Development of a fully implicit 3-D geomechanical fracture simulator
Hydraulic fracturing modelling is a multi-physics problem which must be solved in the reservoir domain, fracture domain, and wellbore domain. The physical phenomena that need to be quantitatively modelled include solid deformation and fluid flow in the poroelastic reservoir, fluid flow in the fractu...
Saved in:
| Published in | Journal of petroleum science & engineering Vol. 179; pp. 758 - 775 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4105 1873-4715 |
| DOI | 10.1016/j.petrol.2019.04.065 |
Cover
| Abstract | Hydraulic fracturing modelling is a multi-physics problem which must be solved in the reservoir domain, fracture domain, and wellbore domain. The physical phenomena that need to be quantitatively modelled include solid deformation and fluid flow in the poroelastic reservoir, fluid flow in the fractures, and fluid and proppant transport in the wellbore. These problems which are tightly coupled with each other in a highly non-linear manner are solved together implicitly for the first time. This fully implicit, parallelized 3D hydraulic fracturing simulator is capable of simulating simultaneous propagation of multiple fractures in multi-well pads. In this new simulator, four sets of governing equations are coupled implicitly and solved simultaneously. The solid deformation equations and reservoir pressure equations are discretized using the finite volume method while the fracture pressure equation is discretized using the finite area method. Fluid flow in the wellbore is modelled considering wellbore compressibility, perforation pressure drop, and wellbore friction pressure drop. A Barton-Bandis contact model is applied to model fracture closure due to stress shadow effects as well as production. The simulator is parallelized using the distributed memory approach with domain decomposition to improve the computation efficiency. We first validated our simulator with two well-known model problems and the numerical results show good agreement with the existing analytical solutions. We compare the performance of the new simulator with the past explicit methods and show that the new simulator offers significant improvement in numerical stability and computation speed. Finally, the simulator is applied to simulate and analyze one stage of a fracturing treatment with five fractures propagating simultaneously to show the unique capabilities of our simulator.
•A three-dimensional geomechanical hydraulic fracturing simulator is developed.•This simulator fully implicitly couples reservoir, fracture, and wellbore.•This simulator employs the Newton's method and is parallelized using a distributed memory approach and domain decomposition.•Fracture closure is considered using Barton-Bandis contact model.•This simulator is validated using the classical analytical solutions. |
|---|---|
| AbstractList | Hydraulic fracturing modelling is a multi-physics problem which must be solved in the reservoir domain, fracture domain, and wellbore domain. The physical phenomena that need to be quantitatively modelled include solid deformation and fluid flow in the poroelastic reservoir, fluid flow in the fractures, and fluid and proppant transport in the wellbore. These problems which are tightly coupled with each other in a highly non-linear manner are solved together implicitly for the first time. This fully implicit, parallelized 3D hydraulic fracturing simulator is capable of simulating simultaneous propagation of multiple fractures in multi-well pads. In this new simulator, four sets of governing equations are coupled implicitly and solved simultaneously. The solid deformation equations and reservoir pressure equations are discretized using the finite volume method while the fracture pressure equation is discretized using the finite area method. Fluid flow in the wellbore is modelled considering wellbore compressibility, perforation pressure drop, and wellbore friction pressure drop. A Barton-Bandis contact model is applied to model fracture closure due to stress shadow effects as well as production. The simulator is parallelized using the distributed memory approach with domain decomposition to improve the computation efficiency. We first validated our simulator with two well-known model problems and the numerical results show good agreement with the existing analytical solutions. We compare the performance of the new simulator with the past explicit methods and show that the new simulator offers significant improvement in numerical stability and computation speed. Finally, the simulator is applied to simulate and analyze one stage of a fracturing treatment with five fractures propagating simultaneously to show the unique capabilities of our simulator.
•A three-dimensional geomechanical hydraulic fracturing simulator is developed.•This simulator fully implicitly couples reservoir, fracture, and wellbore.•This simulator employs the Newton's method and is parallelized using a distributed memory approach and domain decomposition.•Fracture closure is considered using Barton-Bandis contact model.•This simulator is validated using the classical analytical solutions. |
| Author | Sharma, Mukul M. Zheng, Shuang Manchanda, Ripudaman |
| Author_xml | – sequence: 1 givenname: Shuang surname: Zheng fullname: Zheng, Shuang email: shuangzheng@utexas.edu – sequence: 2 givenname: Ripudaman surname: Manchanda fullname: Manchanda, Ripudaman – sequence: 3 givenname: Mukul M. surname: Sharma fullname: Sharma, Mukul M. |
| BookMark | eNqFkL1OwzAUhS0EEm3hDRj8AgnXsePEDEio5U-qxAKz5To34MqJI8et1LcnVZkYYDrTd3TONyfnfeiRkBsGOQMmb7f5gCkGnxfAVA4iB1mekRmrK56JipXnZAaqgEwwKC_JfBy3AMAlr2ZktcI9-jB02CcaWmpou_P-QF03eGddojxb0U8MHdov0ztrPG2jsWkXkY6u23mTQrwiF63xI17_5IJ8PD2-L1-y9dvz6_JhnVkOMmUohWl4K6sNKmUqbtRGcLlpuKibolCqNBJk1apaMqPqaWEr0fJGlKCm5XXDF0Scem0M4xix1UN0nYkHzUAfTeitPpnQRxMahJ5MTNjdL2w6ZpILfYrG-f_g-xOM07G9w6hH67C32LiINukmuL8LvgEsbH6Q |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2022_100488 crossref_primary_10_2118_195912_PA crossref_primary_10_1016_j_cma_2021_114111 crossref_primary_10_1016_j_petrol_2021_109818 crossref_primary_10_2118_200400_PA crossref_primary_10_1016_j_petrol_2020_107252 crossref_primary_10_1002_ese3_1027 crossref_primary_10_1002_cjce_24208 crossref_primary_10_1016_j_petrol_2022_111249 crossref_primary_10_1007_s40948_022_00391_5 crossref_primary_10_1016_j_compgeo_2024_106482 crossref_primary_10_1115_1_4056727 crossref_primary_10_1016_j_compgeo_2021_104125 crossref_primary_10_1016_j_fuel_2019_115737 crossref_primary_10_1016_j_jngse_2021_104197 crossref_primary_10_1088_1742_6596_2099_1_012011 crossref_primary_10_1016_j_petrol_2020_107610 crossref_primary_10_1002_cjce_24103 crossref_primary_10_1007_s13202_021_01234_x crossref_primary_10_3390_en13215644 crossref_primary_10_1016_j_egyr_2021_10_105 crossref_primary_10_2118_203906_PA crossref_primary_10_3390_en14227645 crossref_primary_10_1007_s13202_021_01342_8 crossref_primary_10_2118_199366_PA crossref_primary_10_2118_201205_PA crossref_primary_10_2118_210572_PA crossref_primary_10_2118_218398_PA crossref_primary_10_1016_j_petrol_2021_109703 crossref_primary_10_1007_s00603_023_03231_4 crossref_primary_10_1016_j_petrol_2020_107587 |
| Cites_doi | 10.1016/j.engfracmech.2015.06.029 10.2118/3009-PA 10.1016/j.compgeo.2018.09.010 10.1016/j.cma.2019.03.040 10.2118/167626-PA 10.1016/j.compstruc.2016.07.004 10.2118/2458-PA 10.1007/s00466-015-1123-8 10.1016/S0022-5096(99)00029-0 10.2118/89-PA 10.1016/0022-5096(60)90013-2 10.1016/S0065-2156(08)70121-2 10.1115/1.3656897 10.2118/124884-PA 10.1137/140967118 10.1002/nag.2135 10.1002/nag.2557 10.1016/j.engfracmech.2011.11.012 10.1016/j.jngse.2017.10.012 10.1016/j.petrol.2015.08.010 10.1016/j.cma.2016.02.037 10.2118/173361-PA |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.petrol.2019.04.065 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1873-4715 |
| EndPage | 775 |
| ExternalDocumentID | 10_1016_j_petrol_2019_04_065 S0920410519304024 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SPD SSE SSR SSZ T5K WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-e64ad3f67be99a73a9b436bd348d22995a6067f9861a98003f6ec3d45094108d3 |
| IEDL.DBID | .~1 |
| ISSN | 0920-4105 |
| IngestDate | Thu Oct 16 04:38:59 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Fri Feb 23 02:47:44 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Contact problem Finite volume and finite area method Slurry distribution Hydraulic fracturing simulation Simultaneous multi-fracture propagation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-e64ad3f67be99a73a9b436bd348d22995a6067f9861a98003f6ec3d45094108d3 |
| PageCount | 18 |
| ParticipantIDs | crossref_primary_10_1016_j_petrol_2019_04_065 crossref_citationtrail_10_1016_j_petrol_2019_04_065 elsevier_sciencedirect_doi_10_1016_j_petrol_2019_04_065 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of petroleum science & engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Sala, Stanley (bib30) 2004 Nordgren (bib24) 1972; 12 Barenblatt (bib2) 1962; vol. 7 Shrivastava, Sharma (bib43) 2018 January Bandis, Lumsden, Barton (bib1) 1983; vol. 20 Manchanda, Zheng, Hirose, Sharma (bib22) 2019 Mikelic, Wheeler, Wick (bib23) 2015; 13 Bryant, Hwang, Sharma (bib4) 2015 Gai (bib11) 2004 Malikova (bib19) 2015; 143 Cardiff, Tuković, Jasak, Ivanković (bib5) 2016; 175 Zheng, Manchanda, Sharma (bib42) 2019 Bryant (bib3) 2016 Zeng, Yao, Shao (bib40) 2019; 105 Ouchi, Katiyar, Foster, Sharma (bib27) 2017; 22 Manchanda (bib20) 2015 Lecampion, Bunger, Zhang (bib16) 2018; 49 Olson (bib25) 1991 Dugdale (bib8) 1960; 8 Fu, Johnson, Carrigan (bib10) 2013; 37 Lee, Wheeler, Wick (bib18) 2016; 305 Settgast, Johnson, Fu, Walsh, Annavarapu, Hao, White, Ryerson (bib32) 2014; 654611 Weng, Kresse, Cohen, Wu, Gu (bib38) 2011 Carrier, Granet (bib6) 2012; 79 Geertsma, De Klerk (bib12) 1969; 21 Valko, Economides (bib35) 1995; vol. 28 Wang (bib36) 2015; 135 Manchanda, Zheng, Sharma (bib21) 2019 Lee, Cardiff, Bryant, Manchanda, Wang, Sharma (bib17) 2015 Perkins, Kern (bib28) 1961; 13 Erdogan, Sih (bib9) 1963; 85 Settgast, Fu, Walsh, White, Annavarapu, Ryerson (bib33) 2017; 41 Heroux (bib13) 2004 Ouchi, Katiyar, York, Foster, Sharma (bib26) 2015; 55 Wu, Olson (bib39) 2015; 20 Silling (bib34) 2000; 48 Khristianovic, Zheltov (bib15) 1955; vol. 2 Dahi-Taleghani, Olson (bib7) 2011; 16 Zheng, Manchanda, Sharma (bib41) 2019 Hwang, Manchanda, Sharma (bib14) 2019; 350 Romero, Mack, Elbel (bib29) 1995 Sala (10.1016/j.petrol.2019.04.065_bib30) 2004 Erdogan (10.1016/j.petrol.2019.04.065_bib9) 1963; 85 Cardiff (10.1016/j.petrol.2019.04.065_bib5) 2016; 175 Manchanda (10.1016/j.petrol.2019.04.065_bib20) 2015 Ouchi (10.1016/j.petrol.2019.04.065_bib26) 2015; 55 Lee (10.1016/j.petrol.2019.04.065_bib18) 2016; 305 Zheng (10.1016/j.petrol.2019.04.065_bib41) 2019 Heroux (10.1016/j.petrol.2019.04.065_bib13) 2004 Perkins (10.1016/j.petrol.2019.04.065_bib28) 1961; 13 Silling (10.1016/j.petrol.2019.04.065_bib34) 2000; 48 Fu (10.1016/j.petrol.2019.04.065_bib10) 2013; 37 Lee (10.1016/j.petrol.2019.04.065_bib17) 2015 Hwang (10.1016/j.petrol.2019.04.065_bib14) 2019; 350 Barenblatt (10.1016/j.petrol.2019.04.065_bib2) 1962; vol. 7 Geertsma (10.1016/j.petrol.2019.04.065_bib12) 1969; 21 Settgast (10.1016/j.petrol.2019.04.065_bib32) 2014; 654611 Wang (10.1016/j.petrol.2019.04.065_bib36) 2015; 135 Romero (10.1016/j.petrol.2019.04.065_bib29) 1995 Zheng (10.1016/j.petrol.2019.04.065_bib42) 2019 Khristianovic (10.1016/j.petrol.2019.04.065_bib15) 1955; vol. 2 Shrivastava (10.1016/j.petrol.2019.04.065_bib43) 2018 Manchanda (10.1016/j.petrol.2019.04.065_bib21) 2019 Bryant (10.1016/j.petrol.2019.04.065_bib3) 2016 Gai (10.1016/j.petrol.2019.04.065_bib11) 2004 Carrier (10.1016/j.petrol.2019.04.065_bib6) 2012; 79 Bandis (10.1016/j.petrol.2019.04.065_bib1) 1983; vol. 20 Nordgren (10.1016/j.petrol.2019.04.065_bib24) 1972; 12 Mikelic (10.1016/j.petrol.2019.04.065_bib23) 2015; 13 Olson (10.1016/j.petrol.2019.04.065_bib25) 1991 Ouchi (10.1016/j.petrol.2019.04.065_bib27) 2017; 22 Malikova (10.1016/j.petrol.2019.04.065_bib19) 2015; 143 Dahi-Taleghani (10.1016/j.petrol.2019.04.065_bib7) 2011; 16 Dugdale (10.1016/j.petrol.2019.04.065_bib8) 1960; 8 Weng (10.1016/j.petrol.2019.04.065_bib38) 2011 Lecampion (10.1016/j.petrol.2019.04.065_bib16) 2018; 49 Zeng (10.1016/j.petrol.2019.04.065_bib40) 2019; 105 Settgast (10.1016/j.petrol.2019.04.065_bib33) 2017; 41 Bryant (10.1016/j.petrol.2019.04.065_bib4) 2015 Manchanda (10.1016/j.petrol.2019.04.065_bib22) 2019 Valko (10.1016/j.petrol.2019.04.065_bib35) 1995; vol. 28 Wu (10.1016/j.petrol.2019.04.065_bib39) 2015; 20 |
| References_xml | – volume: 350 start-page: 571 year: 2019 end-page: 594 ident: bib14 article-title: An extended finite volume model for implicit cohesive zone fracture propagation in a poroelastic medium publication-title: Comput. Methods Appl. Mech. Eng. – year: 2015 ident: bib20 article-title: (Doctoral Dissertation – volume: vol. 20 start-page: 249 year: 1983 end-page: 268 ident: bib1 article-title: December. Fundamentals of rock joint deformation publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts – volume: 85 start-page: 519 year: 1963 end-page: 525 ident: bib9 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. – volume: 22 start-page: 1 year: 2017 end-page: 082 ident: bib27 article-title: A peridynamics model for the propagation of hydraulic fractures in naturally fractured reservoirs publication-title: SPE J. – year: 2004 ident: bib30 article-title: (No. SAND2004-2188) – volume: vol. 28 start-page: 206 year: 1995 ident: bib35 publication-title: Hydraulic Fracture Mechanics – year: 2015 ident: bib17 article-title: A new model for hydraulic fracture growth in unconsolidated sands with plasticity and leak-off publication-title: SPE Annual Technical Conference and Exhibition – volume: 305 start-page: 111 year: 2016 end-page: 132 ident: bib18 article-title: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model publication-title: Comput. Methods Appl. Mech. Eng. – year: 2015 ident: bib4 article-title: Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model publication-title: SPE Hydraulic Fracturing Technology Conference – volume: 105 start-page: 51 year: 2019 end-page: 68 ident: bib40 article-title: Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach publication-title: Comput. Geotech. – volume: 8 start-page: 100 year: 1960 end-page: 104 ident: bib8 article-title: Yielding of steel sheets containing slits publication-title: J. Mech. Phys. Solids – volume: 175 start-page: 100 year: 2016 end-page: 122 ident: bib5 article-title: A block-coupled finite volume methodology for linear elasticity and unstructured meshes publication-title: Comput. Struct. – year: 1991 ident: bib25 article-title: (Doctoral Dissertation – volume: 37 start-page: 2278 year: 2013 end-page: 2300 ident: bib10 article-title: An explicitly coupled hydro‐geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks publication-title: Int. J. Numer. Anal. Methods Geomech. – volume: 20 start-page: 337 year: 2015 end-page: 346 ident: bib39 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells publication-title: SPE J. – volume: 16 start-page: 575 year: 2011 end-page: 581 ident: bib7 article-title: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures publication-title: SPE J. – year: 2019 ident: bib22 article-title: A reservoir geomechanics model for multiple fracture propagation with proppant distribution publication-title: SPE J Under Rev. – volume: 13 start-page: 367 year: 2015 end-page: 398 ident: bib23 article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium publication-title: Multiscale Model. Simul. – volume: 654611 year: 2014 ident: bib32 article-title: GEOS: a framework for massively parallel multi-physics simulations publication-title: Theor. Implement. – year: 2004 ident: bib11 article-title: (Doctoral Dissertation – volume: 79 start-page: 312 year: 2012 end-page: 328 ident: bib6 article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model publication-title: Eng. Fract. Mech. – volume: vol. 2 start-page: 579 year: 1955 end-page: 586 ident: bib15 article-title: Formation of vertical fractures by means of highly viscous fluids publication-title: Proc. 4th World Petroleum Congress, Rome – year: 2019 ident: bib41 article-title: Efficient incorporation of a contact model into a fully implicit geomechanical fracture simulator publication-title: 53rd US Rock Mechanics/Geomechanics Symposium – volume: 48 start-page: 175 year: 2000 end-page: 209 ident: bib34 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids – year: 2019 ident: bib21 article-title: Creation of multi-stranded fractures in homogeneous rocks publication-title: 53rd US Rock Mechanics/Geomechanics Symposium – volume: 55 start-page: 561 year: 2015 end-page: 576 ident: bib26 article-title: A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach publication-title: Comput. Mech. – volume: 49 start-page: 66 year: 2018 end-page: 83 ident: bib16 article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends publication-title: J. Nat. Gas Sci. Eng. – volume: 143 start-page: 32 year: 2015 end-page: 46 ident: bib19 article-title: Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry publication-title: Eng. Fract. Mech. – year: 2018 January ident: bib43 article-title: Mechanisms for the formation of complex fracture networks in naturally fractured rocks publication-title: SPE Hydraulic Fracturing Technology Conference and Exhibition – volume: vol. 7 start-page: 55 year: 1962 end-page: 129 ident: bib2 article-title: The mathematical theory of equilibrium cracks in brittle fracture publication-title: Advances in Applied Mechanics – volume: 21 start-page: 1 year: 1969 end-page: 571 ident: bib12 article-title: A rapid method of predicting width and extent of hydraulically induced fractures publication-title: J. Pet. Technol. – volume: 135 start-page: 127 year: 2015 end-page: 140 ident: bib36 article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method publication-title: J. Pet. Sci. Eng. – year: 2011 ident: bib38 article-title: January. Modeling of hydraulic fracture network propagation in a naturally fractured formation publication-title: SPE Hydraulic Fracturing Technology Conference – volume: 12 start-page: 306 year: 1972 end-page: 314 ident: bib24 article-title: Propagation of a vertical hydraulic fracture publication-title: Soc. Petrol. Eng. J. – volume: 13 start-page: 937 year: 1961 end-page: 949 ident: bib28 article-title: Widths of hydraulic fractures publication-title: J. Pet. Technol. – year: 1995 ident: bib29 article-title: Theoretical model and numerical investigation of near-wellbore effects in hydraulic fracturing publication-title: SPE Annual Technical Conference and Exhibition – volume: 41 start-page: 627 year: 2017 end-page: 653 ident: bib33 article-title: A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3‐dimensions publication-title: Int. J. Numer. Anal. Methods Geomech. – year: 2016 ident: bib3 article-title: Hydraulic Fracture Modeling with Finite Volumes and Areas – year: 2019 ident: bib42 article-title: Linearized predictor method for the efficient iterative solution of coupled geomechanics – fracture flow problems publication-title: 53rd US Rock Mechanics/Geomechanics Symposium – year: 2004 ident: bib13 article-title: (No. SAND2004-3796) – year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib22 article-title: A reservoir geomechanics model for multiple fracture propagation with proppant distribution publication-title: SPE J Under Rev. – year: 2004 ident: 10.1016/j.petrol.2019.04.065_bib11 – volume: 143 start-page: 32 year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib19 article-title: Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2015.06.029 – volume: 12 start-page: 306 issue: 04 year: 1972 ident: 10.1016/j.petrol.2019.04.065_bib24 article-title: Propagation of a vertical hydraulic fracture publication-title: Soc. Petrol. Eng. J. doi: 10.2118/3009-PA – volume: 105 start-page: 51 year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib40 article-title: Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2018.09.010 – year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib42 article-title: Linearized predictor method for the efficient iterative solution of coupled geomechanics – fracture flow problems – volume: 350 start-page: 571 year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib14 article-title: An extended finite volume model for implicit cohesive zone fracture propagation in a poroelastic medium publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.03.040 – volume: vol. 28 start-page: 206 year: 1995 ident: 10.1016/j.petrol.2019.04.065_bib35 – volume: 20 start-page: 337 issue: 02 year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib39 article-title: Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells publication-title: SPE J. doi: 10.2118/167626-PA – volume: 175 start-page: 100 year: 2016 ident: 10.1016/j.petrol.2019.04.065_bib5 article-title: A block-coupled finite volume methodology for linear elasticity and unstructured meshes publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.07.004 – year: 2004 ident: 10.1016/j.petrol.2019.04.065_bib30 – volume: 21 start-page: 1 issue: 12 year: 1969 ident: 10.1016/j.petrol.2019.04.065_bib12 article-title: A rapid method of predicting width and extent of hydraulically induced fractures publication-title: J. Pet. Technol. doi: 10.2118/2458-PA – volume: 55 start-page: 561 issue: 3 year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib26 article-title: A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach publication-title: Comput. Mech. doi: 10.1007/s00466-015-1123-8 – volume: 48 start-page: 175 issue: 1 year: 2000 ident: 10.1016/j.petrol.2019.04.065_bib34 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00029-0 – year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib41 article-title: Efficient incorporation of a contact model into a fully implicit geomechanical fracture simulator – year: 2016 ident: 10.1016/j.petrol.2019.04.065_bib3 – year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib20 – year: 2019 ident: 10.1016/j.petrol.2019.04.065_bib21 article-title: Creation of multi-stranded fractures in homogeneous rocks – volume: 13 start-page: 937 issue: 09 year: 1961 ident: 10.1016/j.petrol.2019.04.065_bib28 article-title: Widths of hydraulic fractures publication-title: J. Pet. Technol. doi: 10.2118/89-PA – volume: 8 start-page: 100 issue: 2 year: 1960 ident: 10.1016/j.petrol.2019.04.065_bib8 article-title: Yielding of steel sheets containing slits publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(60)90013-2 – volume: vol. 2 start-page: 579 year: 1955 ident: 10.1016/j.petrol.2019.04.065_bib15 article-title: Formation of vertical fractures by means of highly viscous fluids – year: 2011 ident: 10.1016/j.petrol.2019.04.065_bib38 article-title: January. Modeling of hydraulic fracture network propagation in a naturally fractured formation – volume: vol. 7 start-page: 55 year: 1962 ident: 10.1016/j.petrol.2019.04.065_bib2 article-title: The mathematical theory of equilibrium cracks in brittle fracture doi: 10.1016/S0065-2156(08)70121-2 – volume: 85 start-page: 519 issue: 4 year: 1963 ident: 10.1016/j.petrol.2019.04.065_bib9 article-title: On the crack extension in plates under plane loading and transverse shear publication-title: J. Basic Eng. doi: 10.1115/1.3656897 – volume: 16 start-page: 575 issue: 03 year: 2011 ident: 10.1016/j.petrol.2019.04.065_bib7 article-title: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures publication-title: SPE J. doi: 10.2118/124884-PA – year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib4 article-title: Arbitrary fracture propagation in heterogeneous poroelastic formations using a finite volume-based cohesive zone model – year: 1995 ident: 10.1016/j.petrol.2019.04.065_bib29 article-title: Theoretical model and numerical investigation of near-wellbore effects in hydraulic fracturing – year: 2004 ident: 10.1016/j.petrol.2019.04.065_bib13 – year: 1991 ident: 10.1016/j.petrol.2019.04.065_bib25 – volume: 13 start-page: 367 issue: 1 year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib23 article-title: A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium publication-title: Multiscale Model. Simul. doi: 10.1137/140967118 – year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib17 article-title: A new model for hydraulic fracture growth in unconsolidated sands with plasticity and leak-off – volume: 37 start-page: 2278 issue: 14 year: 2013 ident: 10.1016/j.petrol.2019.04.065_bib10 article-title: An explicitly coupled hydro‐geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2135 – volume: 41 start-page: 627 issue: 5 year: 2017 ident: 10.1016/j.petrol.2019.04.065_bib33 article-title: A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3‐dimensions publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.2557 – volume: vol. 20 start-page: 249 year: 1983 ident: 10.1016/j.petrol.2019.04.065_bib1 article-title: December. Fundamentals of rock joint deformation – year: 2018 ident: 10.1016/j.petrol.2019.04.065_bib43 article-title: Mechanisms for the formation of complex fracture networks in naturally fractured rocks – volume: 79 start-page: 312 year: 2012 ident: 10.1016/j.petrol.2019.04.065_bib6 article-title: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2011.11.012 – volume: 49 start-page: 66 year: 2018 ident: 10.1016/j.petrol.2019.04.065_bib16 article-title: Numerical methods for hydraulic fracture propagation: a review of recent trends publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.10.012 – volume: 135 start-page: 127 year: 2015 ident: 10.1016/j.petrol.2019.04.065_bib36 article-title: Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2015.08.010 – volume: 305 start-page: 111 year: 2016 ident: 10.1016/j.petrol.2019.04.065_bib18 article-title: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.02.037 – volume: 22 start-page: 1 issue: 04 year: 2017 ident: 10.1016/j.petrol.2019.04.065_bib27 article-title: A peridynamics model for the propagation of hydraulic fractures in naturally fractured reservoirs publication-title: SPE J. doi: 10.2118/173361-PA – volume: 654611 year: 2014 ident: 10.1016/j.petrol.2019.04.065_bib32 article-title: GEOS: a framework for massively parallel multi-physics simulations publication-title: Theor. Implement. |
| SSID | ssj0003637 |
| Score | 2.1915147 |
| Snippet | Hydraulic fracturing modelling is a multi-physics problem which must be solved in the reservoir domain, fracture domain, and wellbore domain. The physical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 758 |
| SubjectTerms | Contact problem Finite volume and finite area method Hydraulic fracturing simulation Simultaneous multi-fracture propagation Slurry distribution |
| Title | Development of a fully implicit 3-D geomechanical fracture simulator |
| URI | https://dx.doi.org/10.1016/j.petrol.2019.04.065 |
| Volume | 179 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4715 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4715 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: AKRWK dateStart: 19870801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRdCDaFWsj7IHr2uT7CabPZbWWhV70UJvIfuIRGxTanroxd_uTh5aQRQ8JszCMhlmvs1-8w1ClzThtookDpE8cEBUW5KQiYC4kivlK6Xj4sb0YRyMJuxu6k8bqF_3wgCtssr9ZU4vsnX1plt5s7tI0-6jIzwHSIoWgthI9EATlDEOUwyu3r9oHjQodTOtMQHrun2u4HhZYLrM4ALCFYXgKZSYn8rTRskZ7qO9CiviXrmdA9Qw8xba3VAQbKHtm2Iy7_oQDTboPzhLcIzhz_oapwVlPM0xJQP8bLKZgV5f-DQ4gQ6p1dLgt3QGU7yy5RGaDK-f-iNSjUggymL9nJiAxZomAZdGiJjTWEhGA6kpC7VnK40f2wMKT0QYuLGw2NCaGkU1A9k81wk1PUbNeTY3JwgbXzvaU5Ib7jHFlPBtGteuk_hS2fNz2Ea09kykKv1wGGPxGtVEsZeo9GcE_owcFll_thH5XLUo9TP-sOe106NvcRDZFP_rytN_rzxDO_BU0vrOUTNfrsyFhRq57BSx1EFbvdv70fgDlEDSzQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEQIGBAXEGw-spknsxPGIgFJeXQCpmxU_goJoU5UwdOG3Y-cBRUIgsSZ3knU53SP-7juAY5Iym0VSD0sWeY5UW-KY8gj7kikVKqWT8sb0rh_1Hun1IBzMwVkzC-NglXXsr2J6Ga3rJ53amp1xlnXuPR54DqRoSxDriQGdhwUaBsx1YCfvXzgPElXEmVYaO_Fmfq4EednKdJK7Gwifl4ynLsf8lJ9mck53DVbrYhGdVudZhzkzasPKDIVgGxYvy9W80w04n8H_oDxFCXK_1qcoKzHjWYEIPkdPJh8aN-zrvg1K3YjU28Sg12zo1njlk0147F48nPVwvSMBK1vsF9hENNEkjZg0nCeMJFxSEklNaKwDm2rCxHYoLOVx5CfcFodW1CiiqePN871Yky1ojfKR2QZkQu3pQElmWEAVVTy0cVz7XhpKZRvoeAdIYxmhagJxt8fiRTRIsWdR2VM4ewqPCmvPHcCfWuOKQOMPedYYXXxzBGFj_K-au__WPIKl3sPdrbi96t_swbJ7U2H89qFVTN7Mga07CnlY-tUHn73UYg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+fully+implicit+3-D+geomechanical+fracture+simulator&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Zheng%2C+Shuang&rft.au=Manchanda%2C+Ripudaman&rft.au=Sharma%2C+Mukul+M.&rft.date=2019-08-01&rft.issn=0920-4105&rft.volume=179&rft.spage=758&rft.epage=775&rft_id=info:doi/10.1016%2Fj.petrol.2019.04.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_petrol_2019_04_065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon |