QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization
This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swar...
        Saved in:
      
    
          | Published in | Knowledge-based systems Vol. 109; pp. 104 - 121 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.10.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0950-7051 1872-7409  | 
| DOI | 10.1016/j.knosys.2016.06.029 | 
Cover
| Abstract | This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swarm based algorithms including Particle Swarm Optimization (PSO) variants and Differential Evolution (DE) variants. Comparisons and contrasts are made among the proposed QUATRE algorithm, state-of-the-art PSO variants and DE variants under CEC2013 test suite on real-parameter optimization and CEC2008 test suite on large-scale optimization. Experiment results show that our algorithm outperforms the other algorithms not only on real-parameter optimization but also on large-scale optimization. Moreover, our algorithm has a much more cooperative property that to some extent it can reduce the time complexity (better performance can be achieved by reducing number of generations required for a target optimum by increasing particle population size with the total number of function evaluations unchanged). In general, the proposed algorithm has excellent performance not only on uni-modal functions, but also on multi-modal functions even on higher dimension optimization problems. | 
    
|---|---|
| AbstractList | This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and use quasi-affine transformation approach for evolution. The paper also discusses the relation between QUATRE algorithm and other kinds of swarm based algorithms including Particle Swarm Optimization (PSO) variants and Differential Evolution (DE) variants. Comparisons and contrasts are made among the proposed QUATRE algorithm, state-of-the-art PSO variants and DE variants under CEC2013 test suite on real-parameter optimization and CEC2008 test suite on large-scale optimization. Experiment results show that our algorithm outperforms the other algorithms not only on real-parameter optimization but also on large-scale optimization. Moreover, our algorithm has a much more cooperative property that to some extent it can reduce the time complexity (better performance can be achieved by reducing number of generations required for a target optimum by increasing particle population size with the total number of function evaluations unchanged). In general, the proposed algorithm has excellent performance not only on uni-modal functions, but also on multi-modal functions even on higher dimension optimization problems. | 
    
| Author | Meng, Zhenyu Xu, Huarong Pan, Jeng-Shyang  | 
    
| Author_xml | – sequence: 1 givenname: Zhenyu orcidid: 0000-0002-1466-8082 surname: Meng fullname: Meng, Zhenyu email: mzy1314@gmail.com, mzy_1314@126.com organization: Harbin Institute of Technology, Shenzhen Graduate School, Computer Science and Technology, HIT Campus of Shenzhen University Town, XiLi Town, Nanshan District, Shenzhen, China – sequence: 2 givenname: Jeng-Shyang surname: Pan fullname: Pan, Jeng-Shyang organization: Harbin Institute of Technology, Shenzhen Graduate School, Computer Science and Technology, HIT Campus of Shenzhen University Town, XiLi Town, Nanshan District, Shenzhen, China – sequence: 3 givenname: Huarong surname: Xu fullname: Xu, Huarong organization: Department of Computer Science and Technology, Xiamen University of Technology, Xiamen, China  | 
    
| BookMark | eNqFkE9LAzEQxYMoWKvfwEOOetg6yXa7Gw9CkfoHBGlpzyFNJjV1d1OStVo_vdtWEDwoDMwMvPdj5p2Qw9rXSMg5gx4DNrha9l5rHzexx9utB21xcUA6rMh5kvdBHJIOiAySHDJ2TE5iXAIA56zokI_xTEWXDK11NdLpRNXR-lCpxvmajta-fNtOKmzoxXg2nE5Gl1SVCx9c81Jd0yHV3q8wtPI10viuQkXnKqL5EdEWRxeln6uS-lXjKve5g5-SI6vKiGffvUtmd6Pp7UPy9Hz_eDt8SnQKgybBTMPAgkHd54aZQliWY2ZTYVjBLECuRYEZN8qmczMXKS_SgnFtlUCbp8jSLrnec3XwMQa0Urtmd0ETlCslA7nNUC7lPkO5zVBCW1y05v4v8yq4qk3jP9vN3obtY2uHQUbtsNZoXEDdSOPd34AvMoyTXg | 
    
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_1109_ACCESS_2020_2968119 crossref_primary_10_1007_s11235_021_00833_7 crossref_primary_10_1155_2020_8184254 crossref_primary_10_1007_s00521_022_07080_0 crossref_primary_10_1007_s00158_018_2079_z crossref_primary_10_3390_pr8030356 crossref_primary_10_3233_JIFS_230928 crossref_primary_10_1142_S0218001421590035 crossref_primary_10_1080_17517575_2018_1491064 crossref_primary_10_1016_j_ins_2021_11_076 crossref_primary_10_3233_JIFS_179656 crossref_primary_10_3390_app14188167 crossref_primary_10_3233_JIFS_179655 crossref_primary_10_1109_ACCESS_2019_2893292 crossref_primary_10_3390_app11052251 crossref_primary_10_1371_journal_pone_0280006 crossref_primary_10_1016_j_knosys_2020_106418 crossref_primary_10_1016_j_isatra_2021_01_026 crossref_primary_10_1186_s13638_019_1481_6 crossref_primary_10_3390_app10030930 crossref_primary_10_1155_2021_6670061 crossref_primary_10_1007_s12652_023_04538_4 crossref_primary_10_1016_j_knosys_2023_110774 crossref_primary_10_1155_2020_8822651 crossref_primary_10_1155_2021_5591543 crossref_primary_10_3390_pr7110845 crossref_primary_10_1016_j_isatra_2023_05_005 crossref_primary_10_1080_17517575_2021_1949636 crossref_primary_10_1016_j_ins_2021_07_080 crossref_primary_10_3233_JIFS_179665 crossref_primary_10_1038_s41598_024_81160_0 crossref_primary_10_1016_j_swevo_2024_101577 crossref_primary_10_1016_j_knosys_2018_04_034 crossref_primary_10_1007_s10489_022_04080_4 crossref_primary_10_1177_15501477211073037 crossref_primary_10_1016_j_knosys_2024_111737 crossref_primary_10_3233_JIFS_219313 crossref_primary_10_1007_s44196_021_00005_0 crossref_primary_10_3390_sym11091176 crossref_primary_10_1631_FITEE_2000691 crossref_primary_10_1109_ACCESS_2020_2964783 crossref_primary_10_3390_a14060173 crossref_primary_10_1016_j_jksuci_2021_10_004 crossref_primary_10_1109_ACCESS_2020_2973411 crossref_primary_10_7717_peerj_cs_1007 crossref_primary_10_1016_j_knosys_2020_105746 crossref_primary_10_3390_photonics10070704 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_3390_e25060848 crossref_primary_10_1016_j_knosys_2020_105908 crossref_primary_10_1177_1550147720932749 crossref_primary_10_1016_j_eswa_2024_125159 crossref_primary_10_1016_j_knosys_2019_01_006 crossref_primary_10_1016_j_ins_2022_03_043 crossref_primary_10_1016_j_ins_2021_01_031 crossref_primary_10_1016_j_ins_2024_121091 crossref_primary_10_32604_cmc_2024_048594 crossref_primary_10_3390_electronics11172785 crossref_primary_10_1007_s10845_021_01899_5 crossref_primary_10_32604_iasc_2021_014192 crossref_primary_10_1007_s10489_019_01457_w crossref_primary_10_1016_j_asoc_2023_110750 crossref_primary_10_1016_j_dt_2021_07_008 crossref_primary_10_3390_s22041407 crossref_primary_10_1016_j_matcom_2021_10_032 crossref_primary_10_1007_s00521_017_3054_0 crossref_primary_10_1016_j_energy_2021_120329 crossref_primary_10_1007_s10489_022_03265_1 crossref_primary_10_1016_j_jocs_2022_101938 crossref_primary_10_1016_j_ins_2020_11_056 crossref_primary_10_1080_02664763_2021_1929089 crossref_primary_10_1016_j_engappai_2018_04_012 crossref_primary_10_1016_j_asoc_2023_110492 crossref_primary_10_1016_j_jocs_2022_101651 crossref_primary_10_1016_j_eswa_2023_119848 crossref_primary_10_1016_j_eswa_2022_118978 crossref_primary_10_1109_ACCESS_2020_2979738 crossref_primary_10_1002_ese3_957 crossref_primary_10_1109_ACCESS_2023_3335235 crossref_primary_10_1016_j_aej_2021_09_063 crossref_primary_10_1016_j_physb_2024_415900 crossref_primary_10_1109_ACCESS_2023_3305925 crossref_primary_10_1038_s41598_024_83538_6 crossref_primary_10_3233_JIFS_202712 crossref_primary_10_1016_j_cma_2024_117247 crossref_primary_10_1109_ACCESS_2020_3013332 crossref_primary_10_3390_drones6040096 crossref_primary_10_3390_sym15040795 crossref_primary_10_1016_j_engappai_2020_104049 crossref_primary_10_1080_00207160_2020_1775820 crossref_primary_10_1109_ACCESS_2020_3045043 crossref_primary_10_3390_app11052042 crossref_primary_10_1016_j_eswa_2023_122942 crossref_primary_10_3390_e25111488 crossref_primary_10_1007_s10586_021_03247_x crossref_primary_10_1016_j_asoc_2018_01_041 crossref_primary_10_1109_ACCESS_2020_3012885 crossref_primary_10_1016_j_asoc_2020_106761 crossref_primary_10_1016_j_ins_2023_119714 crossref_primary_10_3390_e25020314 crossref_primary_10_1016_j_asoc_2021_107978 crossref_primary_10_1016_j_knosys_2022_108582 crossref_primary_10_1007_s00500_022_06862_x crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1016_j_knosys_2017_11_015 crossref_primary_10_1016_j_knosys_2021_106939 crossref_primary_10_1109_ACCESS_2020_2976845 crossref_primary_10_1016_j_knosys_2022_110090 crossref_primary_10_3390_s19194112 crossref_primary_10_1016_j_engappai_2024_108081 crossref_primary_10_3390_app9214514 crossref_primary_10_1049_gtd2_12731 crossref_primary_10_3390_e24050586  | 
    
| Cites_doi | 10.1109/TEVC.2009.2026270 10.1109/TEVC.2010.2059031 10.1016/j.swevo.2011.02.002 10.1109/TEVC.2006.872133 10.1007/s11721-007-0002-0 10.1109/TEVC.2004.826074 10.1016/j.ins.2012.04.028 10.1109/TEVC.2004.826069 10.1023/A:1008202821328 10.1016/j.knosys.2014.03.015 10.1016/j.knosys.2016.01.009 10.1109/TEVC.2010.2083670 10.1007/s11235-015-0088-4 10.1109/ICNN.1995.488968 10.1016/j.ins.2014.08.039 10.1109/TSMCB.2005.850530 10.1162/106365601750190398 10.1109/TEVC.2008.927706 10.1007/s00500-015-1672-y 10.1109/TEVC.2007.894200 10.1007/s00500-004-0363-x 10.1109/TAC.1968.1098903  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2016 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.knosys.2016.06.029 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7409 | 
    
| EndPage | 121 | 
    
| ExternalDocumentID | 10_1016_j_knosys_2016_06_029 S0950705116302003  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-e5c06f0dec42d1d89f17e5f39d181f007c98e52daf3bdb93283812cfa9ef73e13 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0950-7051 | 
    
| IngestDate | Thu Apr 24 22:58:12 EDT 2025 Wed Oct 01 05:08:50 EDT 2025 Fri Feb 23 02:28:22 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Benchmark functions Large scale optimization Real parameter optimization Particle swarm optimization State-of-the-art QUATRE  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-e5c06f0dec42d1d89f17e5f39d181f007c98e52daf3bdb93283812cfa9ef73e13 | 
    
| ORCID | 0000-0002-1466-8082 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2016_06_029 crossref_primary_10_1016_j_knosys_2016_06_029 elsevier_sciencedirect_doi_10_1016_j_knosys_2016_06_029  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-10-01 2016-10-00  | 
    
| PublicationDateYYYYMMDD | 2016-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Knowledge-based systems | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Schwefel (bib0025) 1981 Price, Storn, Lampinen (bib0030) 2006 Li (bib0034) 2015; 45 Meng, Pan, Alelaiwi (bib0038) 2016; 62 Meng, Pan (bib0039) 2016; 97 Schumer, Steiglitz (bib0024) 1968; 13 Pauling (bib0001) 1960 Rahnamayan, Tizhoosh, Salama (bib0028) 2008; 12 Shi, Eberhart (bib0007) 1998 Qin, Huang, Suganthan (bib0033) 2009; 13 Mendes, Kennedy, Neves (bib0012) 2004; 8 Liang (bib0022) 2013 Tang (bib0023) 2007 Nasir (bib0016) 2012; 209 Hansen, Ostermeier (bib0026) 2001; 9 Clerc, Kennedy (bib0011) 2002 Derrac (bib0040) 2011; 1 Epitropakis (bib0035) 2011; 15 Cheng, Jin (bib0017) 2015; 291 Price (bib0029) 1997 Nocedal, Wright (bib0004) 2006 Kennedy, Mendes (bib0010) 2002 Brest (bib0032) 2006; 10 Hansen, Finck, Ros, Auger (bib0021) 2009 Poli, Kennedy, Blackwell (bib0020) 2007; 1 Eberhart, Shi (bib0009) 2000 Suganthan (bib0008) 1999 Liang (bib0014) 2006 Barrero (bib0041) 2015; 19 Zhang (bib0018) 2014; 64 Janson, Middendorf (bib0013) 2005; 35 Van den Bergh, Engelbrecht (bib0019) 2004; 8 Spencer (bib0002) 1896; Vol. 1 Meng, Pan (bib0037) 2015 Weise (bib0003) 2009 Liu, Lampinen (bib0031) 2005; 9 Kennedy, Eberhart (bib0005) 1995; 4 Storn, Price (bib0027) 1997; 11 Li (bib0015) 2010; 14 Eberhart, Kennedy (bib0006) 1995; Vol. 1 Das, Suganthan (bib0036) 2011; 15 Liang (10.1016/j.knosys.2016.06.029_bib0014) 2006 Zhang (10.1016/j.knosys.2016.06.029_bib0018) 2014; 64 Epitropakis (10.1016/j.knosys.2016.06.029_bib0035) 2011; 15 Schumer (10.1016/j.knosys.2016.06.029_bib0024) 1968; 13 Van den Bergh (10.1016/j.knosys.2016.06.029_bib0019) 2004; 8 Storn (10.1016/j.knosys.2016.06.029_bib0027) 1997; 11 Shi (10.1016/j.knosys.2016.06.029_bib0007) 1998 Barrero (10.1016/j.knosys.2016.06.029_bib0041) 2015; 19 Kennedy (10.1016/j.knosys.2016.06.029_bib0010) 2002 Meng (10.1016/j.knosys.2016.06.029_bib0038) 2016; 62 Tang (10.1016/j.knosys.2016.06.029_sbref0023) 2007 Pauling (10.1016/j.knosys.2016.06.029_bib0001) 1960 Kennedy (10.1016/j.knosys.2016.06.029_bib0005) 1995; 4 Hansen (10.1016/j.knosys.2016.06.029_bib0026) 2001; 9 Eberhart (10.1016/j.knosys.2016.06.029_bib0009) 2000 Rahnamayan (10.1016/j.knosys.2016.06.029_bib0028) 2008; 12 Meng (10.1016/j.knosys.2016.06.029_bib0039) 2016; 97 Derrac (10.1016/j.knosys.2016.06.029_bib0040) 2011; 1 Das (10.1016/j.knosys.2016.06.029_bib0036) 2011; 15 Meng (10.1016/j.knosys.2016.06.029_bib0037) 2015 Janson (10.1016/j.knosys.2016.06.029_bib0013) 2005; 35 Liu (10.1016/j.knosys.2016.06.029_bib0031) 2005; 9 Brest (10.1016/j.knosys.2016.06.029_bib0032) 2006; 10 Li (10.1016/j.knosys.2016.06.029_bib0034) 2015; 45 Hansen (10.1016/j.knosys.2016.06.029_sbref0021) 2009 Liang (10.1016/j.knosys.2016.06.029_bib0022) 2013 Li (10.1016/j.knosys.2016.06.029_bib0015) 2010; 14 Poli (10.1016/j.knosys.2016.06.029_bib0020) 2007; 1 Eberhart (10.1016/j.knosys.2016.06.029_bib0006) 1995; Vol. 1 Spencer (10.1016/j.knosys.2016.06.029_bib0002) 1896; Vol. 1 Nocedal (10.1016/j.knosys.2016.06.029_bib0004) 2006 Clerc (10.1016/j.knosys.2016.06.029_bib0011) 2002 Cheng (10.1016/j.knosys.2016.06.029_bib0017) 2015; 291 Weise (10.1016/j.knosys.2016.06.029_bib0003) 2009 Price (10.1016/j.knosys.2016.06.029_sbref0029) 1997 Qin (10.1016/j.knosys.2016.06.029_bib0033) 2009; 13 Schwefel (10.1016/j.knosys.2016.06.029_bib0025) 1981 Price (10.1016/j.knosys.2016.06.029_bib0030) 2006 Suganthan (10.1016/j.knosys.2016.06.029_bib0008) 1999 Mendes (10.1016/j.knosys.2016.06.029_bib0012) 2004; 8 Nasir (10.1016/j.knosys.2016.06.029_bib0016) 2012; 209  | 
    
| References_xml | – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: bib0032 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. publication-title: Evolut. Comput., IEEE T. – volume: 97 start-page: 144 year: 2016 end-page: 157 ident: bib0039 article-title: Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. publication-title: Knowl.-Based Syst. – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: bib0005 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural Networks – volume: 35 start-page: 1272 year: 2005 end-page: 1282 ident: bib0013 article-title: A hierarchical particle swarm optimizer and its adaptive variant. publication-title: Syst., Man, Cybernetics, Part B, IEEE T. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib0033 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization. publication-title: Evolut. Comput., IEEE T. – year: 1997 ident: bib0029 article-title: Differential evolution vs. the functions of the 2nd ICEO. – year: 2002 ident: bib0010 article-title: Population structure and particle swarm performance. – year: 1981 ident: bib0025 article-title: Numerical optimization of computer models. – start-page: 121 year: 2015 end-page: 129 ident: bib0037 article-title: A simple and accurate global optimizer for continuous spaces optimization. publication-title: Genetic and evolutionary computing – volume: Vol. 1 year: 1896 ident: bib0002 article-title: The principles of biology – year: 2009 ident: bib0021 article-title: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. publication-title: [Research Report] RR-6829 – volume: 9 start-page: 448 year: 2005 end-page: 462 ident: bib0031 article-title: A fuzzy adaptive differential evolution algorithm. publication-title: Soft Comput. – start-page: 281 year: 2006 end-page: 295 ident: bib0014 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. publication-title: Evolutionary Computation, IEEE Transactions on 10.3 – start-page: 153 year: 2007 end-page: 177 ident: bib0023 article-title: Benchmark functions for the CEC’ 2008 special session and competition on large scale global optimization. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0040 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. publication-title: Swarm Evolut. Comput. – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib0012 article-title: The fully informed particle swarm: simpler, maybe better. publication-title: Evolut. Comput., IEEE T. – volume: 209 start-page: 16 year: 2012 end-page: 36 ident: bib0016 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. publication-title: Inform. Sciences – year: 1960 ident: bib0001 article-title: The Nature of the Chemical Bond...Vol. 3 – volume: 45 start-page: 1798 year: 2015 end-page: 1810 ident: bib0034 article-title: Differential evolution with an evolution path: a deep evolutionary algorithm. – volume: 19 start-page: 2717 year: 2015 end-page: 2734 ident: bib0041 article-title: On the statistical distribution of the expected run-time in population-based search algorithms. publication-title: Soft Comput. – year: 2009 ident: bib0003 article-title: Global optimization algorithms-theory and application – year: 2013 ident: bib0022 article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. publication-title: Technical report 201212 – year: 1998 ident: bib0007 article-title: A modified particle swarm optimizer. publication-title: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence – volume: 1 start-page: 33 year: 2007 end-page: 57 ident: bib0020 article-title: Particle swarm optimization. publication-title: Swarm Intel. – volume: 9 start-page: 159 year: 2001 end-page: 195 ident: bib0026 article-title: Completely derandomized self-adaptation in evolution strategies. publication-title: Evolut. Comput. – year: 2006 ident: bib0030 article-title: Differential evolution: a practical approach to global optimization. – volume: 291 start-page: 43 year: 2015 end-page: 60 ident: bib0017 article-title: A social learning particle swarm optimization algorithm for scalable optimization. publication-title: Inform. Sciences – volume: 62 start-page: 403 year: 2016 end-page: 415 ident: bib0038 article-title: A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation. publication-title: Telecommun. Syst. – volume: 15 start-page: 4 year: 2011 end-page: 31 ident: bib0036 article-title: Differential evolution: a survey of the state-of-the-art. publication-title: Evolut. Comput., IEEE T. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0027 article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. publication-title: J. Global Optim. – year: 2000 ident: bib0009 article-title: Comparing inertia weights and constriction factors in particle swarm optimization. publication-title: Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. Vol. 1. IEEE – start-page: 58 year: 2002 end-page: 73 ident: bib0011 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. publication-title: Evolutionary Computation, IEEE Transactions on 6.1 – volume: 8 start-page: 225 year: 2004 end-page: 239 ident: bib0019 article-title: A cooperative approach to particle swarm optimization. publication-title: Evolut. Comput., IEEE T. – year: 2006 ident: bib0004 article-title: Numerical optimization – volume: 14 start-page: 150 year: 2010 end-page: 169 ident: bib0015 article-title: Niching without niching parameters: particle swarm optimization using a ring topology. publication-title: Evolut. Comput., IEEE T. – volume: 64 start-page: 22 year: 2014 end-page: 31 ident: bib0018 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl.-Based Syst. – volume: 15 start-page: 99 year: 2011 end-page: 119 ident: bib0035 article-title: Enhancing differential evolution utilizing proximity-based mutation operators. publication-title: Evolut. Comput., IEEE T. – year: 1999 ident: bib0008 article-title: Particle swarm optimiser with neighbourhood operator. publication-title: Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on. Vol. 3. IEEE – volume: 13 start-page: 270 year: 1968 end-page: 276 ident: bib0024 article-title: Adaptive step size random search. publication-title: Automat. Contr., IEEE T. – volume: Vol. 1 year: 1995 ident: bib0006 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the sixth international symposium on micro machine and human science – volume: 12 start-page: 64 year: 2008 end-page: 79 ident: bib0028 article-title: Opposition-based differential evolution. publication-title: Evolut. Comput., IEEE T. – year: 2009 ident: 10.1016/j.knosys.2016.06.029_sbref0021 article-title: Real-parameter black-box optimization benchmarking 2009: noiseless functions definitions. – volume: 14 start-page: 150 issue: 1 year: 2010 ident: 10.1016/j.knosys.2016.06.029_bib0015 article-title: Niching without niching parameters: particle swarm optimization using a ring topology. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2009.2026270 – start-page: 153 year: 2007 ident: 10.1016/j.knosys.2016.06.029_sbref0023 – year: 2002 ident: 10.1016/j.knosys.2016.06.029_bib0010 – volume: 15 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.knosys.2016.06.029_bib0036 article-title: Differential evolution: a survey of the state-of-the-art. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2010.2059031 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.knosys.2016.06.029_bib0040 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.knosys.2016.06.029_bib0032 article-title: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2006.872133 – year: 2013 ident: 10.1016/j.knosys.2016.06.029_bib0022 article-title: Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.knosys.2016.06.029_bib0020 article-title: Particle swarm optimization. publication-title: Swarm Intel. doi: 10.1007/s11721-007-0002-0 – volume: 8 start-page: 204 issue: 3 year: 2004 ident: 10.1016/j.knosys.2016.06.029_bib0012 article-title: The fully informed particle swarm: simpler, maybe better. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2004.826074 – volume: 209 start-page: 16 year: 2012 ident: 10.1016/j.knosys.2016.06.029_bib0016 article-title: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. publication-title: Inform. Sciences doi: 10.1016/j.ins.2012.04.028 – year: 1960 ident: 10.1016/j.knosys.2016.06.029_bib0001 – volume: Vol. 1 year: 1995 ident: 10.1016/j.knosys.2016.06.029_bib0006 article-title: A new optimizer using particle swarm theory – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 10.1016/j.knosys.2016.06.029_bib0019 article-title: A cooperative approach to particle swarm optimization. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2004.826069 – year: 2000 ident: 10.1016/j.knosys.2016.06.029_bib0009 article-title: Comparing inertia weights and constriction factors in particle swarm optimization. – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.knosys.2016.06.029_bib0027 article-title: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 64 start-page: 22 year: 2014 ident: 10.1016/j.knosys.2016.06.029_bib0018 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.03.015 – year: 1981 ident: 10.1016/j.knosys.2016.06.029_bib0025 – volume: 97 start-page: 144 year: 2016 ident: 10.1016/j.knosys.2016.06.029_bib0039 article-title: Monkey king evolution: A new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.01.009 – volume: 15 start-page: 99 issue: 1 year: 2011 ident: 10.1016/j.knosys.2016.06.029_bib0035 article-title: Enhancing differential evolution utilizing proximity-based mutation operators. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2010.2083670 – volume: 62 start-page: 403 issue: 2 year: 2016 ident: 10.1016/j.knosys.2016.06.029_bib0038 article-title: A new meta-heuristic ebb-tide-fish-inspired algorithm for traffic navigation. publication-title: Telecommun. Syst. doi: 10.1007/s11235-015-0088-4 – start-page: 58 year: 2002 ident: 10.1016/j.knosys.2016.06.029_bib0011 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. – volume: 4 start-page: 1942 issue: 2 year: 1995 ident: 10.1016/j.knosys.2016.06.029_bib0005 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural Networks doi: 10.1109/ICNN.1995.488968 – year: 2006 ident: 10.1016/j.knosys.2016.06.029_bib0004 – year: 1997 ident: 10.1016/j.knosys.2016.06.029_sbref0029 – year: 2009 ident: 10.1016/j.knosys.2016.06.029_bib0003 – year: 1998 ident: 10.1016/j.knosys.2016.06.029_bib0007 article-title: A modified particle swarm optimizer. – volume: 291 start-page: 43 year: 2015 ident: 10.1016/j.knosys.2016.06.029_bib0017 article-title: A social learning particle swarm optimization algorithm for scalable optimization. publication-title: Inform. Sciences doi: 10.1016/j.ins.2014.08.039 – volume: Vol. 1 year: 1896 ident: 10.1016/j.knosys.2016.06.029_bib0002 – volume: 35 start-page: 1272 issue: 6 year: 2005 ident: 10.1016/j.knosys.2016.06.029_bib0013 article-title: A hierarchical particle swarm optimizer and its adaptive variant. publication-title: Syst., Man, Cybernetics, Part B, IEEE T. doi: 10.1109/TSMCB.2005.850530 – volume: 9 start-page: 159 issue: 2 year: 2001 ident: 10.1016/j.knosys.2016.06.029_bib0026 article-title: Completely derandomized self-adaptation in evolution strategies. publication-title: Evolut. Comput. doi: 10.1162/106365601750190398 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.knosys.2016.06.029_bib0033 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2008.927706 – volume: 45 start-page: 1798 issue: 9 year: 2015 ident: 10.1016/j.knosys.2016.06.029_bib0034 article-title: Differential evolution with an evolution path: a deep evolutionary algorithm. – start-page: 121 year: 2015 ident: 10.1016/j.knosys.2016.06.029_bib0037 article-title: A simple and accurate global optimizer for continuous spaces optimization. – year: 1999 ident: 10.1016/j.knosys.2016.06.029_bib0008 article-title: Particle swarm optimiser with neighbourhood operator. – volume: 19 start-page: 2717 issue: 10 year: 2015 ident: 10.1016/j.knosys.2016.06.029_bib0041 article-title: On the statistical distribution of the expected run-time in population-based search algorithms. publication-title: Soft Comput. doi: 10.1007/s00500-015-1672-y – volume: 12 start-page: 64 issue: 1 year: 2008 ident: 10.1016/j.knosys.2016.06.029_bib0028 article-title: Opposition-based differential evolution. publication-title: Evolut. Comput., IEEE T. doi: 10.1109/TEVC.2007.894200 – volume: 9 start-page: 448 issue: 6 year: 2005 ident: 10.1016/j.knosys.2016.06.029_bib0031 article-title: A fuzzy adaptive differential evolution algorithm. publication-title: Soft Comput. doi: 10.1007/s00500-004-0363-x – start-page: 281 year: 2006 ident: 10.1016/j.knosys.2016.06.029_bib0014 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. – volume: 13 start-page: 270 issue: 3 year: 1968 ident: 10.1016/j.knosys.2016.06.029_bib0024 article-title: Adaptive step size random search. publication-title: Automat. Contr., IEEE T. doi: 10.1109/TAC.1968.1098903 – year: 2006 ident: 10.1016/j.knosys.2016.06.029_bib0030  | 
    
| SSID | ssj0002218 | 
    
| Score | 2.5097845 | 
    
| Snippet | This paper presents a new novel evolutionary approach named QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm, which is a swarm based algorithm and... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 104 | 
    
| SubjectTerms | Benchmark functions Large scale optimization Particle swarm optimization QUATRE Real parameter optimization State-of-the-art  | 
    
| Title | QUasi-Affine TRansformation Evolutionary (QUATRE) algorithm: A cooperative swarm based algorithm for global optimization | 
    
| URI | https://dx.doi.org/10.1016/j.knosys.2016.06.029 | 
    
| Volume | 109 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MGDHtYmm-wm8RZKS1UsWFvoLST70GqblLY-evG3u5tsrIIoeEyYDWF2MvNt-OYbAE4oo7ZkLkG2TQPkJoSg2PMSRAPMqCWoy5huFL7p0HbfvRqQQQU0yl4YTas0ub_I6Xm2Nnfqxpv1yXBYv1PgQMWrAgzUsYzip-t6eorB-fuS5oFx_o9PGyNtXbbP5RyvpzSbLbRot01zFc8caP5Qnr6UnNYmWDdYEYbF62yBiki3wUY5hwGaz3IHvN3249kQhVIqyAh73SUUzVLYfDHBFU8X8FQB2F63eQbj0X02Hc4fxhcwhCzLJqJQAIez13g6hrq28aURVI-DhXQIzFSOGZvmzV3QbzV7jTYyExUQU0eDORKEWVRaXDAXc5v7gbQ9QaQTcFXopYILLPAFwTyWTsITBe18VdAxk3EgpOcI29kDK2mWin0APZcHPlaHQRLrMeV-gu2EYywcynySMKsKnNKRETNy43rqxSgqeWWPUeH-SLs_0vQ6HFQB-lw1KeQ2_rD3yj2KvoVNpCrCrysP_r3yEKzpq4LRdwRW5tNncayQyTyp5aFXA6vh5XW78wFeuOWD | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN40etCLb2N97sGDHtbCwi7grTE19ZlY28QbgX0oaqGh-Lr4292FxWpiNPEKM4TMDjPfkJlvANiljNqSuQTZNg2QGxOCIs-LEQ0wo5agLmN6UPjiknYH7ukNuWmAo3oWRrdVmthfxfQyWpsrLWPN1ihJWtcKHCh_VYCBOlbF-DntEuzpCuzgfdLngXH5k09LIy1ez8-VTV4PaTZ-06zdNi1pPEuk-UN--pJzjhfAnAGLsF29zyJoiHQJzNeLGKD5LpfB69UgGieoLaXCjLDfm2DRLIWdZ-NdUf4G9xSC7fc6-zB6vM3ypLgbHsI2ZFk2EhUFOBy_RPkQ6uTGJ0JQPQ5W3CEwU0FmaKY3V8DguNM_6iKzUgExVRsUSBBmUWlxwVzMbe4H0vYEkU7AVaaXCi-wwBcE80g6MY8VtvNVRsdMRoGQniNsZxVMpVkq1gD0XB74WFWDJNJ7yv0Y2zHHWDiU-SRmVhM4tSFDZvjG9dqLx7BuLLsPK_OH2vyh7q_DQROgT61Rxbfxh7xXn1H4zW9ClRJ-1Vz_t-YOmOn2L87D85PLsw0wq-9U7X2bYKrIn8SWgilFvF264Qe_-OcY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QUasi-Affine+TRansformation+Evolutionary+%28QUATRE%29+algorithm%3A+A+cooperative+swarm+based+algorithm+for+global+optimization&rft.jtitle=Knowledge-based+systems&rft.au=Meng%2C+Zhenyu&rft.au=Pan%2C+Jeng-Shyang&rft.au=Xu%2C+Huarong&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=109&rft.spage=104&rft.epage=121&rft_id=info:doi/10.1016%2Fj.knosys.2016.06.029&rft.externalDocID=S0950705116302003 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |