QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization

This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swar...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 109; pp. 104 - 121
Main Authors Meng, Zhenyu, Pan, Jeng-Shyang, Xu, Huarong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2016
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2016.06.029

Cover

Abstract This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swarm based algorithms including Particle Swarm Optimization (PSO) variants and Differential Evolution (DE) variants. Comparisons and contrasts are made among the proposed QUATRE algorithm, state-of-the-art PSO variants and DE variants under CEC2013 test suite on real-parameter optimization and CEC2008 test suite on large-scale optimization. Experiment results show that our algorithm outperforms the other algorithms not only on real-parameter optimization but also on large-scale optimization. Moreover, our algorithm has a much more cooperative property that to some extent it can reduce the time complexity (better performance can be achieved by reducing number of generations required for a target optimum by increasing particle population size with the total number of function evaluations unchanged). In general, the proposed algorithm has excellent performance not only on uni-modal functions, but also on multi-modal functions even on higher dimension optimization problems.
AbstractList This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swarm based algorithms including Particle Swarm Optimization (PSO) variants and Differential Evolution (DE) variants. Comparisons and contrasts are made among the proposed QUATRE algorithm, state-of-the-art PSO variants and DE variants under CEC2013 test suite on real-parameter optimization and CEC2008 test suite on large-scale optimization. Experiment results show that our algorithm outperforms the other algorithms not only on real-parameter optimization but also on large-scale optimization. Moreover, our algorithm has a much more cooperative property that to some extent it can reduce the time complexity (better performance can be achieved by reducing number of generations required for a target optimum by increasing particle population size with the total number of function evaluations unchanged). In general, the proposed algorithm has excellent performance not only on uni-modal functions, but also on multi-modal functions even on higher dimension optimization problems.
Author Meng, Zhenyu
Xu, Huarong
Pan, Jeng-Shyang
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0002-1466-8082
  surname: Meng
  fullname: Meng, Zhenyu
  email: mzy1314@gmail.com, mzy_1314@126.com
  organization: Harbin Institute of Technology, Shenzhen Graduate School, Computer Science and Technology, HIT Campus of Shenzhen University Town, XiLi Town, Nanshan District, Shenzhen, China
– sequence: 2
  givenname: Jeng-Shyang
  surname: Pan
  fullname: Pan, Jeng-Shyang
  organization: Harbin Institute of Technology, Shenzhen Graduate School, Computer Science and Technology, HIT Campus of Shenzhen University Town, XiLi Town, Nanshan District, Shenzhen, China
– sequence: 3
  givenname: Huarong
  surname: Xu
  fullname: Xu, Huarong
  organization: Department of Computer Science and Technology, Xiamen University of Technology, Xiamen, China
BookMark eNqFkE9LAzEQxYMoWKvfwEOOetg6yXa7Gw9CkfoHBGlpzyFNJjV1d1OStVo_vdtWEDwoDMwMvPdj5p2Qw9rXSMg5gx4DNrha9l5rHzexx9utB21xcUA6rMh5kvdBHJIOiAySHDJ2TE5iXAIA56zokI_xTEWXDK11NdLpRNXR-lCpxvmajta-fNtOKmzoxXg2nE5Gl1SVCx9c81Jd0yHV3q8wtPI10viuQkXnKqL5EdEWRxeln6uS-lXjKve5g5-SI6vKiGffvUtmd6Pp7UPy9Hz_eDt8SnQKgybBTMPAgkHd54aZQliWY2ZTYVjBLECuRYEZN8qmczMXKS_SgnFtlUCbp8jSLrnec3XwMQa0Urtmd0ETlCslA7nNUC7lPkO5zVBCW1y05v4v8yq4qk3jP9vN3obtY2uHQUbtsNZoXEDdSOPd34AvMoyTXg
CitedBy_id crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_1109_ACCESS_2020_2968119
crossref_primary_10_1007_s11235_021_00833_7
crossref_primary_10_1155_2020_8184254
crossref_primary_10_1007_s00521_022_07080_0
crossref_primary_10_1007_s00158_018_2079_z
crossref_primary_10_3390_pr8030356
crossref_primary_10_3233_JIFS_230928
crossref_primary_10_1142_S0218001421590035
crossref_primary_10_1080_17517575_2018_1491064
crossref_primary_10_1016_j_ins_2021_11_076
crossref_primary_10_3233_JIFS_179656
crossref_primary_10_3390_app14188167
crossref_primary_10_3233_JIFS_179655
crossref_primary_10_1109_ACCESS_2019_2893292
crossref_primary_10_3390_app11052251
crossref_primary_10_1371_journal_pone_0280006
crossref_primary_10_1016_j_knosys_2020_106418
crossref_primary_10_1016_j_isatra_2021_01_026
crossref_primary_10_1186_s13638_019_1481_6
crossref_primary_10_3390_app10030930
crossref_primary_10_1155_2021_6670061
crossref_primary_10_1007_s12652_023_04538_4
crossref_primary_10_1016_j_knosys_2023_110774
crossref_primary_10_1155_2020_8822651
crossref_primary_10_1155_2021_5591543
crossref_primary_10_3390_pr7110845
crossref_primary_10_1016_j_isatra_2023_05_005
crossref_primary_10_1080_17517575_2021_1949636
crossref_primary_10_1016_j_ins_2021_07_080
crossref_primary_10_3233_JIFS_179665
crossref_primary_10_1038_s41598_024_81160_0
crossref_primary_10_1016_j_swevo_2024_101577
crossref_primary_10_1016_j_knosys_2018_04_034
crossref_primary_10_1007_s10489_022_04080_4
crossref_primary_10_1177_15501477211073037
crossref_primary_10_1016_j_knosys_2024_111737
crossref_primary_10_3233_JIFS_219313
crossref_primary_10_1007_s44196_021_00005_0
crossref_primary_10_3390_sym11091176
crossref_primary_10_1631_FITEE_2000691
crossref_primary_10_1109_ACCESS_2020_2964783
crossref_primary_10_3390_a14060173
crossref_primary_10_1016_j_jksuci_2021_10_004
crossref_primary_10_1109_ACCESS_2020_2973411
crossref_primary_10_7717_peerj_cs_1007
crossref_primary_10_1016_j_knosys_2020_105746
crossref_primary_10_3390_photonics10070704
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_3390_e25060848
crossref_primary_10_1016_j_knosys_2020_105908
crossref_primary_10_1177_1550147720932749
crossref_primary_10_1016_j_eswa_2024_125159
crossref_primary_10_1016_j_knosys_2019_01_006
crossref_primary_10_1016_j_ins_2022_03_043
crossref_primary_10_1016_j_ins_2021_01_031
crossref_primary_10_1016_j_ins_2024_121091
crossref_primary_10_32604_cmc_2024_048594
crossref_primary_10_3390_electronics11172785
crossref_primary_10_1007_s10845_021_01899_5
crossref_primary_10_32604_iasc_2021_014192
crossref_primary_10_1007_s10489_019_01457_w
crossref_primary_10_1016_j_asoc_2023_110750
crossref_primary_10_1016_j_dt_2021_07_008
crossref_primary_10_3390_s22041407
crossref_primary_10_1016_j_matcom_2021_10_032
crossref_primary_10_1007_s00521_017_3054_0
crossref_primary_10_1016_j_energy_2021_120329
crossref_primary_10_1007_s10489_022_03265_1
crossref_primary_10_1016_j_jocs_2022_101938
crossref_primary_10_1016_j_ins_2020_11_056
crossref_primary_10_1080_02664763_2021_1929089
crossref_primary_10_1016_j_engappai_2018_04_012
crossref_primary_10_1016_j_asoc_2023_110492
crossref_primary_10_1016_j_jocs_2022_101651
crossref_primary_10_1016_j_eswa_2023_119848
crossref_primary_10_1016_j_eswa_2022_118978
crossref_primary_10_1109_ACCESS_2020_2979738
crossref_primary_10_1002_ese3_957
crossref_primary_10_1109_ACCESS_2023_3335235
crossref_primary_10_1016_j_aej_2021_09_063
crossref_primary_10_1016_j_physb_2024_415900
crossref_primary_10_1109_ACCESS_2023_3305925
crossref_primary_10_1038_s41598_024_83538_6
crossref_primary_10_3233_JIFS_202712
crossref_primary_10_1016_j_cma_2024_117247
crossref_primary_10_1109_ACCESS_2020_3013332
crossref_primary_10_3390_drones6040096
crossref_primary_10_3390_sym15040795
crossref_primary_10_1016_j_engappai_2020_104049
crossref_primary_10_1080_00207160_2020_1775820
crossref_primary_10_1109_ACCESS_2020_3045043
crossref_primary_10_3390_app11052042
crossref_primary_10_1016_j_eswa_2023_122942
crossref_primary_10_3390_e25111488
crossref_primary_10_1007_s10586_021_03247_x
crossref_primary_10_1016_j_asoc_2018_01_041
crossref_primary_10_1109_ACCESS_2020_3012885
crossref_primary_10_1016_j_asoc_2020_106761
crossref_primary_10_1016_j_ins_2023_119714
crossref_primary_10_3390_e25020314
crossref_primary_10_1016_j_asoc_2021_107978
crossref_primary_10_1016_j_knosys_2022_108582
crossref_primary_10_1007_s00500_022_06862_x
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_knosys_2017_11_015
crossref_primary_10_1016_j_knosys_2021_106939
crossref_primary_10_1109_ACCESS_2020_2976845
crossref_primary_10_1016_j_knosys_2022_110090
crossref_primary_10_3390_s19194112
crossref_primary_10_1016_j_engappai_2024_108081
crossref_primary_10_3390_app9214514
crossref_primary_10_1049_gtd2_12731
crossref_primary_10_3390_e24050586
Cites_doi 10.1109/TEVC.2009.2026270
10.1109/TEVC.2010.2059031
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2006.872133
10.1007/s11721-007-0002-0
10.1109/TEVC.2004.826074
10.1016/j.ins.2012.04.028
10.1109/TEVC.2004.826069
10.1023/A:1008202821328
10.1016/j.knosys.2014.03.015
10.1016/j.knosys.2016.01.009
10.1109/TEVC.2010.2083670
10.1007/s11235-015-0088-4
10.1109/ICNN.1995.488968
10.1016/j.ins.2014.08.039
10.1109/TSMCB.2005.850530
10.1162/106365601750190398
10.1109/TEVC.2008.927706
10.1007/s00500-015-1672-y
10.1109/TEVC.2007.894200
10.1007/s00500-004-0363-x
10.1109/TAC.1968.1098903
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2016.06.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 121
ExternalDocumentID 10_1016_j_knosys_2016_06_029
S0950705116302003
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-e5c06f0dec42d1d89f17e5f39d181f007c98e52daf3bdb93283812cfa9ef73e13
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Thu Apr 24 22:58:12 EDT 2025
Wed Oct 01 05:08:50 EDT 2025
Fri Feb 23 02:28:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Benchmark functions
Large scale optimization
Real parameter optimization
Particle swarm optimization
State-of-the-art
QUATRE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e5c06f0dec42d1d89f17e5f39d181f007c98e52daf3bdb93283812cfa9ef73e13
ORCID 0000-0002-1466-8082
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2016_06_029
crossref_primary_10_1016_j_knosys_2016_06_029
elsevier_sciencedirect_doi_10_1016_j_knosys_2016_06_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schwefel (bib0025) 1981
Price, Storn, Lampinen (bib0030) 2006
Li (bib0034) 2015; 45
Meng, Pan, Alelaiwi (bib0038) 2016; 62
Meng, Pan (bib0039) 2016; 97
Schumer, Steiglitz (bib0024) 1968; 13
Pauling (bib0001) 1960
Rahnamayan, Tizhoosh, Salama (bib0028) 2008; 12
Shi, Eberhart (bib0007) 1998
Qin, Huang, Suganthan (bib0033) 2009; 13
Mendes, Kennedy, Neves (bib0012) 2004; 8
Liang (bib0022) 2013
Tang (bib0023) 2007
Nasir (bib0016) 2012; 209
Hansen, Ostermeier (bib0026) 2001; 9
Clerc, Kennedy (bib0011) 2002
Derrac (bib0040) 2011; 1
Epitropakis (bib0035) 2011; 15
Cheng, Jin (bib0017) 2015; 291
Price (bib0029) 1997
Nocedal, Wright (bib0004) 2006
Kennedy, Mendes (bib0010) 2002
Brest (bib0032) 2006; 10
Hansen, Finck, Ros, Auger (bib0021) 2009
Poli, Kennedy, Blackwell (bib0020) 2007; 1
Eberhart, Shi (bib0009) 2000
Suganthan (bib0008) 1999
Liang (bib0014) 2006
Barrero (bib0041) 2015; 19
Zhang (bib0018) 2014; 64
Janson, Middendorf (bib0013) 2005; 35
Van den Bergh, Engelbrecht (bib0019) 2004; 8
Spencer (bib0002) 1896; Vol. 1
Meng, Pan (bib0037) 2015
Weise (bib0003) 2009
Liu, Lampinen (bib0031) 2005; 9
Kennedy, Eberhart (bib0005) 1995; 4
Storn, Price (bib0027) 1997; 11
Li (bib0015) 2010; 14
Eberhart, Kennedy (bib0006) 1995; Vol. 1
Das, Suganthan (bib0036) 2011; 15
Liang (10.1016/j.knosys.2016.06.029_bib0014) 2006
Zhang (10.1016/j.knosys.2016.06.029_bib0018) 2014; 64
Epitropakis (10.1016/j.knosys.2016.06.029_bib0035) 2011; 15
Schumer (10.1016/j.knosys.2016.06.029_bib0024) 1968; 13
Van den Bergh (10.1016/j.knosys.2016.06.029_bib0019) 2004; 8
Storn (10.1016/j.knosys.2016.06.029_bib0027) 1997; 11
Shi (10.1016/j.knosys.2016.06.029_bib0007) 1998
Barrero (10.1016/j.knosys.2016.06.029_bib0041) 2015; 19
Kennedy (10.1016/j.knosys.2016.06.029_bib0010) 2002
Meng (10.1016/j.knosys.2016.06.029_bib0038) 2016; 62
Tang (10.1016/j.knosys.2016.06.029_sbref0023) 2007
Pauling (10.1016/j.knosys.2016.06.029_bib0001) 1960
Kennedy (10.1016/j.knosys.2016.06.029_bib0005) 1995; 4
Hansen (10.1016/j.knosys.2016.06.029_bib0026) 2001; 9
Eberhart (10.1016/j.knosys.2016.06.029_bib0009) 2000
Rahnamayan (10.1016/j.knosys.2016.06.029_bib0028) 2008; 12
Meng (10.1016/j.knosys.2016.06.029_bib0039) 2016; 97
Derrac (10.1016/j.knosys.2016.06.029_bib0040) 2011; 1
Das (10.1016/j.knosys.2016.06.029_bib0036) 2011; 15
Meng (10.1016/j.knosys.2016.06.029_bib0037) 2015
Janson (10.1016/j.knosys.2016.06.029_bib0013) 2005; 35
Liu (10.1016/j.knosys.2016.06.029_bib0031) 2005; 9
Brest (10.1016/j.knosys.2016.06.029_bib0032) 2006; 10
Li (10.1016/j.knosys.2016.06.029_bib0034) 2015; 45
Hansen (10.1016/j.knosys.2016.06.029_sbref0021) 2009
Liang (10.1016/j.knosys.2016.06.029_bib0022) 2013
Li (10.1016/j.knosys.2016.06.029_bib0015) 2010; 14
Poli (10.1016/j.knosys.2016.06.029_bib0020) 2007; 1
Eberhart (10.1016/j.knosys.2016.06.029_bib0006) 1995; Vol. 1
Spencer (10.1016/j.knosys.2016.06.029_bib0002) 1896; Vol. 1
Nocedal (10.1016/j.knosys.2016.06.029_bib0004) 2006
Clerc (10.1016/j.knosys.2016.06.029_bib0011) 2002
Cheng (10.1016/j.knosys.2016.06.029_bib0017) 2015; 291
Weise (10.1016/j.knosys.2016.06.029_bib0003) 2009
Price (10.1016/j.knosys.2016.06.029_sbref0029) 1997
Qin (10.1016/j.knosys.2016.06.029_bib0033) 2009; 13
Schwefel (10.1016/j.knosys.2016.06.029_bib0025) 1981
Price (10.1016/j.knosys.2016.06.029_bib0030) 2006
Suganthan (10.1016/j.knosys.2016.06.029_bib0008) 1999
Mendes (10.1016/j.knosys.2016.06.029_bib0012) 2004; 8
Nasir (10.1016/j.knosys.2016.06.029_bib0016) 2012; 209
References_xml – volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: bib0032
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems.
  publication-title: Evolut. Comput., IEEE T.
– volume: 97
  start-page: 144
  year: 2016
  end-page: 157
  ident: bib0039
  article-title: Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization.
  publication-title: Knowl.-Based Syst.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: bib0005
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural Networks
– volume: 35
  start-page: 1272
  year: 2005
  end-page: 1282
  ident: bib0013
  article-title: A hierarchical particle swarm optimizer and its adaptive variant.
  publication-title: Syst., Man, Cybernetics, Part B, IEEE T.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib0033
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization.
  publication-title: Evolut. Comput., IEEE T.
– year: 1997
  ident: bib0029
  article-title: Differential evolution vs. the functions of the 2nd ICEO.
– year: 2002
  ident: bib0010
  article-title: Population structure and particle swarm performance.
– year: 1981
  ident: bib0025
  article-title: Numerical optimization of computer models.
– start-page: 121
  year: 2015
  end-page: 129
  ident: bib0037
  article-title: A simple and accurate global optimizer for continuous spaces optimization.
  publication-title: Genetic and evolutionary computing
– volume: Vol. 1
  year: 1896
  ident: bib0002
  article-title: The principles of biology
– year: 2009
  ident: bib0021
  article-title: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions.
  publication-title: [Research Report] RR-6829
– volume: 9
  start-page: 448
  year: 2005
  end-page: 462
  ident: bib0031
  article-title: A fuzzy adaptive differential evolution algorithm.
  publication-title: Soft Comput.
– start-page: 281
  year: 2006
  end-page: 295
  ident: bib0014
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions.
  publication-title: Evolutionary Computation, IEEE Transactions on 10.3
– start-page: 153
  year: 2007
  end-page: 177
  ident: bib0023
  article-title: Benchmark functions for the CEC’ 2008 special session and competition on large scale global optimization.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0040
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
  publication-title: Swarm Evolut. Comput.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib0012
  article-title: The fully informed particle swarm: simpler, maybe better.
  publication-title: Evolut. Comput., IEEE T.
– volume: 209
  start-page: 16
  year: 2012
  end-page: 36
  ident: bib0016
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization.
  publication-title: Inform. Sciences
– year: 1960
  ident: bib0001
  article-title: The Nature of the Chemical Bond...Vol. 3
– volume: 45
  start-page: 1798
  year: 2015
  end-page: 1810
  ident: bib0034
  article-title: Differential evolution with an evolution path: a deep evolutionary algorithm.
– volume: 19
  start-page: 2717
  year: 2015
  end-page: 2734
  ident: bib0041
  article-title: On the statistical distribution of the expected run-time in population-based search algorithms.
  publication-title: Soft Comput.
– year: 2009
  ident: bib0003
  article-title: Global optimization algorithms-theory and application
– year: 2013
  ident: bib0022
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization.
  publication-title: Technical report 201212
– year: 1998
  ident: bib0007
  article-title: A modified particle swarm optimizer.
  publication-title: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence
– volume: 1
  start-page: 33
  year: 2007
  end-page: 57
  ident: bib0020
  article-title: Particle swarm optimization.
  publication-title: Swarm Intel.
– volume: 9
  start-page: 159
  year: 2001
  end-page: 195
  ident: bib0026
  article-title: Completely derandomized self-adaptation in evolution strategies.
  publication-title: Evolut. Comput.
– year: 2006
  ident: bib0030
  article-title: Differential evolution: a practical approach to global optimization.
– volume: 291
  start-page: 43
  year: 2015
  end-page: 60
  ident: bib0017
  article-title: A social learning particle swarm optimization algorithm for scalable optimization.
  publication-title: Inform. Sciences
– volume: 62
  start-page: 403
  year: 2016
  end-page: 415
  ident: bib0038
  article-title: A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation.
  publication-title: Telecommun. Syst.
– volume: 15
  start-page: 4
  year: 2011
  end-page: 31
  ident: bib0036
  article-title: Differential evolution: a survey of the state-of-the-art.
  publication-title: Evolut. Comput., IEEE T.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0027
  article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces.
  publication-title: J. Global Optim.
– year: 2000
  ident: bib0009
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization.
  publication-title: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. IEEE
– start-page: 58
  year: 2002
  end-page: 73
  ident: bib0011
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space.
  publication-title: Evolutionary Computation, IEEE Transactions on 6.1
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: bib0019
  article-title: A cooperative approach to particle swarm optimization.
  publication-title: Evolut. Comput., IEEE T.
– year: 2006
  ident: bib0004
  article-title: Numerical optimization
– volume: 14
  start-page: 150
  year: 2010
  end-page: 169
  ident: bib0015
  article-title: Niching without niching parameters: particle swarm optimization using a ring topology.
  publication-title: Evolut. Comput., IEEE T.
– volume: 64
  start-page: 22
  year: 2014
  end-page: 31
  ident: bib0018
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl.-Based Syst.
– volume: 15
  start-page: 99
  year: 2011
  end-page: 119
  ident: bib0035
  article-title: Enhancing differential evolution utilizing proximity-based mutation operators.
  publication-title: Evolut. Comput., IEEE T.
– year: 1999
  ident: bib0008
  article-title: Particle swarm optimiser with neighbourhood operator.
  publication-title: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Vol. 3. IEEE
– volume: 13
  start-page: 270
  year: 1968
  end-page: 276
  ident: bib0024
  article-title: Adaptive step size random search.
  publication-title: Automat. Contr., IEEE T.
– volume: Vol. 1
  year: 1995
  ident: bib0006
  article-title: A new optimizer using particle swarm theory
  publication-title: Proceedings of the sixth international symposium on micro machine and human science
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: bib0028
  article-title: Opposition-based differential evolution.
  publication-title: Evolut. Comput., IEEE T.
– year: 2009
  ident: 10.1016/j.knosys.2016.06.029_sbref0021
  article-title: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions.
– volume: 14
  start-page: 150
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2016.06.029_bib0015
  article-title: Niching without niching parameters: particle swarm optimization using a ring topology.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2009.2026270
– start-page: 153
  year: 2007
  ident: 10.1016/j.knosys.2016.06.029_sbref0023
– year: 2002
  ident: 10.1016/j.knosys.2016.06.029_bib0010
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2016.06.029_bib0036
  article-title: Differential evolution: a survey of the state-of-the-art.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2010.2059031
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2016.06.029_bib0040
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms.
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.knosys.2016.06.029_bib0032
  article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2006.872133
– year: 2013
  ident: 10.1016/j.knosys.2016.06.029_bib0022
  article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization.
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2016.06.029_bib0020
  article-title: Particle swarm optimization.
  publication-title: Swarm Intel.
  doi: 10.1007/s11721-007-0002-0
– volume: 8
  start-page: 204
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2016.06.029_bib0012
  article-title: The fully informed particle swarm: simpler, maybe better.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2004.826074
– volume: 209
  start-page: 16
  year: 2012
  ident: 10.1016/j.knosys.2016.06.029_bib0016
  article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization.
  publication-title: Inform. Sciences
  doi: 10.1016/j.ins.2012.04.028
– year: 1960
  ident: 10.1016/j.knosys.2016.06.029_bib0001
– volume: Vol. 1
  year: 1995
  ident: 10.1016/j.knosys.2016.06.029_bib0006
  article-title: A new optimizer using particle swarm theory
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2016.06.029_bib0019
  article-title: A cooperative approach to particle swarm optimization.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2004.826069
– year: 2000
  ident: 10.1016/j.knosys.2016.06.029_bib0009
  article-title: Comparing inertia weights and constriction factors in particle swarm optimization.
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.knosys.2016.06.029_bib0027
  article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces.
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 64
  start-page: 22
  year: 2014
  ident: 10.1016/j.knosys.2016.06.029_bib0018
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– year: 1981
  ident: 10.1016/j.knosys.2016.06.029_bib0025
– volume: 97
  start-page: 144
  year: 2016
  ident: 10.1016/j.knosys.2016.06.029_bib0039
  article-title: Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization.
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.01.009
– volume: 15
  start-page: 99
  issue: 1
  year: 2011
  ident: 10.1016/j.knosys.2016.06.029_bib0035
  article-title: Enhancing differential evolution utilizing proximity-based mutation operators.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2010.2083670
– volume: 62
  start-page: 403
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2016.06.029_bib0038
  article-title: A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation.
  publication-title: Telecommun. Syst.
  doi: 10.1007/s11235-015-0088-4
– start-page: 58
  year: 2002
  ident: 10.1016/j.knosys.2016.06.029_bib0011
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space.
– volume: 4
  start-page: 1942
  issue: 2
  year: 1995
  ident: 10.1016/j.knosys.2016.06.029_bib0005
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural Networks
  doi: 10.1109/ICNN.1995.488968
– year: 2006
  ident: 10.1016/j.knosys.2016.06.029_bib0004
– year: 1997
  ident: 10.1016/j.knosys.2016.06.029_sbref0029
– year: 2009
  ident: 10.1016/j.knosys.2016.06.029_bib0003
– year: 1998
  ident: 10.1016/j.knosys.2016.06.029_bib0007
  article-title: A modified particle swarm optimizer.
– volume: 291
  start-page: 43
  year: 2015
  ident: 10.1016/j.knosys.2016.06.029_bib0017
  article-title: A social learning particle swarm optimization algorithm for scalable optimization.
  publication-title: Inform. Sciences
  doi: 10.1016/j.ins.2014.08.039
– volume: Vol. 1
  year: 1896
  ident: 10.1016/j.knosys.2016.06.029_bib0002
– volume: 35
  start-page: 1272
  issue: 6
  year: 2005
  ident: 10.1016/j.knosys.2016.06.029_bib0013
  article-title: A hierarchical particle swarm optimizer and its adaptive variant.
  publication-title: Syst., Man, Cybernetics, Part B, IEEE T.
  doi: 10.1109/TSMCB.2005.850530
– volume: 9
  start-page: 159
  issue: 2
  year: 2001
  ident: 10.1016/j.knosys.2016.06.029_bib0026
  article-title: Completely derandomized self-adaptation in evolution strategies.
  publication-title: Evolut. Comput.
  doi: 10.1162/106365601750190398
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.knosys.2016.06.029_bib0033
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2008.927706
– volume: 45
  start-page: 1798
  issue: 9
  year: 2015
  ident: 10.1016/j.knosys.2016.06.029_bib0034
  article-title: Differential evolution with an evolution path: a deep evolutionary algorithm.
– start-page: 121
  year: 2015
  ident: 10.1016/j.knosys.2016.06.029_bib0037
  article-title: A simple and accurate global optimizer for continuous spaces optimization.
– year: 1999
  ident: 10.1016/j.knosys.2016.06.029_bib0008
  article-title: Particle swarm optimiser with neighbourhood operator.
– volume: 19
  start-page: 2717
  issue: 10
  year: 2015
  ident: 10.1016/j.knosys.2016.06.029_bib0041
  article-title: On the statistical distribution of the expected run-time in population-based search algorithms.
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1672-y
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2016.06.029_bib0028
  article-title: Opposition-based differential evolution.
  publication-title: Evolut. Comput., IEEE T.
  doi: 10.1109/TEVC.2007.894200
– volume: 9
  start-page: 448
  issue: 6
  year: 2005
  ident: 10.1016/j.knosys.2016.06.029_bib0031
  article-title: A fuzzy adaptive differential evolution algorithm.
  publication-title: Soft Comput.
  doi: 10.1007/s00500-004-0363-x
– start-page: 281
  year: 2006
  ident: 10.1016/j.knosys.2016.06.029_bib0014
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions.
– volume: 13
  start-page: 270
  issue: 3
  year: 1968
  ident: 10.1016/j.knosys.2016.06.029_bib0024
  article-title: Adaptive step size random search.
  publication-title: Automat. Contr., IEEE T.
  doi: 10.1109/TAC.1968.1098903
– year: 2006
  ident: 10.1016/j.knosys.2016.06.029_bib0030
SSID ssj0002218
Score 2.5097845
Snippet This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Benchmark functions
Large scale optimization
Particle swarm optimization
QUATRE
Real parameter optimization
State-of-the-art
Title QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization
URI https://dx.doi.org/10.1016/j.knosys.2016.06.029
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGDHtYmm-wm8RZKS1UsWFvoLST70GqblLY-evG3u5tsrIIoeEyYDWF2MvNt-OYbAE4oo7ZkLkG2TQPkJoSg2PMSRAPMqCWoy5huFL7p0HbfvRqQQQU0yl4YTas0ub_I6Xm2Nnfqxpv1yXBYv1PgQMWrAgzUsYzip-t6eorB-fuS5oFx_o9PGyNtXbbP5RyvpzSbLbRot01zFc8caP5Qnr6UnNYmWDdYEYbF62yBiki3wUY5hwGaz3IHvN3249kQhVIqyAh73SUUzVLYfDHBFU8X8FQB2F63eQbj0X02Hc4fxhcwhCzLJqJQAIez13g6hrq28aURVI-DhXQIzFSOGZvmzV3QbzV7jTYyExUQU0eDORKEWVRaXDAXc5v7gbQ9QaQTcFXopYILLPAFwTyWTsITBe18VdAxk3EgpOcI29kDK2mWin0APZcHPlaHQRLrMeV-gu2EYywcynySMKsKnNKRETNy43rqxSgqeWWPUeH-SLs_0vQ6HFQB-lw1KeQ2_rD3yj2KvoVNpCrCrysP_r3yEKzpq4LRdwRW5tNncayQyTyp5aFXA6vh5XW78wFeuOWD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN40etCLb2N97sGDHtbCwi7grTE19ZlY28QbgX0oaqGh-Lr4292FxWpiNPEKM4TMDjPfkJlvANiljNqSuQTZNg2QGxOCIs-LEQ0wo5agLmN6UPjiknYH7ukNuWmAo3oWRrdVmthfxfQyWpsrLWPN1ihJWtcKHCh_VYCBOlbF-DntEuzpCuzgfdLngXH5k09LIy1ez8-VTV4PaTZ-06zdNi1pPEuk-UN--pJzjhfAnAGLsF29zyJoiHQJzNeLGKD5LpfB69UgGieoLaXCjLDfm2DRLIWdZ-NdUf4G9xSC7fc6-zB6vM3ypLgbHsI2ZFk2EhUFOBy_RPkQ6uTGJ0JQPQ5W3CEwU0FmaKY3V8DguNM_6iKzUgExVRsUSBBmUWlxwVzMbe4H0vYEkU7AVaaXCi-wwBcE80g6MY8VtvNVRsdMRoGQniNsZxVMpVkq1gD0XB74WFWDJNJ7yv0Y2zHHWDiU-SRmVhM4tSFDZvjG9dqLx7BuLLsPK_OH2vyh7q_DQROgT61Rxbfxh7xXn1H4zW9ClRJ-1Vz_t-YOmOn2L87D85PLsw0wq-9U7X2bYKrIn8SWgilFvF264Qe_-OcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUasi-Affine+TRansformation+Evolutionary+%28QUATRE%29+algorithm%3A+A+cooperative+swarm+based+algorithm+for+global+optimization&rft.jtitle=Knowledge-based+systems&rft.au=Meng%2C+Zhenyu&rft.au=Pan%2C+Jeng-Shyang&rft.au=Xu%2C+Huarong&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=109&rft.spage=104&rft.epage=121&rft_id=info:doi/10.1016%2Fj.knosys.2016.06.029&rft.externalDocID=S0950705116302003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon