Improved pitch control strategy for the robust operation of wind energy conversion system in the high wind speed condition

•A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing sy...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical power & energy systems Vol. 153; p. 109381
Main Authors Chen, Ziyang, Shi, Tingna, Song, Peng, Li, Chen, Cao, Yanfei, Yan, Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2023
Subjects
Online AccessGet full text
ISSN0142-0615
1879-3517
DOI10.1016/j.ijepes.2023.109381

Cover

Abstract •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing system noise amplification.•Giving a rigorous stability demonstration for the closed-loop system.•Developing a refined HIL platform for wind energy conversion systems to validate the approach's effectiveness. The wind energy conversion system is a complex dynamic system with strong nonlinearity, perturbation, and uncertainty. In this paper, a novel optimal pitch control strategy is proposed to improve the ability to stabilize the captured wind energy, so as to realize robust operation in the high-wind-speed condition for wind turbines (WT) subject to unmodeled system disturbances and uncertainty. This control strategy combines three critical techniques: optimal pitch control law determination, disturbance compensation, and acceleration estimation. Among them, the optimal pitch control law is determined by utilizing the Hamilton-Jacobi-Bellman equation, regarding the minimization of the quadratic performance index. The total system uncertain disturbance is compensated by a designed extended state observer, making the pitch control approach almost independent of precise WT model parameters, markedly reinforcing the control system robustness. To prevent system noise amplification from direct differential means in acquiring rotor acceleration, we employ a fast-converging acceleration estimator to obtain the rotor acceleration feedback signal required by the pitch control law. System stability is proved using the Lyapunov theory. The comparative results on the developed hardware-in-the-loop test platform validate the effectiveness of the proposed solution, demonstrating that it provides superior dynamic performance in WT electrical power and speed with reduced fluctuation, overshoot, and regulation time while maintaining robustness against disturbances.
AbstractList •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is independent of the exact model parameters of WTs, easy to implement in practice.•Improving access to the rotor acceleration signal with minimizing system noise amplification.•Giving a rigorous stability demonstration for the closed-loop system.•Developing a refined HIL platform for wind energy conversion systems to validate the approach's effectiveness. The wind energy conversion system is a complex dynamic system with strong nonlinearity, perturbation, and uncertainty. In this paper, a novel optimal pitch control strategy is proposed to improve the ability to stabilize the captured wind energy, so as to realize robust operation in the high-wind-speed condition for wind turbines (WT) subject to unmodeled system disturbances and uncertainty. This control strategy combines three critical techniques: optimal pitch control law determination, disturbance compensation, and acceleration estimation. Among them, the optimal pitch control law is determined by utilizing the Hamilton-Jacobi-Bellman equation, regarding the minimization of the quadratic performance index. The total system uncertain disturbance is compensated by a designed extended state observer, making the pitch control approach almost independent of precise WT model parameters, markedly reinforcing the control system robustness. To prevent system noise amplification from direct differential means in acquiring rotor acceleration, we employ a fast-converging acceleration estimator to obtain the rotor acceleration feedback signal required by the pitch control law. System stability is proved using the Lyapunov theory. The comparative results on the developed hardware-in-the-loop test platform validate the effectiveness of the proposed solution, demonstrating that it provides superior dynamic performance in WT electrical power and speed with reduced fluctuation, overshoot, and regulation time while maintaining robustness against disturbances.
ArticleNumber 109381
Author Li, Chen
Yan, Yan
Shi, Tingna
Song, Peng
Chen, Ziyang
Cao, Yanfei
Author_xml – sequence: 1
  givenname: Ziyang
  surname: Chen
  fullname: Chen, Ziyang
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
– sequence: 2
  givenname: Tingna
  surname: Shi
  fullname: Shi, Tingna
  email: tnshi@zju.edu.cn
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
– sequence: 3
  givenname: Peng
  surname: Song
  fullname: Song, Peng
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
– sequence: 4
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
– sequence: 5
  givenname: Yanfei
  surname: Cao
  fullname: Cao, Yanfei
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
– sequence: 6
  givenname: Yan
  surname: Yan
  fullname: Yan, Yan
  organization: College of Electrical Engineering, Zhejiang University, No.38, Zheda Road, Hangzhou, China
BookMark eNqFkMtOwzAQRS1UJErhD1j4B1JsJ40TFkio4lGpEhtYW449aVy1dmSbovL1OA0rFrCyNHPPteZcool1FhC6oWROCS1vt3OzhR7CnBGWp1GdV_QMTWnF6yxfUD5BU0ILlpGSLi7QZQhbQgivCzZFX6t9790BNO5NVB1WzkbvdjhELyNsjrh1HscOsHfNR4jY9ZAWxlnsWvxprMZgwadcAg_gw7AJxxBhj409gZ3ZdGMy9JD-SUFthoYrdN7KXYDrn3eG3p8e35Yv2fr1ebV8WGcqJ2XMoGhZQ2soc1bwRSklldCUmrRQqhaIBGhrwhXjpAbKi6ouNecaGlU0sqKM5jNUjL3KuxA8tKL3Zi_9UVAiBn9iK0Z_YvAnRn8Ju_uFKRNPpyc1ZvcffD_CkA47GPAiKANWgTYeVBTamb8LvgG0NpRB
CitedBy_id crossref_primary_10_1016_j_ijepes_2024_109939
crossref_primary_10_1177_01423312241286937
crossref_primary_10_1016_j_apenergy_2024_122777
crossref_primary_10_3390_a18030162
crossref_primary_10_1109_ACCESS_2025_3546492
Cites_doi 10.1002/asjc.761
10.1016/j.renene.2016.07.064
10.1016/j.energy.2017.02.149
10.1109/TEC.2007.914307
10.1016/j.ijepes.2022.108578
10.1109/ENERGYCON.2014.6850413
10.1109/TSTE.2011.2153217
10.1016/j.ifacol.2018.07.324
10.1109/TIE.2015.2478397
10.1080/10798587.2015.1095417
10.1016/j.renene.2015.10.030
10.1109/TIE.2018.2798566
10.1109/CDC.2007.4434676
10.1049/iet-gtd.2016.1371
10.2172/15009600
10.1016/j.egyr.2019.11.094
10.1016/j.oceaneng.2021.108897
10.1016/j.isatra.2020.09.003
10.1109/TCYB.2016.2555307
10.1109/TMECH.2017.2767085
10.1016/j.ijepes.2015.01.031
10.2172/947422
10.1016/j.isatra.2019.07.006
10.1016/j.renene.2020.05.093
10.1016/j.conengprac.2016.02.004
10.1016/j.eswa.2009.02.014
10.1109/ACC.2006.1656579
10.1016/j.isatra.2020.04.001
10.1109/ACCESS.2022.3203692
10.1007/s00521-018-03995-9
10.1016/j.isatra.2016.04.008
10.1016/j.isatra.2015.02.008
10.1109/TEC.2021.3076839
10.1109/TSG.2017.2690566
10.1504/IJPEC.2020.110018
10.1109/TIE.2010.2044131
10.1080/0020717031000099029
10.1016/0021-8928(63)90181-3
10.2172/1130628
10.2172/891594
10.1109/MIAS.2015.2459116
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijepes.2023.109381
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2023_109381
S0142061523004386
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c306t-e4f2b19e6324756aa1aeb6d0fe6cfe0aeef907c2709e174896d77debc4ba81213
IEDL.DBID .~1
ISSN 0142-0615
IngestDate Thu Apr 24 23:00:23 EDT 2025
Thu Oct 02 04:26:32 EDT 2025
Fri Feb 23 02:34:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wind energy conversion system
Robust pitch control
Wind turbines
Optimal control
Hardware-in-the-loop test
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e4f2b19e6324756aa1aeb6d0fe6cfe0aeef907c2709e174896d77debc4ba81213
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0142061523004386
ParticipantIDs crossref_primary_10_1016_j_ijepes_2023_109381
crossref_citationtrail_10_1016_j_ijepes_2023_109381
elsevier_sciencedirect_doi_10_1016_j_ijepes_2023_109381
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Asgharnia, Jamali, Shahnazi, Maheri (b0030) 2020; 96
Fei, Shi, Lim (b0255) 2021
Elsisi, Soliman (b0125) Feb. 2021; 108
Jia, Cai, Lou, Li (b0175) 2017; 11
Van, Ge, Ren (b0240) 2016; 47
International Electrotechnical Committee, IEC Standard 61400-1, 2005.
Yilmaz, Özer (b0095) 2009; 36
Poureh, Chamani, Bahri (b0010) 2023; 145
Pan, Wang (b0090) 2020; 159
Bagheri, Sun (b0020) Jul. 2016; 63
Saravanakumar, Jena (b0075) 2015; 69
Korayem, Nekoo (b0105) 2015; 57
Chen X, Li D, Gao Z, Wang C. “Tuning method for second-order active disturbance rejection control.” In
Jonkman BJ, Buhl ML. “TurbSim user’s guide,” Nat Wind Energy Technol Center, Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/TP-500-39797, Sep. 2006.
IEEE; 2014. pp. 101–5.
Gao Z. “Scaling and bandwidth-parameterization based controller tuning,” In
Ornelas-Tellez, Rico, Ruiz-Cruz (b0120) 2014; 16
2006. pp. 7.
Singh M, Muljadi E, Jonkman J, Gevorgian V, Girsang I, Dhupia J. “Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules,” National Renewable Energy Lab (NREL), Golden, CO (United States), NREL/TP-5D00-59195, Apr. 2014.
Krasovskii (b0185) 1963; 27
Bak C, Zahle, Bitsche R, Kim T, Yde A, Henriksen LC, et al., “Description of the DTU 10 MW Reference Wind Turbine; DTU”, the Wind Energy Report-I-0092, 2013.
Vega, Paz, Ornelas-Tellez, Rico-Melgoza (b0115) 2018; 51
Song, Yang, Dong, Joo (b0050) 2017; 126
Levant (b0250) 2003; 76
.
Soliman, Malik, Westwick (b0015) 2011; 2
Yang, Jiao, Luo, Chen, Sun (b0065) 2020; 103
2009. pp. 1–7.
Hansen, Hansen, Larsen (b0225) 2005
Lasheen, Elshafei (b0085) 2016; 87
Jonkman J, Butterfield S, Musial W, Scott G. “Definition of a 5-mw reference wind turbine for offshore system development,” Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/EL-500-38060; Feb. 2009.
Nayeh, Moradi, Vossoughi (b0080) 2020; 115
Mata-Dumenjo M, Sanchez-Navarro J, Rossetti M, et al. Integrated simulation of a doubly fed induction generator wind turbine. In
Imran RM, Hussain DA, Chen Z. LQG controller design for pitch regulated variable speed wind turbine. In
2007, vol. 12–14. pp. 3501–06.
Mohamed, Mohamed, Saied, Elsisi, Su, Hadi (b0145) 2022; 10
Luna, Lima, Santos, Rodriguez, Watanabe, Arnaltes (b0215) Jan. 2011; 58
Ismail, Bendary, Elsisi (b0140) Jan. 2020; 11
Zhang, Plestan (b0070) 2021; 228
Munteanu I, Bratcu AI, Cutululis NA, Caenga E. Optim. Control Wind Energy Syst. Toward Global Approach. New York, NY, USA: Springer-Verlag; 2008.
Stol KA, Fingersh L. Wind turbine field testing of state-space control designs; 2004.
Ornelas-Tellez, Rico-Melgoza, Espinosa-Juarez, Sanchez (b0110) 2017; 9
Elsisi (b0130) Sep. 2019; 31
Fadaeinedjad, Moallem, Moschopoulos (b0155) Jun. 2008; 23
2003. Denver, CO, USA: IEEE; 2003. pp. 4989–96.
Civelek, Lüy, Çam, Barışçı (b0035) 2016; 22
Li, Zhao, Diao, Han (b0170) Feb. 2020; 6
Chen, Yang, Guo, Li (b0190) 2015; 63
Ren, Li, Brindley, Jiang (b0100) 2016; 50
Gao Z. “Active disturbance rejection control: a paradigm shift in feedback control system design,” In
Jiao, Yang, Xu (b0025) 2021; 36
Lin, Xiahou, Liu, Wu (b0180) Sep. 2018; 65
Yantai, China, Jul. 2011. pp. 6322–27.
Kim, Kwon (b0135) 2017; 22
Inthamoussou, De Battista, Mantz (b0060) Dec. 2016; 99
Novakovic, Duan, Solveson, Nasiri, Ionel (b0165) Sep. 2016; 22
“Openfast documentation.” [Online]. Available
Zheng Q, Gao LQ, Gao Z. “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” In
Li (10.1016/j.ijepes.2023.109381_b0170) 2020; 6
Luna (10.1016/j.ijepes.2023.109381_b0215) 2011; 58
10.1016/j.ijepes.2023.109381_b0230
Jia (10.1016/j.ijepes.2023.109381_b0175) 2017; 11
10.1016/j.ijepes.2023.109381_b0195
10.1016/j.ijepes.2023.109381_b0150
Fadaeinedjad (10.1016/j.ijepes.2023.109381_b0155) 2008; 23
Lin (10.1016/j.ijepes.2023.109381_b0180) 2018; 65
Hansen (10.1016/j.ijepes.2023.109381_b0225) 2005
Ren (10.1016/j.ijepes.2023.109381_b0100) 2016; 50
10.1016/j.ijepes.2023.109381_b0235
Lasheen (10.1016/j.ijepes.2023.109381_b0085) 2016; 87
Yang (10.1016/j.ijepes.2023.109381_b0065) 2020; 103
Soliman (10.1016/j.ijepes.2023.109381_b0015) 2011; 2
Zhang (10.1016/j.ijepes.2023.109381_b0070) 2021; 228
Ornelas-Tellez (10.1016/j.ijepes.2023.109381_b0110) 2017; 9
Yilmaz (10.1016/j.ijepes.2023.109381_b0095) 2009; 36
10.1016/j.ijepes.2023.109381_b0220
Elsisi (10.1016/j.ijepes.2023.109381_b0130) 2019; 31
Asgharnia (10.1016/j.ijepes.2023.109381_b0030) 2020; 96
Chen (10.1016/j.ijepes.2023.109381_b0190) 2015; 63
Inthamoussou (10.1016/j.ijepes.2023.109381_b0060) 2016; 99
Vega (10.1016/j.ijepes.2023.109381_b0115) 2018; 51
Mohamed (10.1016/j.ijepes.2023.109381_b0145) 2022; 10
Ismail (10.1016/j.ijepes.2023.109381_b0140) 2020; 11
Saravanakumar (10.1016/j.ijepes.2023.109381_b0075) 2015; 69
Jiao (10.1016/j.ijepes.2023.109381_b0025) 2021; 36
Pan (10.1016/j.ijepes.2023.109381_b0090) 2020; 159
Song (10.1016/j.ijepes.2023.109381_b0050) 2017; 126
Kim (10.1016/j.ijepes.2023.109381_b0135) 2017; 22
10.1016/j.ijepes.2023.109381_b0210
10.1016/j.ijepes.2023.109381_b0055
Fei (10.1016/j.ijepes.2023.109381_b0255) 2021
10.1016/j.ijepes.2023.109381_b0160
Ornelas-Tellez (10.1016/j.ijepes.2023.109381_b0120) 2014; 16
Van (10.1016/j.ijepes.2023.109381_b0240) 2016; 47
Bagheri (10.1016/j.ijepes.2023.109381_b0020) 2016; 63
Elsisi (10.1016/j.ijepes.2023.109381_b0125) 2021; 108
10.1016/j.ijepes.2023.109381_b0040
Nayeh (10.1016/j.ijepes.2023.109381_b0080) 2020; 115
Poureh (10.1016/j.ijepes.2023.109381_b0010) 2023; 145
Krasovskii (10.1016/j.ijepes.2023.109381_b0185) 1963; 27
10.1016/j.ijepes.2023.109381_b0245
10.1016/j.ijepes.2023.109381_b0200
10.1016/j.ijepes.2023.109381_b0045
Novakovic (10.1016/j.ijepes.2023.109381_b0165) 2016; 22
Levant (10.1016/j.ijepes.2023.109381_b0250) 2003; 76
Civelek (10.1016/j.ijepes.2023.109381_b0035) 2016; 22
10.1016/j.ijepes.2023.109381_b0205
10.1016/j.ijepes.2023.109381_b0005
Korayem (10.1016/j.ijepes.2023.109381_b0105) 2015; 57
References_xml – volume: 76
  start-page: 924
  year: 2003
  end-page: 941
  ident: b0250
  article-title: Higher-order sliding modes, differentiation and output-feedback control
  publication-title: Int J Control
– reference: Singh M, Muljadi E, Jonkman J, Gevorgian V, Girsang I, Dhupia J. “Simulation for Wind Turbine Generators -- With FAST and MATLAB-Simulink Modules,” National Renewable Energy Lab (NREL), Golden, CO (United States), NREL/TP-5D00-59195, Apr. 2014.
– volume: 115
  year: 2020
  ident: b0080
  article-title: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control
  publication-title: Int J Electr Power Energy Syst
– reference: Chen X, Li D, Gao Z, Wang C. “Tuning method for second-order active disturbance rejection control.” In:
– volume: 69
  start-page: 421
  year: 2015
  end-page: 429
  ident: b0075
  article-title: Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine
  publication-title: Int J Electr Power Energy Syst
– volume: 11
  start-page: 3030
  year: 2017
  end-page: 3038
  ident: b0175
  article-title: Interfacing technique and hardware-in-loop simulation of real-time co-simulation platform for wind energy conversion system
  publication-title: IET Gener Transm Distrib
– volume: 47
  start-page: 1681
  year: 2016
  end-page: 1693
  ident: b0240
  article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control
  publication-title: IEEE Trans Cybern
– reference: Gao Z. “Scaling and bandwidth-parameterization based controller tuning,” In:
– volume: 63
  start-page: 1083
  year: 2015
  end-page: 1095
  ident: b0190
  article-title: Disturbance-observer-based control and related methods—An overview
  publication-title: IEEE Trans Ind Electron
– volume: 36
  start-page: 2770
  year: 2021
  end-page: 2781
  ident: b0025
  article-title: Hybrid intelligent feedforward-feedback pitch control for VSWT with predicted wind speed
  publication-title: IEEE Trans Energy Convers
– reference: Jonkman J, Butterfield S, Musial W, Scott G. “Definition of a 5-mw reference wind turbine for offshore system development,” Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/EL-500-38060; Feb. 2009.
– volume: 65
  start-page: 7049
  year: Sep. 2018
  end-page: 7059
  ident: b0180
  article-title: Design and Hardware-in-the-Loop Experiment of Multiloop Adaptive Control for DFIG-WT
  publication-title: IEEE Trans Ind Electron
– volume: 58
  start-page: 9
  year: Jan. 2011
  end-page: 20
  ident: b0215
  article-title: Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications
  publication-title: IEEE Trans Ind Electron
– volume: 36
  start-page: 9767
  year: 2009
  end-page: 9775
  ident: b0095
  article-title: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks
  publication-title: IEEE Exp Syst Appl
– reference: ; 2007, vol. 12–14. pp. 3501–06.
– volume: 22
  start-page: 463
  year: 2016
  end-page: 471
  ident: b0035
  article-title: Control of pitch angle of wind turbine by fuzzy PID controller
  publication-title: Intell Automat Soft Comput
– volume: 103
  start-page: 28
  year: 2020
  end-page: 36
  ident: b0065
  article-title: L1 adaptive pitch angle controller of wind energy conversion systems
  publication-title: ISA Trans
– reference: Zheng Q, Gao LQ, Gao Z. “On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics,” In:
– volume: 23
  start-page: 690
  year: Jun. 2008
  end-page: 700
  ident: b0155
  article-title: Simulation of a Wind Turbine With Doubly Fed Induction Generator by FAST and Simulink
  publication-title: IEEE Trans Energy Convers
– reference: International Electrotechnical Committee, IEC Standard 61400-1, 2005.
– reference: “Openfast documentation.” [Online]. Available:
– volume: 63
  start-page: 233
  year: Jul. 2016
  end-page: 241
  ident: b0020
  article-title: Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics
  publication-title: ISA Trans
– volume: 57
  start-page: 117
  year: 2015
  end-page: 135
  ident: b0105
  article-title: State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities
  publication-title: ISA Trans
– volume: 145
  year: 2023
  ident: b0010
  article-title: Nonlinear analysis of gain scheduled controllers for the NREL 5-MW turbine blade pitch control system
  publication-title: Int J Electr Power Energy Syst
– reference: Imran RM, Hussain DA, Chen Z. LQG controller design for pitch regulated variable speed wind turbine. In:
– volume: 31
  start-page: 5017
  year: Sep. 2019
  end-page: 5027
  ident: b0130
  article-title: Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator
  publication-title: Neural Comput & Applic
– reference: Jonkman BJ, Buhl ML. “TurbSim user’s guide,” Nat Wind Energy Technol Center, Nat Renew Energy Lab, Golden, CO, Tech Rep. NREL/TP-500-39797, Sep. 2006.
– volume: 51
  start-page: 431
  year: 2018
  end-page: 436
  ident: b0115
  article-title: System parameters’ identification and optimal tracking control for nonlinear systems
  publication-title: IFAC-PapersOnLine
– reference: ; 2006. pp. 7.
– volume: 10
  start-page: 93646
  year: 2022
  end-page: 93658
  ident: b0145
  article-title: Optimal Energy Management Solutions Using Artificial Intelligence Techniques for Photovoltaic Empowered Water Desalination Plants Under Cost Function Uncertainties
  publication-title: IEEE Access
– volume: 159
  start-page: 221
  year: 2020
  end-page: 237
  ident: b0090
  article-title: Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control
  publication-title: Renew Energ
– year: 2021
  ident: b0255
  article-title: Robust and collision-free formation control of multiagent systems with limited information
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 50
  start-page: 84
  year: 2016
  end-page: 94
  ident: b0100
  article-title: Nonlinear PI control for variable pitch wind turbine
  publication-title: Control Eng Pract
– reference: ; 2009. pp. 1–7.
– volume: 99
  start-page: 996
  year: Dec. 2016
  end-page: 1007
  ident: b0060
  article-title: LPV-based active power control of wind turbines covering the complete wind speed range
  publication-title: Renew Energ
– volume: 16
  start-page: 890
  year: 2014
  end-page: 903
  ident: b0120
  article-title: Optimal tracking for state-dependent coefficient factorized nonlinear systems
  publication-title: Asian J Control
– volume: 22
  start-page: 73
  year: Sep. 2016
  end-page: 84
  ident: b0165
  article-title: From Wind to the Electric Grid: Comprehensive Modeling of Wind Turbine Systems
  publication-title: IEEE Ind Appl Mag
– reference: Mata-Dumenjo M, Sanchez-Navarro J, Rossetti M, et al. Integrated simulation of a doubly fed induction generator wind turbine. In:
– volume: 27
  start-page: 971
  year: 1963
  end-page: 1004
  ident: b0185
  article-title: On the stabilization of unstable motions by additional forces when the feedback loop is incomplete
  publication-title: J Appl Math Mech
– volume: 11
  start-page: 412
  year: Jan. 2020
  end-page: 429
  ident: b0140
  article-title: Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery
  publication-title: Int J Power Energy Convers
– volume: 126
  start-page: 564
  year: 2017
  end-page: 572
  ident: b0050
  article-title: Model predictive control with finite control set for variable-speed wind turbines
  publication-title: Energy
– reference: . IEEE; 2014. pp. 101–5.
– volume: 2
  start-page: 215
  year: 2011
  end-page: 225
  ident: b0015
  article-title: Multiple model predictive control for wind turbines with doubly fed induction generators
  publication-title: IEEE Trans Sustain Energy
– year: 2005
  ident: b0225
  article-title: Control design for a pitch-regulated, variable speed wind turbine
– volume: 6
  start-page: 403
  year: Feb. 2020
  end-page: 409
  ident: b0170
  article-title: Design of real-time co-simulation platform for wind energy conversion system
  publication-title: Energy Rep
– reference: Stol KA, Fingersh L. Wind turbine field testing of state-space control designs; 2004.
– volume: 87
  start-page: 298
  year: 2016
  end-page: 306
  ident: b0085
  article-title: Wind-turbine collective-pitch control via a fuzzy predictive algorithm
  publication-title: Renew Energ
– reference: , Yantai, China, Jul. 2011. pp. 6322–27.
– reference: , 2003. Denver, CO, USA: IEEE; 2003. pp. 4989–96.
– reference: .
– reference: Gao Z. “Active disturbance rejection control: a paradigm shift in feedback control system design,” In:
– volume: 9
  start-page: 5543
  year: 2017
  end-page: 5553
  ident: b0110
  article-title: Optimal and robust control in DC microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 22
  start-page: 2803
  year: 2017
  end-page: 2808
  ident: b0135
  article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform
  publication-title: IEEE/ASME Trans Mechatronics
– volume: 228
  year: 2021
  ident: b0070
  article-title: Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode
  publication-title: Ocean Eng
– volume: 108
  start-page: 257
  year: Feb. 2021
  end-page: 268
  ident: b0125
  article-title: Optimal design of robust resilient automatic voltage regulators
  publication-title: ISA Trans
– volume: 96
  start-page: 272
  year: 2020
  end-page: 286
  ident: b0030
  article-title: Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller
  publication-title: ISA Trans
– reference: Bak C, Zahle, Bitsche R, Kim T, Yde A, Henriksen LC, et al., “Description of the DTU 10 MW Reference Wind Turbine; DTU”, the Wind Energy Report-I-0092, 2013.
– reference: Munteanu I, Bratcu AI, Cutululis NA, Caenga E. Optim. Control Wind Energy Syst. Toward Global Approach. New York, NY, USA: Springer-Verlag; 2008.
– volume: 16
  start-page: 890
  issue: 3
  year: 2014
  ident: 10.1016/j.ijepes.2023.109381_b0120
  article-title: Optimal tracking for state-dependent coefficient factorized nonlinear systems
  publication-title: Asian J Control
  doi: 10.1002/asjc.761
– ident: 10.1016/j.ijepes.2023.109381_b0150
– volume: 99
  start-page: 996
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0060
  article-title: LPV-based active power control of wind turbines covering the complete wind speed range
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2016.07.064
– volume: 126
  start-page: 564
  year: 2017
  ident: 10.1016/j.ijepes.2023.109381_b0050
  article-title: Model predictive control with finite control set for variable-speed wind turbines
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.149
– volume: 23
  start-page: 690
  issue: 2
  year: 2008
  ident: 10.1016/j.ijepes.2023.109381_b0155
  article-title: Simulation of a Wind Turbine With Doubly Fed Induction Generator by FAST and Simulink
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2007.914307
– volume: 145
  year: 2023
  ident: 10.1016/j.ijepes.2023.109381_b0010
  article-title: Nonlinear analysis of gain scheduled controllers for the NREL 5-MW turbine blade pitch control system
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2022.108578
– ident: 10.1016/j.ijepes.2023.109381_b0205
– ident: 10.1016/j.ijepes.2023.109381_b0230
– ident: 10.1016/j.ijepes.2023.109381_b0040
  doi: 10.1109/ENERGYCON.2014.6850413
– volume: 2
  start-page: 215
  issue: 3
  year: 2011
  ident: 10.1016/j.ijepes.2023.109381_b0015
  article-title: Multiple model predictive control for wind turbines with doubly fed induction generators
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2011.2153217
– volume: 51
  start-page: 431
  issue: 13
  year: 2018
  ident: 10.1016/j.ijepes.2023.109381_b0115
  article-title: System parameters’ identification and optimal tracking control for nonlinear systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.07.324
– ident: 10.1016/j.ijepes.2023.109381_b0220
– volume: 63
  start-page: 1083
  issue: 2
  year: 2015
  ident: 10.1016/j.ijepes.2023.109381_b0190
  article-title: Disturbance-observer-based control and related methods—An overview
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2478397
– volume: 22
  start-page: 463
  issue: 3
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0035
  article-title: Control of pitch angle of wind turbine by fuzzy PID controller
  publication-title: Intell Automat Soft Comput
  doi: 10.1080/10798587.2015.1095417
– volume: 87
  start-page: 298
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0085
  article-title: Wind-turbine collective-pitch control via a fuzzy predictive algorithm
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2015.10.030
– volume: 65
  start-page: 7049
  issue: 9
  year: 2018
  ident: 10.1016/j.ijepes.2023.109381_b0180
  article-title: Design and Hardware-in-the-Loop Experiment of Multiloop Adaptive Control for DFIG-WT
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2798566
– ident: 10.1016/j.ijepes.2023.109381_b0245
  doi: 10.1109/CDC.2007.4434676
– volume: 11
  start-page: 3030
  issue: 12
  year: 2017
  ident: 10.1016/j.ijepes.2023.109381_b0175
  article-title: Interfacing technique and hardware-in-loop simulation of real-time co-simulation platform for wind energy conversion system
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2016.1371
– ident: 10.1016/j.ijepes.2023.109381_b0045
  doi: 10.2172/15009600
– volume: 6
  start-page: 403
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0170
  article-title: Design of real-time co-simulation platform for wind energy conversion system
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2019.11.094
– volume: 228
  year: 2021
  ident: 10.1016/j.ijepes.2023.109381_b0070
  article-title: Individual/collective blade pitch control of floating wind turbine based on adaptive second order sliding mode
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.108897
– volume: 108
  start-page: 257
  year: 2021
  ident: 10.1016/j.ijepes.2023.109381_b0125
  article-title: Optimal design of robust resilient automatic voltage regulators
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.09.003
– volume: 47
  start-page: 1681
  issue: 7
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0240
  article-title: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2016.2555307
– volume: 22
  start-page: 2803
  issue: 6
  year: 2017
  ident: 10.1016/j.ijepes.2023.109381_b0135
  article-title: Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform
  publication-title: IEEE/ASME Trans Mechatronics
  doi: 10.1109/TMECH.2017.2767085
– volume: 69
  start-page: 421
  year: 2015
  ident: 10.1016/j.ijepes.2023.109381_b0075
  article-title: Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.01.031
– year: 2021
  ident: 10.1016/j.ijepes.2023.109381_b0255
  article-title: Robust and collision-free formation control of multiagent systems with limited information
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: 10.1016/j.ijepes.2023.109381_b0005
– ident: 10.1016/j.ijepes.2023.109381_b0055
  doi: 10.2172/947422
– volume: 115
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0080
  article-title: Multivariable robust control of a horizontal wind turbine under various operating modes and uncertainties: A comparison on sliding mode and H∞ control
  publication-title: Int J Electr Power Energy Syst
– volume: 96
  start-page: 272
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0030
  article-title: Load mitigation of a class of 5-MW wind turbine with RBF neural network based fractional-order PID controller
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.07.006
– volume: 159
  start-page: 221
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0090
  article-title: Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control
  publication-title: Renew Energ
  doi: 10.1016/j.renene.2020.05.093
– volume: 50
  start-page: 84
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0100
  article-title: Nonlinear PI control for variable pitch wind turbine
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2016.02.004
– volume: 36
  start-page: 9767
  issue: 6
  year: 2009
  ident: 10.1016/j.ijepes.2023.109381_b0095
  article-title: Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks
  publication-title: IEEE Exp Syst Appl
  doi: 10.1016/j.eswa.2009.02.014
– ident: 10.1016/j.ijepes.2023.109381_b0195
  doi: 10.1109/ACC.2006.1656579
– volume: 103
  start-page: 28
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0065
  article-title: L1 adaptive pitch angle controller of wind energy conversion systems
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.04.001
– ident: 10.1016/j.ijepes.2023.109381_b0210
– volume: 10
  start-page: 93646
  year: 2022
  ident: 10.1016/j.ijepes.2023.109381_b0145
  article-title: Optimal Energy Management Solutions Using Artificial Intelligence Techniques for Photovoltaic Empowered Water Desalination Plants Under Cost Function Uncertainties
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3203692
– year: 2005
  ident: 10.1016/j.ijepes.2023.109381_b0225
– volume: 31
  start-page: 5017
  issue: 9
  year: 2019
  ident: 10.1016/j.ijepes.2023.109381_b0130
  article-title: Design of neural network predictive controller based on imperialist competitive algorithm for automatic voltage regulator
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-018-03995-9
– volume: 63
  start-page: 233
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0020
  article-title: Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2016.04.008
– volume: 57
  start-page: 117
  year: 2015
  ident: 10.1016/j.ijepes.2023.109381_b0105
  article-title: State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2015.02.008
– volume: 36
  start-page: 2770
  issue: 4
  year: 2021
  ident: 10.1016/j.ijepes.2023.109381_b0025
  article-title: Hybrid intelligent feedforward-feedback pitch control for VSWT with predicted wind speed
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2021.3076839
– volume: 9
  start-page: 5543
  issue: 6
  year: 2017
  ident: 10.1016/j.ijepes.2023.109381_b0110
  article-title: Optimal and robust control in DC microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2690566
– volume: 11
  start-page: 412
  issue: 4
  year: 2020
  ident: 10.1016/j.ijepes.2023.109381_b0140
  article-title: Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery
  publication-title: Int J Power Energy Convers
  doi: 10.1504/IJPEC.2020.110018
– ident: 10.1016/j.ijepes.2023.109381_b0200
– volume: 58
  start-page: 9
  issue: 1
  year: 2011
  ident: 10.1016/j.ijepes.2023.109381_b0215
  article-title: Simplified Modeling of a DFIG for Transient Studies in Wind Power Applications
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2010.2044131
– volume: 76
  start-page: 924
  issue: 9–10
  year: 2003
  ident: 10.1016/j.ijepes.2023.109381_b0250
  article-title: Higher-order sliding modes, differentiation and output-feedback control
  publication-title: Int J Control
  doi: 10.1080/0020717031000099029
– volume: 27
  start-page: 971
  issue: 4
  year: 1963
  ident: 10.1016/j.ijepes.2023.109381_b0185
  article-title: On the stabilization of unstable motions by additional forces when the feedback loop is incomplete
  publication-title: J Appl Math Mech
  doi: 10.1016/0021-8928(63)90181-3
– ident: 10.1016/j.ijepes.2023.109381_b0160
  doi: 10.2172/1130628
– ident: 10.1016/j.ijepes.2023.109381_b0235
  doi: 10.2172/891594
– volume: 22
  start-page: 73
  issue: 5
  year: 2016
  ident: 10.1016/j.ijepes.2023.109381_b0165
  article-title: From Wind to the Electric Grid: Comprehensive Modeling of Wind Turbine Systems
  publication-title: IEEE Ind Appl Mag
  doi: 10.1109/MIAS.2015.2459116
SSID ssj0007942
Score 2.4539902
Snippet •A novel robust pitch controller to enhance the dynamic performance in WT output power/speed in the high wind speed domain.•The proposed controller is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109381
SubjectTerms Hardware-in-the-loop test
Optimal control
Robust pitch control
Wind energy conversion system
Wind turbines
Title Improved pitch control strategy for the robust operation of wind energy conversion system in the high wind speed condition
URI https://dx.doi.org/10.1016/j.ijepes.2023.109381
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: ACRLP
  dateStart: 20231001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIKHN
  dateStart: 20231001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14jc1jk22PpVjqq4hY6C1kN7OQIkloU0QP_nZ3dhMfIAqeQsIOhJll5tvkm28IOUeNdF3YUkcGqXCYD8xJ-EA5MuXAQxEoV2Lv8N00mszY9Tyct8io6YVBWmWd-21ON9m6ftKrvdkrs6yHtCQfC7IfmN9ZKLvNGMcpBhdvnzQPvd98S2P0cYpB2LTPGY5XtoASULTbD4yuUt_7uTx9KTnjHbJdY0U6tK-zS1qQ75GtLwqC--TVfhSAlJaZ9j-tmed0ZUVnX6jGpFRjPLosxHpV0aIEG3JaKPqsz-MUTPMfNexz8-mMWnFnmuXGEPWM7cpVqSsdLkwNzeuAzMaXj6OJU49T0HFwo8oBpnzhDQAF2nkYJYmXgIhSV0EkFbgJgNInZelzdwAeitJEKecpCMlE0kflt0PSzoscjgh1petKpcEPsISxQGqYrqGY0tk1kUKHvkOCxouxrLXGceTFU9yQyhax9X2Mvo-t7zvE-bAqrdbGH-t5E6D4256JdTn41fL435YnZBPvbDfiKWlXyzWcaVhSia7Zd12yMRw93N7j9epmMn0H_ePmnA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQevsclmk22PUixV255a6G3JbmYhIk1oU0QP_nb3kWgFUfCa7ECYGWa-3XzzLULXRiNdN7bUk2EqPEqAegnrKk-mDFgkQuVLMzs8GseDKX2YRbMG6tWzMIZWWdV-V9Ntta6etCtvtossaxtaEjENmYT2d1a8gTZpRJjZgd28f_E8dMIRx2Mk5hqDqJ6fsySv7AkKMKrdJLTCSp3g5_601nP6e2i3Aov41n3PPmrA_ADtrEkIHqI3dyoAKS4yHQBcUc_x0qnOvmINSrEGeXiRi9WyxHkBLuY4V_hFb8gx2Ok_bOnn9uwMO3VnnM2toRE0diuXhW51ZmFqeV5HaNq_m_QGXnWfgg6EH5ceUEVE0AWj0M6iOEmCBESc-gpiqcBPAJTeKkvC_C4ERpUmThlLQUgqko6RfjtGzXk-hxOEfen7Umn0AzShNJQap2sspnR5TaTQsW-hsPYil5XYuLnz4pnXrLIn7nzPje-5830LeZ9WhRPb-GM9qwPEvyUN1_3gV8vTf1teoa3BZDTkw_vx4xnaNm_caOI5apaLFVxojFKKS5uDHy8q5pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+pitch+control+strategy+for+the+robust+operation+of+wind+energy+conversion+system+in+the+high+wind+speed+condition&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Chen%2C+Ziyang&rft.au=Shi%2C+Tingna&rft.au=Song%2C+Peng&rft.au=Li%2C+Chen&rft.date=2023-11-01&rft.issn=0142-0615&rft.volume=153&rft.spage=109381&rft_id=info:doi/10.1016%2Fj.ijepes.2023.109381&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2023_109381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon