GriT-DBSCAN: A spatial clustering algorithm for very large databases
•A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and e...
        Saved in:
      
    
          | Published in | Pattern recognition Vol. 142; p. 109658 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0031-3203 1873-5142  | 
| DOI | 10.1016/j.patcog.2023.109658 | 
Cover
| Abstract | •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and experimentally.
DBSCAN is a fundamental spatial clustering algorithm with numerous practical applications. However, a bottleneck of DBSCAN is its O(n2) worst-case time complexity. To address this limitation, we propose a new grid-based algorithm for exact DBSCAN in Euclidean space called GriT-DBSCAN, which is based on the following two techniques. First, we introduce grid tree to organize the non-empty grids for the purpose of efficient non-empty neighboring grids queries. Second, by utilizing the spatial relationships among points, we propose a technique that iteratively prunes unnecessary distance calculations when determining whether the minimum distance between two sets is less than or equal to a certain threshold. We theoretically demonstrate that GriT-DBSCAN has excellent reliability in terms of time complexity. In addition, we obtain two variants of GriT-DBSCAN by incorporating heuristics, or by combining the second technique with an existing algorithm. Experiments are conducted on both synthetic and real-world data sets to evaluate the efficiency of GriT-DBSCAN and its variants. The results show that our algorithms outperform existing algorithms. | 
    
|---|---|
| AbstractList | •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial relationships among points to omit unnecessary distance calculations.•The efficiency of the proposed algorithm is proved theoretically and experimentally.
DBSCAN is a fundamental spatial clustering algorithm with numerous practical applications. However, a bottleneck of DBSCAN is its O(n2) worst-case time complexity. To address this limitation, we propose a new grid-based algorithm for exact DBSCAN in Euclidean space called GriT-DBSCAN, which is based on the following two techniques. First, we introduce grid tree to organize the non-empty grids for the purpose of efficient non-empty neighboring grids queries. Second, by utilizing the spatial relationships among points, we propose a technique that iteratively prunes unnecessary distance calculations when determining whether the minimum distance between two sets is less than or equal to a certain threshold. We theoretically demonstrate that GriT-DBSCAN has excellent reliability in terms of time complexity. In addition, we obtain two variants of GriT-DBSCAN by incorporating heuristics, or by combining the second technique with an existing algorithm. Experiments are conducted on both synthetic and real-world data sets to evaluate the efficiency of GriT-DBSCAN and its variants. The results show that our algorithms outperform existing algorithms. | 
    
| ArticleNumber | 109658 | 
    
| Author | Liu, Conan Liu, Shuangzhe Huang, Xiaogang Ma, Tiefeng  | 
    
| Author_xml | – sequence: 1 givenname: Xiaogang surname: Huang fullname: Huang, Xiaogang organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China – sequence: 2 givenname: Tiefeng orcidid: 0000-0003-3464-6080 surname: Ma fullname: Ma, Tiefeng email: matiefeng@swufe.edu.cn organization: School of Statistics, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, China – sequence: 3 givenname: Conan surname: Liu fullname: Liu, Conan organization: UNSW Business School, University of New South Wales, Sydney, NSW 2052, Australia – sequence: 4 givenname: Shuangzhe surname: Liu fullname: Liu, Shuangzhe organization: Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia  | 
    
| BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNT8TJO0C6G2WoWiC-s6JJlkTJlOShILfXunjCsXurpwLt-B843AoA2tBeAWowlGmN3tJgeVTagnBBHaRTM2FRdgiAWnxRSXZACGCFFcUILoFRiltEMI8-4xBKt19Nti9fC-XLzO4QKmrsmrBprmK2UbfVtD1dQh-vy5hy5EeLTxBBsVawsrlZVWyaZrcOlUk-zNzx2Dj6fH7fK52LytX5aLTWEoYrlwiBjtmBDUYG40I6XGDFPHCcXVzJTCca6YLgWeaUUYVZyVdKq1ZYQJZxQdg7LvNTGkFK2Th-j3Kp4kRvJsQu5kb0KeTcjeRIfNf2HG525maHNUvvkPvu9h2w07ehtlMt62xlY-WpNlFfzfBd_kyX1N | 
    
| CitedBy_id | crossref_primary_10_2478_acss_2024_0003 crossref_primary_10_1109_ACCESS_2024_3365424 crossref_primary_10_3390_app14209501 crossref_primary_10_1109_ACCESS_2023_3307412 crossref_primary_10_1016_j_engappai_2024_108551 crossref_primary_10_1371_journal_pone_0293662 crossref_primary_10_1002_eng2_70037 crossref_primary_10_1007_s44336_024_00008_3 crossref_primary_10_1061_JPSEA2_PSENG_1589  | 
    
| Cites_doi | 10.1109/TPAMI.2020.3023125 10.1016/j.patcog.2022.108568 10.1016/0304-3975(85)90224-5 10.1016/j.patcog.2019.01.034 10.1016/j.patcog.2016.03.008 10.1016/j.patrec.2009.08.008 10.1016/j.eswa.2019.05.030 10.1016/j.patcog.2023.109307 10.1016/0022-0000(79)90042-4 10.1145/3083897 10.1016/j.patcog.2020.107624 10.1016/j.patcog.2018.05.030 10.1109/TSMC.2019.2956527  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.patcog.2023.109658 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-5142 | 
    
| ExternalDocumentID | 10_1016_j_patcog_2023_109658 S003132032300359X  | 
    
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-f02cbf6883c17cb624b1613f7231d9c48f77a6b4819ba263a76435bbe6268fca3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0031-3203 | 
    
| IngestDate | Wed Oct 01 05:13:55 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Fri Feb 23 02:37:21 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | DBSCAN Indexing methods Spatial databases Clustering  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-f02cbf6883c17cb624b1613f7231d9c48f77a6b4819ba263a76435bbe6268fca3 | 
    
| ORCID | 0000-0003-3464-6080 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2023_109658 crossref_citationtrail_10_1016_j_patcog_2023_109658 elsevier_sciencedirect_doi_10_1016_j_patcog_2023_109658  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2023 2023-10-00  | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Pattern recognition | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Gan, Tao (bib0006) 2015 Varma, Zisserman (bib0028) 2003; vol. 2 Chen, Zhou, Pei, Yu, Chen, Liu, Du, Xiong (bib0015) 2019; 51 Viswanath, Babu (bib0019) 2009; 30 Mai, Assent, Storgaard (bib0012) 2016 Jang, Jiang (bib0022) 2019 Borah, Bhattacharyya (bib0008) 2004 Jiang, Jang, Lacki (bib0024) 2020; 33 Hartigan (bib0020) 1975 Chen, Tang, Bouguila, Wang, Du, Li (bib0007) 2018; 83 Viswanath, Pinkesh (bib0018) 2006 Beygelzimer, Kakade, Langford (bib0029) 2006 Liu (bib0021) 2006 Y. Chen, BLOCK-DBSCAN, [Online]. Available Mai, Jacobsen, Amer-Yahia, Spence, Tran, Assent, Nguyen (bib0013) 2020; 44 Chen, Xie, Liang, Liu (bib0001) 2023; 137 D. Dua, C. Graff, UCI machine learning repository, 2017. [Online]. Available Ester, Kriegel, Sander, Xu (bib0004) 1996 Tarjan (bib0030) 1979; 18 Gonzalez (bib0023) 1985; 38 Yin, Zhang, Xie, Ma, Guo (bib0003) 2022; 126 Gunawan (bib0005) 2013 Todhunter (bib0026) 1863 Kumar, Reddy (bib0014) 2016; 58 . Mahran, Mahar (bib0009) 2008 Knuth (bib0025) 1997 Boonchoo, Ao, Liu, Zhao, Zhuang, He (bib0011) 2019; 90 Janani, Vijayarani (bib0002) 2019; 134 Gan, Tao (bib0010) 2017; 42 Chen, Zhou, Bouguila, Wang, Chen, Du (bib0016) 2021; 109 Zhou, Zhou, Cao, Wen, Fan, Hu (bib0017) 2000 J. Gan, APPROXIMATE DBSCAN, [Online]. Available Chen (10.1016/j.patcog.2023.109658_bib0001) 2023; 137 Chen (10.1016/j.patcog.2023.109658_bib0007) 2018; 83 Janani (10.1016/j.patcog.2023.109658_bib0002) 2019; 134 Gan (10.1016/j.patcog.2023.109658_bib0010) 2017; 42 10.1016/j.patcog.2023.109658_bib0027 Mahran (10.1016/j.patcog.2023.109658_bib0009) 2008 Chen (10.1016/j.patcog.2023.109658_bib0016) 2021; 109 Viswanath (10.1016/j.patcog.2023.109658_bib0018) 2006 Ester (10.1016/j.patcog.2023.109658_bib0004) 1996 Kumar (10.1016/j.patcog.2023.109658_bib0014) 2016; 58 Liu (10.1016/j.patcog.2023.109658_bib0021) 2006 Mai (10.1016/j.patcog.2023.109658_bib0012) 2016 Borah (10.1016/j.patcog.2023.109658_bib0008) 2004 Gunawan (10.1016/j.patcog.2023.109658_bib0005) 2013 10.1016/j.patcog.2023.109658_bib0031 10.1016/j.patcog.2023.109658_bib0032 Yin (10.1016/j.patcog.2023.109658_bib0003) 2022; 126 Viswanath (10.1016/j.patcog.2023.109658_bib0019) 2009; 30 Hartigan (10.1016/j.patcog.2023.109658_bib0020) 1975 Jang (10.1016/j.patcog.2023.109658_bib0022) 2019 Tarjan (10.1016/j.patcog.2023.109658_bib0030) 1979; 18 Zhou (10.1016/j.patcog.2023.109658_bib0017) 2000 Todhunter (10.1016/j.patcog.2023.109658_bib0026) 1863 Chen (10.1016/j.patcog.2023.109658_bib0015) 2019; 51 Gonzalez (10.1016/j.patcog.2023.109658_bib0023) 1985; 38 Jiang (10.1016/j.patcog.2023.109658_bib0024) 2020; 33 Varma (10.1016/j.patcog.2023.109658_bib0028) 2003; vol. 2 Boonchoo (10.1016/j.patcog.2023.109658_bib0011) 2019; 90 Beygelzimer (10.1016/j.patcog.2023.109658_bib0029) 2006 Gan (10.1016/j.patcog.2023.109658_bib0006) 2015 Mai (10.1016/j.patcog.2023.109658_bib0013) 2020; 44 Knuth (10.1016/j.patcog.2023.109658_bib0025) 1997  | 
    
| References_xml | – volume: 30 start-page: 1477 year: 2009 end-page: 1488 ident: bib0019 article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets publication-title: Pattern Recognit. Lett. – volume: 126 start-page: 108568 year: 2022 ident: bib0003 article-title: Unsupervised person re-identification via simultaneous clustering and mask prediction publication-title: Pattern Recognit. – reference: Y. Chen, BLOCK-DBSCAN, [Online]. Available: – volume: 109 start-page: 107624 year: 2021 ident: bib0016 article-title: BLOCK-DBSCAN: fast clustering for large scale data publication-title: Pattern Recognit. – volume: 42 start-page: 1 year: 2017 end-page: 45 ident: bib0010 article-title: On the hardness and approximation of euclidean DBSCAN publication-title: ACM Trans. Database Syst. – volume: 51 start-page: 3939 year: 2019 end-page: 3953 ident: bib0015 article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data publication-title: IEEE Trans. Syst., Man, Cybern. – reference: D. Dua, C. Graff, UCI machine learning repository, 2017. [Online]. Available: – reference: J. Gan, APPROXIMATE DBSCAN, [Online]. Available: – volume: 134 start-page: 192 year: 2019 end-page: 200 ident: bib0002 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Syst. Appl. – start-page: 226 year: 1996 end-page: 231 ident: bib0004 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining – start-page: 35 year: 2008 end-page: 40 ident: bib0009 article-title: Using grid for accelerating density-based clustering publication-title: Proceedings of the 2008 IEEE International Conference on Computer and Information Technology – start-page: 996 year: 2006 end-page: 1000 ident: bib0021 article-title: A fast density-based clustering algorithm for large databases publication-title: Proceedings of the 2006 International Conference on Machine Learning and Cybernetics – start-page: 912 year: 2006 end-page: 915 ident: bib0018 article-title: -DBSCAN: a fast hybrid density based clustering method publication-title: Proceedings of the18th International Conference on Pattern Recognition – start-page: 169 year: 2000 end-page: 172 ident: bib0017 article-title: Combining sampling technique with DBSCAN algorithm for clustering large spatial databases publication-title: Proceedings of the 2000 Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: vol. 2 start-page: II year: 2003 end-page: 691 ident: bib0028 article-title: Texture classification: are filter banks necessary? publication-title: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 33 start-page: 22 407 year: 2020 end-page: 22 419 ident: bib0024 article-title: Faster DBSCAN via subsampled similarity queries publication-title: Adv. Neural Inf. Process. Syst. – year: 1975 ident: bib0020 article-title: Clustering Algorithms – start-page: 92 year: 2004 end-page: 96 ident: bib0008 article-title: An improved sampling-based DBSCAN for large spatial databases publication-title: Proceedings of the 2004 International Conferfence on Intelligent Sensing and Information Processing – year: 1863 ident: bib0026 article-title: Spherical Trigonometry – start-page: 1025 year: 2016 end-page: 1034 ident: bib0012 article-title: AnyDBC: an efficient anytime density-based clustering algorithm for very large complex datasets publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 44 start-page: 1338 year: 2020 end-page: 1356 ident: bib0013 article-title: Incremental density-based clustering on multicore processors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 519 year: 2015 end-page: 530 ident: bib0006 article-title: DBSCAN revisited: mis-claim, un-fixability, and approximation publication-title: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data – start-page: 3019 year: 2019 end-page: 3029 ident: bib0022 article-title: DBSCAN++: towards fast and scalable density clustering publication-title: International Conference on Machine Learning – volume: 18 start-page: 110 year: 1979 end-page: 127 ident: bib0030 article-title: A class of algorithms which require nonlinear time to maintain disjoint sets publication-title: J. Comput. Syst. Sci. – volume: 83 start-page: 375 year: 2018 end-page: 387 ident: bib0007 article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data publication-title: Pattern Recognit. – volume: 38 start-page: 293 year: 1985 end-page: 306 ident: bib0023 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. – start-page: 97 year: 2006 end-page: 104 ident: bib0029 article-title: Cover trees for nearest neighbor publication-title: Proceedings of the 23rd International Conference on Machine Learning – reference: . – year: 2013 ident: bib0005 publication-title: A Faster Algorithm for DBSCAN – volume: 90 start-page: 271 year: 2019 end-page: 284 ident: bib0011 article-title: Grid-based DBSCAN: indexing and inference publication-title: Pattern Recognit. – volume: 137 start-page: 109307 year: 2023 ident: bib0001 article-title: A local tangent plane distance-based approach to 3Dpoint cloud segmentation via clustering publication-title: Pattern Recognit. – year: 1997 ident: bib0025 article-title: The Art of Computer Programming, Volume 3: Sorting and Searching – volume: 58 start-page: 39 year: 2016 end-page: 48 ident: bib0014 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. – start-page: 912 year: 2006 ident: 10.1016/j.patcog.2023.109658_bib0018 article-title: l-DBSCAN: a fast hybrid density based clustering method – start-page: 226 year: 1996 ident: 10.1016/j.patcog.2023.109658_bib0004 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 44 start-page: 1338 issue: 3 year: 2020 ident: 10.1016/j.patcog.2023.109658_bib0013 article-title: Incremental density-based clustering on multicore processors publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3023125 – start-page: 169 year: 2000 ident: 10.1016/j.patcog.2023.109658_bib0017 article-title: Combining sampling technique with DBSCAN algorithm for clustering large spatial databases – year: 2013 ident: 10.1016/j.patcog.2023.109658_bib0005 – volume: 126 start-page: 108568 year: 2022 ident: 10.1016/j.patcog.2023.109658_bib0003 article-title: Unsupervised person re-identification via simultaneous clustering and mask prediction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108568 – start-page: 35 year: 2008 ident: 10.1016/j.patcog.2023.109658_bib0009 article-title: Using grid for accelerating density-based clustering – volume: 38 start-page: 293 year: 1985 ident: 10.1016/j.patcog.2023.109658_bib0023 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – ident: 10.1016/j.patcog.2023.109658_bib0027 – start-page: 92 year: 2004 ident: 10.1016/j.patcog.2023.109658_bib0008 article-title: An improved sampling-based DBSCAN for large spatial databases – volume: 90 start-page: 271 year: 2019 ident: 10.1016/j.patcog.2023.109658_bib0011 article-title: Grid-based DBSCAN: indexing and inference publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.01.034 – start-page: 1025 year: 2016 ident: 10.1016/j.patcog.2023.109658_bib0012 article-title: AnyDBC: an efficient anytime density-based clustering algorithm for very large complex datasets – volume: vol. 2 start-page: II year: 2003 ident: 10.1016/j.patcog.2023.109658_bib0028 article-title: Texture classification: are filter banks necessary? – year: 1863 ident: 10.1016/j.patcog.2023.109658_bib0026 – ident: 10.1016/j.patcog.2023.109658_bib0032 – volume: 58 start-page: 39 year: 2016 ident: 10.1016/j.patcog.2023.109658_bib0014 article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.03.008 – volume: 30 start-page: 1477 issue: 16 year: 2009 ident: 10.1016/j.patcog.2023.109658_bib0019 article-title: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.08.008 – volume: 134 start-page: 192 year: 2019 ident: 10.1016/j.patcog.2023.109658_bib0002 article-title: Text document clustering using spectral clustering algorithm with particle swarm optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.030 – volume: 137 start-page: 109307 year: 2023 ident: 10.1016/j.patcog.2023.109658_bib0001 article-title: A local tangent plane distance-based approach to 3Dpoint cloud segmentation via clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109307 – volume: 18 start-page: 110 issue: 2 year: 1979 ident: 10.1016/j.patcog.2023.109658_bib0030 article-title: A class of algorithms which require nonlinear time to maintain disjoint sets publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(79)90042-4 – volume: 42 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.patcog.2023.109658_bib0010 article-title: On the hardness and approximation of euclidean DBSCAN publication-title: ACM Trans. Database Syst. doi: 10.1145/3083897 – year: 1997 ident: 10.1016/j.patcog.2023.109658_bib0025 – volume: 109 start-page: 107624 year: 2021 ident: 10.1016/j.patcog.2023.109658_bib0016 article-title: BLOCK-DBSCAN: fast clustering for large scale data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107624 – year: 1975 ident: 10.1016/j.patcog.2023.109658_bib0020 – start-page: 996 year: 2006 ident: 10.1016/j.patcog.2023.109658_bib0021 article-title: A fast density-based clustering algorithm for large databases – start-page: 3019 year: 2019 ident: 10.1016/j.patcog.2023.109658_bib0022 article-title: DBSCAN++: towards fast and scalable density clustering – start-page: 519 year: 2015 ident: 10.1016/j.patcog.2023.109658_bib0006 article-title: DBSCAN revisited: mis-claim, un-fixability, and approximation – start-page: 97 year: 2006 ident: 10.1016/j.patcog.2023.109658_bib0029 article-title: Cover trees for nearest neighbor – volume: 83 start-page: 375 year: 2018 ident: 10.1016/j.patcog.2023.109658_bib0007 article-title: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.05.030 – volume: 51 start-page: 3939 issue: 6 year: 2019 ident: 10.1016/j.patcog.2023.109658_bib0015 article-title: KNN-BLOCK DBSCAN: fast clustering for large-scale data publication-title: IEEE Trans. Syst., Man, Cybern. doi: 10.1109/TSMC.2019.2956527 – ident: 10.1016/j.patcog.2023.109658_bib0031 – volume: 33 start-page: 22 407 year: 2020 ident: 10.1016/j.patcog.2023.109658_bib0024 article-title: Faster DBSCAN via subsampled similarity queries publication-title: Adv. Neural Inf. Process. Syst.  | 
    
| SSID | ssj0017142 | 
    
| Score | 2.5415215 | 
    
| Snippet | •A grid-based algorithm for exact DBSCAN is proposed for large databases.•Grid tree is devised to speed up non-empty neighboring grids queries.•Use the spatial... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 109658 | 
    
| SubjectTerms | Clustering DBSCAN Indexing methods Spatial databases  | 
    
| Title | GriT-DBSCAN: A spatial clustering algorithm for very large databases | 
    
| URI | https://dx.doi.org/10.1016/j.patcog.2023.109658 | 
    
| Volume | 142 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QvHjx24gfZA9eF2h32229VVBRIxch4dbsblusqUCgHLz4252hLdHEaOKxzU7STKYzb5M37xFy6fnC144RzI8iyYQ2hulEOAw6IYQoEQuBy8lPA7c_Eg9jZ1wj3WoXBmmVZe8vevq6W5dv2mU22_M0xR1flB3scADRqEM3xg12IdHFoPWxoXmgv3ehGM4thqer9bk1x2sO7W42aaGFOOoquWj8_tN4-jJybvfITokVaVB8zj6pxdMDslv5MNDytzwkvbtFOmS96-duMLiiAV0iSxoCTbZCGQQYTlRlk9kizV_eKIBUCuX7TjPkgFNkiOIkWx6R0e3NsNtnpTsCMwDzc5Z0bKMT1_O4saTRri00oDeeSEBskW-El0ipXC1g5Gtlu1xJAB-O1jFcYbzEKH5M6tPZND4hVEcmMraCq5vWQjuxZ1mxZ7jxI9VJNJcNwqukhKaUDkcHiyysOGKvYZHKEFMZFqlsELaJmhfSGX-cl1W-w28lEEJ3_zXy9N-RZ2Qbnwp23jmp54tVfAEoI9fNdRk1yVZw_9gffAJY3tGC | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHvTitxE_9-B1gXa33dYbgogKXISEW9PdtlhTgUA5ePG3O0NboonRxGu7kzST7Zs3yZs3hFw7rnCVpQVzg0AyobRmKhIWAySEEF-EQuBwcq9vd4bicWSNSqRZzMKgrDLH_gzTV2idP6nl2azN4hhnfNF2sM6BRKMP3WiDbArLlNiBVT_WOg9c8J1ZhnOD4fFifm4l8poB3k3HVdwhjsZKNm5-_6k-fak57T2yk5NF2si-Z5-UwskB2S0WMdD8vzwkrft5PGCt2-dmo39DG3SBMmkI1MkSfRCgOlE_GU_ncfryRoGlUri_7zRBEThFiSiWssURGbbvBs0Oy9cjMA08P2VR3dQqsh2Ha0NqZZtCAX3jkQTKFrhaOJGUvq0E1Hzlmzb3JbAPS6kQehgn0j4_JuXJdBKeEKoCHWjTh95NKaGs0DGM0NFcu4FfjxSXFcKLpHg69w7HFRaJV4jEXr0slR6m0stSWSFsHTXLvDP-OC-LfHvf7oAH8P5r5Om_I6_IVmfQ63rdh_7TGdnGN5lU75yU0_kyvADKkarL1ZX6BF-G0xc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GriT-DBSCAN%3A+A+spatial+clustering+algorithm+for+very+large+databases&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Xiaogang&rft.au=Ma%2C+Tiefeng&rft.au=Liu%2C+Conan&rft.au=Liu%2C+Shuangzhe&rft.date=2023-10-01&rft.issn=0031-3203&rft.volume=142&rft.spage=109658&rft_id=info:doi/10.1016%2Fj.patcog.2023.109658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2023_109658 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |