Improved pitch control strategy for the robust operation of wind energy conversion system in the high wind speed condition
•A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing sy...
Saved in:
| Published in | International journal of electrical power & energy systems Vol. 153; p. 109381 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-0615 1879-3517 |
| DOI | 10.1016/j.ijepes.2023.109381 |
Cover
| Abstract | •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing system noise amplification.•Giving a rigorous stability demonstration for the closed-loop system.•Developing a refined HIL platform for wind energy conversion systems to validate the approach's effectiveness.
The wind energy conversion system is a complex dynamic system with strong nonlinearity, perturbation, and uncertainty. In this paper, a novel optimal pitch control strategy is proposed to improve the ability to stabilize the captured wind energy, so as to realize robust operation in the high-wind-speed condition for wind turbines (WT) subject to unmodeled system disturbances and uncertainty. This control strategy combines three critical techniques: optimal pitch control law determination, disturbance compensation, and acceleration estimation. Among them, the optimal pitch control law is determined by utilizing the Hamilton-Jacobi-Bellman equation, regarding the minimization of the quadratic performance index. The total system uncertain disturbance is compensated by a designed extended state observer, making the pitch control approach almost independent of precise WT model parameters, markedly reinforcing the control system robustness. To prevent system noise amplification from direct differential means in acquiring rotor acceleration, we employ a fast-converging acceleration estimator to obtain the rotor acceleration feedback signal required by the pitch control law. System stability is proved using the Lyapunov theory. The comparative results on the developed hardware-in-the-loop test platform validate the effectiveness of the proposed solution, demonstrating that it provides superior dynamic performance in WT electrical power and speed with reduced fluctuation, overshoot, and regulation time while maintaining robustness against disturbances. |
|---|---|
| AbstractList | •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing system noise amplification.•Giving a rigorous stability demonstration for the closed-loop system.•Developing a refined HIL platform for wind energy conversion systems to validate the approach's effectiveness.
The wind energy conversion system is a complex dynamic system with strong nonlinearity, perturbation, and uncertainty. In this paper, a novel optimal pitch control strategy is proposed to improve the ability to stabilize the captured wind energy, so as to realize robust operation in the high-wind-speed condition for wind turbines (WT) subject to unmodeled system disturbances and uncertainty. This control strategy combines three critical techniques: optimal pitch control law determination, disturbance compensation, and acceleration estimation. Among them, the optimal pitch control law is determined by utilizing the Hamilton-Jacobi-Bellman equation, regarding the minimization of the quadratic performance index. The total system uncertain disturbance is compensated by a designed extended state observer, making the pitch control approach almost independent of precise WT model parameters, markedly reinforcing the control system robustness. To prevent system noise amplification from direct differential means in acquiring rotor acceleration, we employ a fast-converging acceleration estimator to obtain the rotor acceleration feedback signal required by the pitch control law. System stability is proved using the Lyapunov theory. The comparative results on the developed hardware-in-the-loop test platform validate the effectiveness of the proposed solution, demonstrating that it provides superior dynamic performance in WT electrical power and speed with reduced fluctuation, overshoot, and regulation time while maintaining robustness against disturbances. |
| ArticleNumber | 109381 |
| Author | Li, Chen Yan, Yan Shi, Tingna Song, Peng Chen, Ziyang Cao, Yanfei |
| Author_xml | – sequence: 1 givenname: Ziyang surname: Chen fullname: Chen, Ziyang organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China – sequence: 2 givenname: Tingna surname: Shi fullname: Shi, Tingna email: tnshi@zju.edu.cn organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China – sequence: 3 givenname: Peng surname: Song fullname: Song, Peng organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China – sequence: 4 givenname: Chen surname: Li fullname: Li, Chen organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China – sequence: 5 givenname: Yanfei surname: Cao fullname: Cao, Yanfei organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China – sequence: 6 givenname: Yan surname: Yan fullname: Yan, Yan organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China |
| BookMark | eNqFkMtOwzAQRS1UJErhD1j4B1JsJ40TFkio4lGpEhtYW449aVy1dmSbovL1OA0rFrCyNHPPteZcool1FhC6oWROCS1vt3OzhR7CnBGWp1GdV_QMTWnF6yxfUD5BU0ILlpGSLi7QZQhbQgivCzZFX6t9790BNO5NVB1WzkbvdjhELyNsjrh1HscOsHfNR4jY9ZAWxlnsWvxprMZgwadcAg_gw7AJxxBhj409gZ3ZdGMy9JD-SUFthoYrdN7KXYDrn3eG3p8e35Yv2fr1ebV8WGcqJ2XMoGhZQ2soc1bwRSklldCUmrRQqhaIBGhrwhXjpAbKi6ouNecaGlU0sqKM5jNUjL3KuxA8tKL3Zi_9UVAiBn9iK0Z_YvAnRn8Ju_uFKRNPpyc1ZvcffD_CkA47GPAiKANWgTYeVBTamb8LvgG0NpRB |
| CitedBy_id | crossref_primary_10_1016_j_ijepes_2024_109939 crossref_primary_10_1177_01423312241286937 crossref_primary_10_1016_j_apenergy_2024_122777 crossref_primary_10_3390_a18030162 crossref_primary_10_1109_ACCESS_2025_3546492 |
| Cites_doi | 10.1002/asjc.761 10.1016/j.renene.2016.07.064 10.1016/j.energy.2017.02.149 10.1109/TEC.2007.914307 10.1016/j.ijepes.2022.108578 10.1109/ENERGYCON.2014.6850413 10.1109/TSTE.2011.2153217 10.1016/j.ifacol.2018.07.324 10.1109/TIE.2015.2478397 10.1080/10798587.2015.1095417 10.1016/j.renene.2015.10.030 10.1109/TIE.2018.2798566 10.1109/CDC.2007.4434676 10.1049/iet-gtd.2016.1371 10.2172/15009600 10.1016/j.egyr.2019.11.094 10.1016/j.oceaneng.2021.108897 10.1016/j.isatra.2020.09.003 10.1109/TCYB.2016.2555307 10.1109/TMECH.2017.2767085 10.1016/j.ijepes.2015.01.031 10.2172/947422 10.1016/j.isatra.2019.07.006 10.1016/j.renene.2020.05.093 10.1016/j.conengprac.2016.02.004 10.1016/j.eswa.2009.02.014 10.1109/ACC.2006.1656579 10.1016/j.isatra.2020.04.001 10.1109/ACCESS.2022.3203692 10.1007/s00521-018-03995-9 10.1016/j.isatra.2016.04.008 10.1016/j.isatra.2015.02.008 10.1109/TEC.2021.3076839 10.1109/TSG.2017.2690566 10.1504/IJPEC.2020.110018 10.1109/TIE.2010.2044131 10.1080/0020717031000099029 10.1016/0021-8928(63)90181-3 10.2172/1130628 10.2172/891594 10.1109/MIAS.2015.2459116 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2023.109381 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| ExternalDocumentID | 10_1016_j_ijepes_2023_109381 S0142061523004386 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD |
| ID | FETCH-LOGICAL-c306t-e4f2b19e6324756aa1aeb6d0fe6cfe0aeef907c2709e174896d77debc4ba81213 |
| IEDL.DBID | .~1 |
| ISSN | 0142-0615 |
| IngestDate | Thu Apr 24 23:00:23 EDT 2025 Thu Oct 02 04:26:32 EDT 2025 Fri Feb 23 02:34:41 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wind energy conversion system Robust pitch control Wind turbines Optimal control Hardware-in-the-loop test |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-e4f2b19e6324756aa1aeb6d0fe6cfe0aeef907c2709e174896d77debc4ba81213 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0142061523004386 |
| ParticipantIDs | crossref_primary_10_1016_j_ijepes_2023_109381 crossref_citationtrail_10_1016_j_ijepes_2023_109381 elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109381 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Asgharnia, Jamali, Shahnazi, Maheri (b0030) 2020; 96 Fei, Shi, Lim (b0255) 2021 Elsisi, Soliman (b0125) Feb. 2021; 108 Jia, Cai, Lou, Li (b0175) 2017; 11 Van, Ge, Ren (b0240) 2016; 47 International Electrotechnical Committee, IEC Standard 61400-1, 2005. Yilmaz, Özer (b0095) 2009; 36 Poureh, Chamani, Bahri (b0010) 2023; 145 Pan, Wang (b0090) 2020; 159 Bagheri, Sun (b0020) Jul. 2016; 63 Saravanakumar, Jena (b0075) 2015; 69 Korayem, Nekoo (b0105) 2015; 57 Chen X, Li D, Gao Z, Wang C. “Tuning method for second-order active disturbance rejection control.” In Jonkman BJ, Buhl ML. “TurbSim user’s guide,” Nat Wind Energy Technol Center, Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/TP-500-39797, Sep. 2006. IEEE; 2014. pp. 101–5. Gao Z. “Scaling and bandwidth-parameterization based controller tuning,” In Ornelas-Tellez, Rico, Ruiz-Cruz (b0120) 2014; 16 2006. pp. 7. Singh M, Muljadi E, Jonkman J, Gevorgian V, Girsang I, Dhupia J. “Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules,” National Renewable Energy Lab (NREL), Golden, CO (United States), NREL/TP-5D00-59195, Apr. 2014. Krasovskii (b0185) 1963; 27 Bak C, Zahle, Bitsche R, Kim T, Yde A, Henriksen LC, et al., “Description of the DTU 10 MW Reference Wind Turbine; DTU”, the Wind Energy Report-I-0092, 2013. Vega, Paz, Ornelas-Tellez, Rico-Melgoza (b0115) 2018; 51 Song, Yang, Dong, Joo (b0050) 2017; 126 Levant (b0250) 2003; 76 . Soliman, Malik, Westwick (b0015) 2011; 2 Yang, Jiao, Luo, Chen, Sun (b0065) 2020; 103 2009. pp. 1–7. Hansen, Hansen, Larsen (b0225) 2005 Lasheen, Elshafei (b0085) 2016; 87 Jonkman J, Butterfield S, Musial W, Scott G. “Definition of a 5-mw reference wind turbine for offshore system development,” Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/EL-500-38060; Feb. 2009. Nayeh, Moradi, Vossoughi (b0080) 2020; 115 Mata-Dumenjo M, Sanchez-Navarro J, Rossetti M, et al. Integrated simulation of a doubly fed induction generator wind turbine. In Imran RM, Hussain DA, Chen Z. LQG controller design for pitch regulated variable speed wind turbine. In 2007, vol. 12–14. pp. 3501–06. Mohamed, Mohamed, Saied, Elsisi, Su, Hadi (b0145) 2022; 10 Luna, Lima, Santos, Rodriguez, Watanabe, Arnaltes (b0215) Jan. 2011; 58 Ismail, Bendary, Elsisi (b0140) Jan. 2020; 11 Zhang, Plestan (b0070) 2021; 228 Munteanu I, Bratcu AI, Cutululis NA, Caenga E. Optim. Control Wind Energy Syst. Toward Global Approach. New York, NY, USA: Springer-Verlag; 2008. Stol KA, Fingersh L. Wind turbine field testing of state-space control designs; 2004. Ornelas-Tellez, Rico-Melgoza, Espinosa-Juarez, Sanchez (b0110) 2017; 9 Elsisi (b0130) Sep. 2019; 31 Fadaeinedjad, Moallem, Moschopoulos (b0155) Jun. 2008; 23 2003. Denver, CO, USA: IEEE; 2003. pp. 4989–96. Civelek, Lüy, Çam, Barışçı (b0035) 2016; 22 Li, Zhao, Diao, Han (b0170) Feb. 2020; 6 Chen, Yang, Guo, Li (b0190) 2015; 63 Ren, Li, Brindley, Jiang (b0100) 2016; 50 Gao Z. “Active disturbance rejection control: a paradigm shift in feedback control system design,” In Jiao, Yang, Xu (b0025) 2021; 36 Lin, Xiahou, Liu, Wu (b0180) Sep. 2018; 65 Yantai, China, Jul. 2011. pp. 6322–27. Kim, Kwon (b0135) 2017; 22 Inthamoussou, De Battista, Mantz (b0060) Dec. 2016; 99 Novakovic, Duan, Solveson, Nasiri, Ionel (b0165) Sep. 2016; 22 “Openfast documentation.” [Online]. Available Zheng Q, Gao LQ, Gao Z. “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” In Li (10.1016/j.ijepes.2023.109381_b0170) 2020; 6 Luna (10.1016/j.ijepes.2023.109381_b0215) 2011; 58 10.1016/j.ijepes.2023.109381_b0230 Jia (10.1016/j.ijepes.2023.109381_b0175) 2017; 11 10.1016/j.ijepes.2023.109381_b0195 10.1016/j.ijepes.2023.109381_b0150 Fadaeinedjad (10.1016/j.ijepes.2023.109381_b0155) 2008; 23 Lin (10.1016/j.ijepes.2023.109381_b0180) 2018; 65 Hansen (10.1016/j.ijepes.2023.109381_b0225) 2005 Ren (10.1016/j.ijepes.2023.109381_b0100) 2016; 50 10.1016/j.ijepes.2023.109381_b0235 Lasheen (10.1016/j.ijepes.2023.109381_b0085) 2016; 87 Yang (10.1016/j.ijepes.2023.109381_b0065) 2020; 103 Soliman (10.1016/j.ijepes.2023.109381_b0015) 2011; 2 Zhang (10.1016/j.ijepes.2023.109381_b0070) 2021; 228 Ornelas-Tellez (10.1016/j.ijepes.2023.109381_b0110) 2017; 9 Yilmaz (10.1016/j.ijepes.2023.109381_b0095) 2009; 36 10.1016/j.ijepes.2023.109381_b0220 Elsisi (10.1016/j.ijepes.2023.109381_b0130) 2019; 31 Asgharnia (10.1016/j.ijepes.2023.109381_b0030) 2020; 96 Chen (10.1016/j.ijepes.2023.109381_b0190) 2015; 63 Inthamoussou (10.1016/j.ijepes.2023.109381_b0060) 2016; 99 Vega (10.1016/j.ijepes.2023.109381_b0115) 2018; 51 Mohamed (10.1016/j.ijepes.2023.109381_b0145) 2022; 10 Ismail (10.1016/j.ijepes.2023.109381_b0140) 2020; 11 Saravanakumar (10.1016/j.ijepes.2023.109381_b0075) 2015; 69 Jiao (10.1016/j.ijepes.2023.109381_b0025) 2021; 36 Pan (10.1016/j.ijepes.2023.109381_b0090) 2020; 159 Song (10.1016/j.ijepes.2023.109381_b0050) 2017; 126 Kim (10.1016/j.ijepes.2023.109381_b0135) 2017; 22 10.1016/j.ijepes.2023.109381_b0210 10.1016/j.ijepes.2023.109381_b0055 Fei (10.1016/j.ijepes.2023.109381_b0255) 2021 10.1016/j.ijepes.2023.109381_b0160 Ornelas-Tellez (10.1016/j.ijepes.2023.109381_b0120) 2014; 16 Van (10.1016/j.ijepes.2023.109381_b0240) 2016; 47 Bagheri (10.1016/j.ijepes.2023.109381_b0020) 2016; 63 Elsisi (10.1016/j.ijepes.2023.109381_b0125) 2021; 108 10.1016/j.ijepes.2023.109381_b0040 Nayeh (10.1016/j.ijepes.2023.109381_b0080) 2020; 115 Poureh (10.1016/j.ijepes.2023.109381_b0010) 2023; 145 Krasovskii (10.1016/j.ijepes.2023.109381_b0185) 1963; 27 10.1016/j.ijepes.2023.109381_b0245 10.1016/j.ijepes.2023.109381_b0200 10.1016/j.ijepes.2023.109381_b0045 Novakovic (10.1016/j.ijepes.2023.109381_b0165) 2016; 22 Levant (10.1016/j.ijepes.2023.109381_b0250) 2003; 76 Civelek (10.1016/j.ijepes.2023.109381_b0035) 2016; 22 10.1016/j.ijepes.2023.109381_b0205 10.1016/j.ijepes.2023.109381_b0005 Korayem (10.1016/j.ijepes.2023.109381_b0105) 2015; 57 |
| References_xml | – volume: 76 start-page: 924 year: 2003 end-page: 941 ident: b0250 article-title: Higher-order sliding modes, differentiation and output-feedback control publication-title: Int J Control – reference: Singh M, Muljadi E, Jonkman J, Gevorgian V, Girsang I, Dhupia J. “Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules,” National Renewable Energy Lab (NREL), Golden, CO (United States), NREL/TP-5D00-59195, Apr. 2014. – volume: 115 year: 2020 ident: b0080 article-title: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control publication-title: Int J Electr Power Energy Syst – reference: Chen X, Li D, Gao Z, Wang C. “Tuning method for second-order active disturbance rejection control.” In: – volume: 69 start-page: 421 year: 2015 end-page: 429 ident: b0075 article-title: Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine publication-title: Int J Electr Power Energy Syst – volume: 11 start-page: 3030 year: 2017 end-page: 3038 ident: b0175 article-title: Interfacing technique and hardware-in-loop simulation of real-time co-simulation platform for wind energy conversion system publication-title: IET Gener Transm Distrib – volume: 47 start-page: 1681 year: 2016 end-page: 1693 ident: b0240 article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control publication-title: IEEE Trans Cybern – reference: Gao Z. “Scaling and bandwidth-parameterization based controller tuning,” In: – volume: 63 start-page: 1083 year: 2015 end-page: 1095 ident: b0190 article-title: Disturbance-observer-based control and related methods—An overview publication-title: IEEE Trans Ind Electron – volume: 36 start-page: 2770 year: 2021 end-page: 2781 ident: b0025 article-title: Hybrid intelligent feedforward-feedback pitch control for VSWT with predicted wind speed publication-title: IEEE Trans Energy Convers – reference: Jonkman J, Butterfield S, Musial W, Scott G. “Definition of a 5-mw reference wind turbine for offshore system development,” Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/EL-500-38060; Feb. 2009. – volume: 65 start-page: 7049 year: Sep. 2018 end-page: 7059 ident: b0180 article-title: Design and Hardware-in-the-Loop Experiment of Multiloop Adaptive Control for DFIG-WT publication-title: IEEE Trans Ind Electron – volume: 58 start-page: 9 year: Jan. 2011 end-page: 20 ident: b0215 article-title: Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications publication-title: IEEE Trans Ind Electron – volume: 36 start-page: 9767 year: 2009 end-page: 9775 ident: b0095 article-title: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks publication-title: IEEE Exp Syst Appl – reference: ; 2007, vol. 12–14. pp. 3501–06. – volume: 22 start-page: 463 year: 2016 end-page: 471 ident: b0035 article-title: Control of pitch angle of wind turbine by fuzzy PID controller publication-title: Intell Automat Soft Comput – volume: 103 start-page: 28 year: 2020 end-page: 36 ident: b0065 article-title: L1 adaptive pitch angle controller of wind energy conversion systems publication-title: ISA Trans – reference: Zheng Q, Gao LQ, Gao Z. “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” In: – volume: 23 start-page: 690 year: Jun. 2008 end-page: 700 ident: b0155 article-title: Simulation of a Wind Turbine With Doubly Fed Induction Generator by FAST and Simulink publication-title: IEEE Trans Energy Convers – reference: International Electrotechnical Committee, IEC Standard 61400-1, 2005. – reference: “Openfast documentation.” [Online]. Available: – volume: 63 start-page: 233 year: Jul. 2016 end-page: 241 ident: b0020 article-title: Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics publication-title: ISA Trans – volume: 57 start-page: 117 year: 2015 end-page: 135 ident: b0105 article-title: State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities publication-title: ISA Trans – volume: 145 year: 2023 ident: b0010 article-title: Nonlinear analysis of gain scheduled controllers for the NREL 5-MW turbine blade pitch control system publication-title: Int J Electr Power Energy Syst – reference: Imran RM, Hussain DA, Chen Z. LQG controller design for pitch regulated variable speed wind turbine. In: – volume: 31 start-page: 5017 year: Sep. 2019 end-page: 5027 ident: b0130 article-title: Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator publication-title: Neural Comput & Applic – reference: Jonkman BJ, Buhl ML. “TurbSim user’s guide,” Nat Wind Energy Technol Center, Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/TP-500-39797, Sep. 2006. – volume: 51 start-page: 431 year: 2018 end-page: 436 ident: b0115 article-title: System parameters’ identification and optimal tracking control for nonlinear systems publication-title: IFAC-PapersOnLine – reference: ; 2006. pp. 7. – volume: 10 start-page: 93646 year: 2022 end-page: 93658 ident: b0145 article-title: Optimal Energy Management Solutions Using Artificial Intelligence Techniques for Photovoltaic Empowered Water Desalination Plants Under Cost Function Uncertainties publication-title: IEEE Access – volume: 159 start-page: 221 year: 2020 end-page: 237 ident: b0090 article-title: Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control publication-title: Renew Energ – year: 2021 ident: b0255 article-title: Robust and collision-free formation control of multiagent systems with limited information publication-title: IEEE Trans Neural Netw Learn Syst – volume: 50 start-page: 84 year: 2016 end-page: 94 ident: b0100 article-title: Nonlinear PI control for variable pitch wind turbine publication-title: Control Eng Pract – reference: ; 2009. pp. 1–7. – volume: 99 start-page: 996 year: Dec. 2016 end-page: 1007 ident: b0060 article-title: LPV-based active power control of wind turbines covering the complete wind speed range publication-title: Renew Energ – volume: 16 start-page: 890 year: 2014 end-page: 903 ident: b0120 article-title: Optimal tracking for state-dependent coefficient factorized nonlinear systems publication-title: Asian J Control – volume: 22 start-page: 73 year: Sep. 2016 end-page: 84 ident: b0165 article-title: From Wind to the Electric Grid: Comprehensive Modeling of Wind Turbine Systems publication-title: IEEE Ind Appl Mag – reference: Mata-Dumenjo M, Sanchez-Navarro J, Rossetti M, et al. Integrated simulation of a doubly fed induction generator wind turbine. In: – volume: 27 start-page: 971 year: 1963 end-page: 1004 ident: b0185 article-title: On the stabilization of unstable motions by additional forces when the feedback loop is incomplete publication-title: J Appl Math Mech – volume: 11 start-page: 412 year: Jan. 2020 end-page: 429 ident: b0140 article-title: Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery publication-title: Int J Power Energy Convers – volume: 126 start-page: 564 year: 2017 end-page: 572 ident: b0050 article-title: Model predictive control with finite control set for variable-speed wind turbines publication-title: Energy – reference: . IEEE; 2014. pp. 101–5. – volume: 2 start-page: 215 year: 2011 end-page: 225 ident: b0015 article-title: Multiple model predictive control for wind turbines with doubly fed induction generators publication-title: IEEE Trans Sustain Energy – year: 2005 ident: b0225 article-title: Control design for a pitch-regulated, variable speed wind turbine – volume: 6 start-page: 403 year: Feb. 2020 end-page: 409 ident: b0170 article-title: Design of real-time co-simulation platform for wind energy conversion system publication-title: Energy Rep – reference: Stol KA, Fingersh L. Wind turbine field testing of state-space control designs; 2004. – volume: 87 start-page: 298 year: 2016 end-page: 306 ident: b0085 article-title: Wind-turbine collective-pitch control via a fuzzy predictive algorithm publication-title: Renew Energ – reference: , Yantai, China, Jul. 2011. pp. 6322–27. – reference: , 2003. Denver, CO, USA: IEEE; 2003. pp. 4989–96. – reference: . – reference: Gao Z. “Active disturbance rejection control: a paradigm shift in feedback control system design,” In: – volume: 9 start-page: 5543 year: 2017 end-page: 5553 ident: b0110 article-title: Optimal and robust control in DC microgrids publication-title: IEEE Trans Smart Grid – volume: 22 start-page: 2803 year: 2017 end-page: 2808 ident: b0135 article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform publication-title: IEEE/ASME Trans Mechatronics – volume: 228 year: 2021 ident: b0070 article-title: Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode publication-title: Ocean Eng – volume: 108 start-page: 257 year: Feb. 2021 end-page: 268 ident: b0125 article-title: Optimal design of robust resilient automatic voltage regulators publication-title: ISA Trans – volume: 96 start-page: 272 year: 2020 end-page: 286 ident: b0030 article-title: Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller publication-title: ISA Trans – reference: Bak C, Zahle, Bitsche R, Kim T, Yde A, Henriksen LC, et al., “Description of the DTU 10 MW Reference Wind Turbine; DTU”, the Wind Energy Report-I-0092, 2013. – reference: Munteanu I, Bratcu AI, Cutululis NA, Caenga E. Optim. Control Wind Energy Syst. Toward Global Approach. New York, NY, USA: Springer-Verlag; 2008. – volume: 16 start-page: 890 issue: 3 year: 2014 ident: 10.1016/j.ijepes.2023.109381_b0120 article-title: Optimal tracking for state-dependent coefficient factorized nonlinear systems publication-title: Asian J Control doi: 10.1002/asjc.761 – ident: 10.1016/j.ijepes.2023.109381_b0150 – volume: 99 start-page: 996 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0060 article-title: LPV-based active power control of wind turbines covering the complete wind speed range publication-title: Renew Energ doi: 10.1016/j.renene.2016.07.064 – volume: 126 start-page: 564 year: 2017 ident: 10.1016/j.ijepes.2023.109381_b0050 article-title: Model predictive control with finite control set for variable-speed wind turbines publication-title: Energy doi: 10.1016/j.energy.2017.02.149 – volume: 23 start-page: 690 issue: 2 year: 2008 ident: 10.1016/j.ijepes.2023.109381_b0155 article-title: Simulation of a Wind Turbine With Doubly Fed Induction Generator by FAST and Simulink publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2007.914307 – volume: 145 year: 2023 ident: 10.1016/j.ijepes.2023.109381_b0010 article-title: Nonlinear analysis of gain scheduled controllers for the NREL 5-MW turbine blade pitch control system publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2022.108578 – ident: 10.1016/j.ijepes.2023.109381_b0205 – ident: 10.1016/j.ijepes.2023.109381_b0230 – ident: 10.1016/j.ijepes.2023.109381_b0040 doi: 10.1109/ENERGYCON.2014.6850413 – volume: 2 start-page: 215 issue: 3 year: 2011 ident: 10.1016/j.ijepes.2023.109381_b0015 article-title: Multiple model predictive control for wind turbines with doubly fed induction generators publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2011.2153217 – volume: 51 start-page: 431 issue: 13 year: 2018 ident: 10.1016/j.ijepes.2023.109381_b0115 article-title: System parameters’ identification and optimal tracking control for nonlinear systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.07.324 – ident: 10.1016/j.ijepes.2023.109381_b0220 – volume: 63 start-page: 1083 issue: 2 year: 2015 ident: 10.1016/j.ijepes.2023.109381_b0190 article-title: Disturbance-observer-based control and related methods—An overview publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2015.2478397 – volume: 22 start-page: 463 issue: 3 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0035 article-title: Control of pitch angle of wind turbine by fuzzy PID controller publication-title: Intell Automat Soft Comput doi: 10.1080/10798587.2015.1095417 – volume: 87 start-page: 298 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0085 article-title: Wind-turbine collective-pitch control via a fuzzy predictive algorithm publication-title: Renew Energ doi: 10.1016/j.renene.2015.10.030 – volume: 65 start-page: 7049 issue: 9 year: 2018 ident: 10.1016/j.ijepes.2023.109381_b0180 article-title: Design and Hardware-in-the-Loop Experiment of Multiloop Adaptive Control for DFIG-WT publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2018.2798566 – ident: 10.1016/j.ijepes.2023.109381_b0245 doi: 10.1109/CDC.2007.4434676 – volume: 11 start-page: 3030 issue: 12 year: 2017 ident: 10.1016/j.ijepes.2023.109381_b0175 article-title: Interfacing technique and hardware-in-loop simulation of real-time co-simulation platform for wind energy conversion system publication-title: IET Gener Transm Distrib doi: 10.1049/iet-gtd.2016.1371 – ident: 10.1016/j.ijepes.2023.109381_b0045 doi: 10.2172/15009600 – volume: 6 start-page: 403 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0170 article-title: Design of real-time co-simulation platform for wind energy conversion system publication-title: Energy Rep doi: 10.1016/j.egyr.2019.11.094 – volume: 228 year: 2021 ident: 10.1016/j.ijepes.2023.109381_b0070 article-title: Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.108897 – volume: 108 start-page: 257 year: 2021 ident: 10.1016/j.ijepes.2023.109381_b0125 article-title: Optimal design of robust resilient automatic voltage regulators publication-title: ISA Trans doi: 10.1016/j.isatra.2020.09.003 – volume: 47 start-page: 1681 issue: 7 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0240 article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2016.2555307 – volume: 22 start-page: 2803 issue: 6 year: 2017 ident: 10.1016/j.ijepes.2023.109381_b0135 article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform publication-title: IEEE/ASME Trans Mechatronics doi: 10.1109/TMECH.2017.2767085 – volume: 69 start-page: 421 year: 2015 ident: 10.1016/j.ijepes.2023.109381_b0075 article-title: Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.01.031 – year: 2021 ident: 10.1016/j.ijepes.2023.109381_b0255 article-title: Robust and collision-free formation control of multiagent systems with limited information publication-title: IEEE Trans Neural Netw Learn Syst – ident: 10.1016/j.ijepes.2023.109381_b0005 – ident: 10.1016/j.ijepes.2023.109381_b0055 doi: 10.2172/947422 – volume: 115 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0080 article-title: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control publication-title: Int J Electr Power Energy Syst – volume: 96 start-page: 272 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0030 article-title: Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller publication-title: ISA Trans doi: 10.1016/j.isatra.2019.07.006 – volume: 159 start-page: 221 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0090 article-title: Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control publication-title: Renew Energ doi: 10.1016/j.renene.2020.05.093 – volume: 50 start-page: 84 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0100 article-title: Nonlinear PI control for variable pitch wind turbine publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2016.02.004 – volume: 36 start-page: 9767 issue: 6 year: 2009 ident: 10.1016/j.ijepes.2023.109381_b0095 article-title: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks publication-title: IEEE Exp Syst Appl doi: 10.1016/j.eswa.2009.02.014 – ident: 10.1016/j.ijepes.2023.109381_b0195 doi: 10.1109/ACC.2006.1656579 – volume: 103 start-page: 28 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0065 article-title: L1 adaptive pitch angle controller of wind energy conversion systems publication-title: ISA Trans doi: 10.1016/j.isatra.2020.04.001 – ident: 10.1016/j.ijepes.2023.109381_b0210 – volume: 10 start-page: 93646 year: 2022 ident: 10.1016/j.ijepes.2023.109381_b0145 article-title: Optimal Energy Management Solutions Using Artificial Intelligence Techniques for Photovoltaic Empowered Water Desalination Plants Under Cost Function Uncertainties publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3203692 – year: 2005 ident: 10.1016/j.ijepes.2023.109381_b0225 – volume: 31 start-page: 5017 issue: 9 year: 2019 ident: 10.1016/j.ijepes.2023.109381_b0130 article-title: Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator publication-title: Neural Comput & Applic doi: 10.1007/s00521-018-03995-9 – volume: 63 start-page: 233 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0020 article-title: Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics publication-title: ISA Trans doi: 10.1016/j.isatra.2016.04.008 – volume: 57 start-page: 117 year: 2015 ident: 10.1016/j.ijepes.2023.109381_b0105 article-title: State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities publication-title: ISA Trans doi: 10.1016/j.isatra.2015.02.008 – volume: 36 start-page: 2770 issue: 4 year: 2021 ident: 10.1016/j.ijepes.2023.109381_b0025 article-title: Hybrid intelligent feedforward-feedback pitch control for VSWT with predicted wind speed publication-title: IEEE Trans Energy Convers doi: 10.1109/TEC.2021.3076839 – volume: 9 start-page: 5543 issue: 6 year: 2017 ident: 10.1016/j.ijepes.2023.109381_b0110 article-title: Optimal and robust control in DC microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2690566 – volume: 11 start-page: 412 issue: 4 year: 2020 ident: 10.1016/j.ijepes.2023.109381_b0140 article-title: Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery publication-title: Int J Power Energy Convers doi: 10.1504/IJPEC.2020.110018 – ident: 10.1016/j.ijepes.2023.109381_b0200 – volume: 58 start-page: 9 issue: 1 year: 2011 ident: 10.1016/j.ijepes.2023.109381_b0215 article-title: Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2010.2044131 – volume: 76 start-page: 924 issue: 9–10 year: 2003 ident: 10.1016/j.ijepes.2023.109381_b0250 article-title: Higher-order sliding modes, differentiation and output-feedback control publication-title: Int J Control doi: 10.1080/0020717031000099029 – volume: 27 start-page: 971 issue: 4 year: 1963 ident: 10.1016/j.ijepes.2023.109381_b0185 article-title: On the stabilization of unstable motions by additional forces when the feedback loop is incomplete publication-title: J Appl Math Mech doi: 10.1016/0021-8928(63)90181-3 – ident: 10.1016/j.ijepes.2023.109381_b0160 doi: 10.2172/1130628 – ident: 10.1016/j.ijepes.2023.109381_b0235 doi: 10.2172/891594 – volume: 22 start-page: 73 issue: 5 year: 2016 ident: 10.1016/j.ijepes.2023.109381_b0165 article-title: From Wind to the Electric Grid: Comprehensive Modeling of Wind Turbine Systems publication-title: IEEE Ind Appl Mag doi: 10.1109/MIAS.2015.2459116 |
| SSID | ssj0007942 |
| Score | 2.4539902 |
| Snippet | •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109381 |
| SubjectTerms | Hardware-in-the-loop test Optimal control Robust pitch control Wind energy conversion system Wind turbines |
| Title | Improved pitch control strategy for the robust operation of wind energy conversion system in the high wind speed condition |
| URI | https://dx.doi.org/10.1016/j.ijepes.2023.109381 |
| Volume | 153 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: ACRLP dateStart: 20231001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIKHN dateStart: 20231001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jc1jk22PpVjqq4hY6C1kN7OQIkloU0QP_nZ3dhMfIAqeQsIOhJll5tvkm28IOUeNdF3YUkcGqXCYD8xJ-EA5MuXAQxEoV2Lv8N00mszY9Tyct8io6YVBWmWd-21ON9m6ftKrvdkrs6yHtCQfC7IfmN9ZKLvNGMcpBhdvnzQPvd98S2P0cYpB2LTPGY5XtoASULTbD4yuUt_7uTx9KTnjHbJdY0U6tK-zS1qQ75GtLwqC--TVfhSAlJaZ9j-tmed0ZUVnX6jGpFRjPLosxHpV0aIEG3JaKPqsz-MUTPMfNexz8-mMWnFnmuXGEPWM7cpVqSsdLkwNzeuAzMaXj6OJU49T0HFwo8oBpnzhDQAF2nkYJYmXgIhSV0EkFbgJgNInZelzdwAeitJEKecpCMlE0kflt0PSzoscjgh1petKpcEPsISxQGqYrqGY0tk1kUKHvkOCxouxrLXGceTFU9yQyhax9X2Mvo-t7zvE-bAqrdbGH-t5E6D4256JdTn41fL435YnZBPvbDfiKWlXyzWcaVhSia7Zd12yMRw93N7j9epmMn0H_ePmnA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQevsclmk22PUixV255a6G3JbmYhIk1oU0QP_nb3kWgFUfCa7ECYGWa-3XzzLULXRiNdN7bUk2EqPEqAegnrKk-mDFgkQuVLMzs8GseDKX2YRbMG6tWzMIZWWdV-V9Ntta6etCtvtossaxtaEjENmYT2d1a8gTZpRJjZgd28f_E8dMIRx2Mk5hqDqJ6fsySv7AkKMKrdJLTCSp3g5_601nP6e2i3Aov41n3PPmrA_ADtrEkIHqI3dyoAKS4yHQBcUc_x0qnOvmINSrEGeXiRi9WyxHkBLuY4V_hFb8gx2Ok_bOnn9uwMO3VnnM2toRE0diuXhW51ZmFqeV5HaNq_m_QGXnWfgg6EH5ceUEVE0AWj0M6iOEmCBESc-gpiqcBPAJTeKkvC_C4ERpUmThlLQUgqko6RfjtGzXk-hxOEfen7Umn0AzShNJQap2sspnR5TaTQsW-hsPYil5XYuLnz4pnXrLIn7nzPje-5830LeZ9WhRPb-GM9qwPEvyUN1_3gV8vTf1teoa3BZDTkw_vx4xnaNm_caOI5apaLFVxojFKKS5uDHy8q5pw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+pitch+control+strategy+for+the+robust+operation+of+wind+energy+conversion+system+in+the+high+wind+speed+condition&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Chen%2C+Ziyang&rft.au=Shi%2C+Tingna&rft.au=Song%2C+Peng&rft.au=Li%2C+Chen&rft.date=2023-11-01&rft.issn=0142-0615&rft.volume=153&rft.spage=109381&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2023_109381 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |