib0003) 2022; 126
Gunawan (bib0005) 2013
Todhunter (bib0026) 1863
Kumar, Reddy (bib0014) 2016; 58
.
Mahran, Mahar (bib0009) 2008
Knuth (bib0025) 1997
Boonchoo, Ao, Liu, Zhao, Zhuang, He (bib0011) 2019; 90
Janani, Vijayarani (bib0002) 2019; 134
Gan, Tao (bib0010) 2017; 42
Chen, Zhou, Bouguila, Wang, Chen, Du (bib0016) 2021; 109
Zhou, Zhou, Cao, Wen, Fan, Hu (bib0017) 2000
J. Gan, APPROXIMATE DBSCAN, [Online]. Available
Chen (10.1016/j.patcog.2023.109658_bib0001) 2023; 137
Chen (10.1016/j.patcog.2023.109658_bib0007) 2018; 83
Janani (10.1016/j.patcog.2023.109658_bib0002) 2019; 134
Gan (10.1016/j.patcog.2023.109658_bib0010) 2017; 42
10.1016/j.patcog.2023.109658_bib0027
Mahran (10.1016/j.patcog.2023.109658_bib0009) 2008
Chen (10.1016/j.patcog.2023.109658_bib0016) 2021; 109
Viswanath (10.1016/j.patcog.2023.109658_bib0018) 2006
Ester (10.1016/j.patcog.2023.109658_bib0004) 1996
Kumar (10.1016/j.patcog.2023.109658_bib0014) 2016; 58
Liu (10.1016/j.patcog.2023.109658_bib0021) 2006
Mai (10.1016/j.patcog.2023.109658_bib0012) 2016
Borah (10.1016/j.patcog.2023.109658_bib0008) 2004
Gunawan (10.1016/j.patcog.2023.109658_bib0005) 2013
10.1016/j.patcog.2023.109658_bib0031
10.1016/j.patcog.2023.109658_bib0032
Yin (10.1016/j.patcog.2023.109658_bib0003) 2022; 126
Viswanath (10.1016/j.patcog.2023.109658_bib0019) 2009; 30
Hartigan (10.1016/j.patcog.2023.109658_bib0020) 1975
Jang (10.1016/j.patcog.2023.109658_bib0022) 2019
Tarjan (10.1016/j.patcog.2023.109658_bib0030) 1979; 18
Zhou (10.1016/j.patcog.2023.109658_bib0017) 2000
Todhunter (10.1016/j.patcog.2023.109658_bib0026) 1863
Chen (10.1016/j.patcog.2023.109658_bib0015) 2019; 51
Gonzalez (10.1016/j.patcog.2023.109658_bib0023) 1985; 38
Jiang (10.1016/j.patcog.2023.109658_bib0024) 2020; 33
Varma (10.1016/j.patcog.2023.109658_bib0028) 2003; vol. 2
Boonchoo (10.1016/j.patcog.2023.109658_bib0011) 2019; 90
Beygelzimer (10.1016/j.patcog.2023.109658_bib0029) 2006
Gan (10.1016/j.patcog.2023.109658_bib0006) 2015
Mai (10.1016/j.patcog.2023.109658_bib0013) 2020; 44
Knuth (10.1016/j.patcog.2023.109658_bib0025) 1997
References_xml – volume: 30
  start-page: 1477
  year: 2009
  end-page: 1488
  ident: bib0019
  article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
– volume: 126
  start-page: 108568
  year: 2022
  ident: bib0003
  article-title: Unsupervised person re-identification via simultaneous clustering and mask prediction
  publication-title: Pattern Recognit.
– reference: Y. Chen, BLOCK-DBSCAN, [Online]. Available:
– volume: 109
  start-page: 107624
  year: 2021
  ident: bib0016
  article-title: BLOCK-DBSCAN: fast clustering for large scale data
  publication-title: Pattern Recognit.
– volume: 42
  start-page: 1
  year: 2017
  end-page: 45
  ident: bib0010
  article-title: On the hardness and approximation of euclidean DBSCAN
  publication-title: ACM Trans. Database Syst.
– volume: 51
  start-page: 3939
  year: 2019
  end-page: 3953
  ident: bib0015
  article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data
  publication-title: IEEE Trans. Syst., Man, Cybern.
– reference: D. Dua, C. Graff, UCI machine learning repository, 2017. [Online]. Available:
– reference: J. Gan, APPROXIMATE DBSCAN, [Online]. Available:
– volume: 134
  start-page: 192
  year: 2019
  end-page: 200
  ident: bib0002
  article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization
  publication-title: Expert Syst. Appl.
– start-page: 226
  year: 1996
  end-page: 231
  ident: bib0004
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining
– start-page: 35
  year: 2008
  end-page: 40
  ident: bib0009
  article-title: Using grid for accelerating density-based clustering
  publication-title: Proceedings of the 2008 IEEE International Conference on Computer and Information Technology
– start-page: 996
  year: 2006
  end-page: 1000
  ident: bib0021
  article-title: A fast density-based clustering algorithm for large databases
  publication-title: Proceedings of the 2006 International Conference on Machine Learning and Cybernetics
– start-page: 912
  year: 2006
  end-page: 915
  ident: bib0018
  article-title: -DBSCAN: a fast hybrid density based clustering method
  publication-title: Proceedings of the18th International Conference on Pattern Recognition
– start-page: 169
  year: 2000
  end-page: 172
  ident: bib0017
  article-title: Combining sampling technique with DBSCAN algorithm for clustering large spatial databases
  publication-title: Proceedings of the 2000 Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: vol. 2
  start-page: II
  year: 2003
  end-page: 691
  ident: bib0028
  article-title: Texture classification: are filter banks necessary?
  publication-title: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 33
  start-page: 22 407
  year: 2020
  end-page: 22 419
  ident: bib0024
  article-title: Faster DBSCAN via subsampled similarity queries
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1975
  ident: bib0020
  article-title: Clustering Algorithms
– start-page: 92
  year: 2004
  end-page: 96
  ident: bib0008
  article-title: An improved sampling-based DBSCAN for large spatial databases
  publication-title: Proceedings of the 2004 International Conferfence on Intelligent Sensing and Information Processing
– year: 1863
  ident: bib0026
  article-title: Spherical Trigonometry
– start-page: 1025
  year: 2016
  end-page: 1034
  ident: bib0012
  article-title: AnyDBC: an efficient anytime density-based clustering algorithm for very large complex datasets
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 44
  start-page: 1338
  year: 2020
  end-page: 1356
  ident: bib0013
  article-title: Incremental density-based clustering on multicore processors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 519
  year: 2015
  end-page: 530
  ident: bib0006
  article-title: DBSCAN revisited: mis-claim, un-fixability, and approximation
  publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
– start-page: 3019
  year: 2019
  end-page: 3029
  ident: bib0022
  article-title: DBSCAN++: towards fast and scalable density clustering
  publication-title: International Conference on Machine Learning
– volume: 18
  start-page: 110
  year: 1979
  end-page: 127
  ident: bib0030
  article-title: A class of algorithms which require nonlinear time to maintain disjoint sets
  publication-title: J. Comput. Syst. Sci.
– volume: 83
  start-page: 375
  year: 2018
  end-page: 387
  ident: bib0007
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: bib0023
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– start-page: 97
  year: 2006
  end-page: 104
  ident: bib0029
  article-title: Cover trees for nearest neighbor
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– reference: .
– year: 2013
  ident: bib0005
  publication-title: A Faster Algorithm for DBSCAN
– volume: 90
  start-page: 271
  year: 2019
  end-page: 284
  ident: bib0011
  article-title: Grid-based DBSCAN: indexing and inference
  publication-title: Pattern Recognit.
– volume: 137
  start-page: 109307
  year: 2023
  ident: bib0001
  article-title: A local tangent plane distance-based approach to 3Dpoint cloud segmentation via clustering
  publication-title: Pattern Recognit.
– year: 1997
  ident: bib0025
  article-title: The Art of Computer Programming, Volume 3: Sorting and Searching
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  ident: bib0014
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
– start-page: 912
  year: 2006
  ident: 10.1016/j.patcog.2023.109658_bib0018
  article-title: l-DBSCAN: a fast hybrid density based clustering method
– start-page: 226
  year: 1996
  ident: 10.1016/j.patcog.2023.109658_bib0004
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 44
  start-page: 1338
  issue: 3
  year: 2020
  ident: 10.1016/j.patcog.2023.109658_bib0013
  article-title: Incremental density-based clustering on multicore processors
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3023125
– start-page: 169
  year: 2000
  ident: 10.1016/j.patcog.2023.109658_bib0017
  article-title: Combining sampling technique with DBSCAN algorithm for clustering large spatial databases
– year: 2013
  ident: 10.1016/j.patcog.2023.109658_bib0005
– volume: 126
  start-page: 108568
  year: 2022
  ident: 10.1016/j.patcog.2023.109658_bib0003
  article-title: Unsupervised person re-identification via simultaneous clustering and mask prediction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108568
– start-page: 35
  year: 2008
  ident: 10.1016/j.patcog.2023.109658_bib0009
  article-title: Using grid for accelerating density-based clustering
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1016/j.patcog.2023.109658_bib0023
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– ident: 10.1016/j.patcog.2023.109658_bib0027
– start-page: 92
  year: 2004
  ident: 10.1016/j.patcog.2023.109658_bib0008
  article-title: An improved sampling-based DBSCAN for large spatial databases
– volume: 90
  start-page: 271
  year: 2019
  ident: 10.1016/j.patcog.2023.109658_bib0011
  article-title: Grid-based DBSCAN: indexing and inference
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.01.034
– start-page: 1025
  year: 2016
  ident: 10.1016/j.patcog.2023.109658_bib0012
  article-title: AnyDBC: an efficient anytime density-based clustering algorithm for very large complex datasets
– volume: vol. 2
  start-page: II
  year: 2003
  ident: 10.1016/j.patcog.2023.109658_bib0028
  article-title: Texture classification: are filter banks necessary?
– year: 1863
  ident: 10.1016/j.patcog.2023.109658_bib0026
– ident: 10.1016/j.patcog.2023.109658_bib0032
– volume: 58
  start-page: 39
  year: 2016
  ident: 10.1016/j.patcog.2023.109658_bib0014
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.03.008
– volume: 30
  start-page: 1477
  issue: 16
  year: 2009
  ident: 10.1016/j.patcog.2023.109658_bib0019
  article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.08.008
– volume: 134
  start-page: 192
  year: 2019
  ident: 10.1016/j.patcog.2023.109658_bib0002
  article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.030
– volume: 137
  start-page: 109307
  year: 2023
  ident: 10.1016/j.patcog.2023.109658_bib0001
  article-title: A local tangent plane distance-based approach to 3Dpoint cloud segmentation via clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109307
– volume: 18
  start-page: 110
  issue: 2
  year: 1979
  ident: 10.1016/j.patcog.2023.109658_bib0030
  article-title: A class of algorithms which require nonlinear time to maintain disjoint sets
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(79)90042-4
– volume: 42
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.patcog.2023.109658_bib0010
  article-title: On the hardness and approximation of euclidean DBSCAN
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/3083897
– year: 1997
  ident: 10.1016/j.patcog.2023.109658_bib0025
– volume: 109
  start-page: 107624
  year: 2021
  ident: 10.1016/j.patcog.2023.109658_bib0016
  article-title: BLOCK-DBSCAN: fast clustering for large scale data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107624
– year: 1975
  ident: 10.1016/j.patcog.2023.109658_bib0020
– start-page: 996
  year: 2006
  ident: 10.1016/j.patcog.2023.109658_bib0021
  article-title: A fast density-based clustering algorithm for large databases
– start-page: 3019
  year: 2019
  ident: 10.1016/j.patcog.2023.109658_bib0022
  article-title: DBSCAN++: towards fast and scalable density clustering
– start-page: 519
  year: 2015
  ident: 10.1016/j.patcog.2023.109658_bib0006
  article-title: DBSCAN revisited: mis-claim, un-fixability, and approximation
– start-page: 97
  year: 2006
  ident: 10.1016/j.patcog.2023.109658_bib0029
  article-title: Cover trees for nearest neighbor
– volume: 83
  start-page: 375
  year: 2018
  ident: 10.1016/j.patcog.2023.109658_bib0007
  article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.05.030
– volume: 51
  start-page: 3939
  issue: 6
  year: 2019
  ident: 10.1016/j.patcog.2023.109658_bib0015
  article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data
  publication-title: IEEE Trans. Syst., Man, Cybern.
  doi: 10.1109/TSMC.2019.2956527
– ident: 10.1016/j.patcog.2023.109658_bib0031
– volume: 33
  start-page: 22 407
  year: 2020
  ident: 10.1016/j.patcog.2023.109658_bib0024
  article-title: Faster DBSCAN via subsampled similarity queries
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0017142
Score 2.5415215
Snippet •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109658
SubjectTerms Clustering
DBSCAN
Indexing methods
Spatial databases
Title GriT-DBSCAN: A spatial clustering algorithm for very large databases
URI https://dx.doi.org/10.1016/j.patcog.2023.109658
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvHjx24gfZA9eF2h32229VVBRIxch4dbsblusqUCgHLz4252hLdHEaOKxzU7STKYzb5M37xFy6fnC144RzI8iyYQ2hulEOAw6IYQoEQuBy8lPA7c_Eg9jZ1wj3WoXBmmVZe8vevq6W5dv2mU22_M0xR1flB3scADRqEM3xg12IdHFoPWxoXmgv3ehGM4thqer9bk1x2sO7W42aaGFOOoquWj8_tN4-jJybvfITokVaVB8zj6pxdMDslv5MNDytzwkvbtFOmS96-duMLiiAV0iSxoCTbZCGQQYTlRlk9kizV_eKIBUCuX7TjPkgFNkiOIkWx6R0e3NsNtnpTsCMwDzc5Z0bKMT1_O4saTRri00oDeeSEBskW-El0ipXC1g5Gtlu1xJAB-O1jFcYbzEKH5M6tPZND4hVEcmMraCq5vWQjuxZ1mxZ7jxI9VJNJcNwqukhKaUDkcHiyysOGKvYZHKEFMZFqlsELaJmhfSGX-cl1W-w28lEEJ3_zXy9N-RZ2Qbnwp23jmp54tVfAEoI9fNdRk1yVZw_9gffAJY3tGC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHvTitxE_9-B1gXa33dYbgogKXISEW9PdtlhTgUA5ePG3O0NboonRxGu7kzST7Zs3yZs3hFw7rnCVpQVzg0AyobRmKhIWAySEEF-EQuBwcq9vd4bicWSNSqRZzMKgrDLH_gzTV2idP6nl2azN4hhnfNF2sM6BRKMP3WiDbArLlNiBVT_WOg9c8J1ZhnOD4fFifm4l8poB3k3HVdwhjsZKNm5-_6k-fak57T2yk5NF2si-Z5-UwskB2S0WMdD8vzwkrft5PGCt2-dmo39DG3SBMmkI1MkSfRCgOlE_GU_ncfryRoGlUri_7zRBEThFiSiWssURGbbvBs0Oy9cjMA08P2VR3dQqsh2Ha0NqZZtCAX3jkQTKFrhaOJGUvq0E1Hzlmzb3JbAPS6kQehgn0j4_JuXJdBKeEKoCHWjTh95NKaGs0DGM0NFcu4FfjxSXFcKLpHg69w7HFRaJV4jEXr0slR6m0stSWSFsHTXLvDP-OC-LfHvf7oAH8P5r5Om_I6_IVmfQ63rdh_7TGdnGN5lU75yU0_kyvADKkarL1ZX6BF-G0xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GriT-DBSCAN%3A+A+spatial+clustering+algorithm+for+very+large+databases&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Xiaogang&rft.au=Ma%2C+Tiefeng&rft.au=Liu%2C+Conan&rft.au=Liu%2C+Shuangzhe&rft.date=2023-10-01&rft.issn=0031-3203&rft.volume=142&rft.spage=109658&rft_id=info:doi/10.1016%2Fj.patcog.2023.109658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_109658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon