An improved incremental constructive single-hidden-layer feedforward networks for extreme learning machine based on particle swarm optimization

How to determine the network structure is an open problem in extreme learning machine (ELM). Error minimized extreme learning machine (EM-ELM) is a simple and efficient approach to determine the number of hidden nodes. However, similar to other constructive ELM, EM-ELM lays much emphasis on the conv...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 228; pp. 133 - 142
Main Authors Han, Fei, Zhao, Min-Ru, Zhang, Jian-Ming, Ling, Qing-Hua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 08.03.2017
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2016.09.092

Cover

Abstract How to determine the network structure is an open problem in extreme learning machine (ELM). Error minimized extreme learning machine (EM-ELM) is a simple and efficient approach to determine the number of hidden nodes. However, similar to other constructive ELM, EM-ELM lays much emphasis on the convergence accuracy, which may obtain a single-hidden-layer feedforward neural networks (SLFN) with good convergence performance but bad condition. In this paper, an effective approach based on error minimized ELM and particle swarm optimization (PSO) is proposed to adaptively determine the structure of SLFN for regression problem. In the new method, to establish a compact and well-conditioning SLFN, the hidden node optimized by PSO is added to the SLFN one by one. Moreover, not only the regression accuracy but also the condition value of the hidden output matrix of the network is considered in the optimization process. Experiment results on various regression problems verify that the proposed algorithm achieves better generalization performance with fewer hidden nodes than other constructive ELM.
AbstractList How to determine the network structure is an open problem in extreme learning machine (ELM). Error minimized extreme learning machine (EM-ELM) is a simple and efficient approach to determine the number of hidden nodes. However, similar to other constructive ELM, EM-ELM lays much emphasis on the convergence accuracy, which may obtain a single-hidden-layer feedforward neural networks (SLFN) with good convergence performance but bad condition. In this paper, an effective approach based on error minimized ELM and particle swarm optimization (PSO) is proposed to adaptively determine the structure of SLFN for regression problem. In the new method, to establish a compact and well-conditioning SLFN, the hidden node optimized by PSO is added to the SLFN one by one. Moreover, not only the regression accuracy but also the condition value of the hidden output matrix of the network is considered in the optimization process. Experiment results on various regression problems verify that the proposed algorithm achieves better generalization performance with fewer hidden nodes than other constructive ELM.
Author Han, Fei
Zhao, Min-Ru
Zhang, Jian-Ming
Ling, Qing-Hua
Author_xml – sequence: 1
  givenname: Fei
  surname: Han
  fullname: Han, Fei
  organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
– sequence: 2
  givenname: Min-Ru
  surname: Zhao
  fullname: Zhao, Min-Ru
  organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
– sequence: 3
  givenname: Jian-Ming
  surname: Zhang
  fullname: Zhang, Jian-Ming
  organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
– sequence: 4
  givenname: Qing-Hua
  surname: Ling
  fullname: Ling, Qing-Hua
  organization: School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
BookMark eNqFkN9KXDEQxkOx0NX2DXqRFzhrkvO_FwURrQWhN3odciaTOttzkiWJq_YlfOVm3V55oTAwzAe_b2a-Y3bkg0fGvkqxlkJ2p5u1x3sIy1qVaS3GUuoDW8mhV9Wghu6IrYrSVqqW6hM7TmkjhOylGlfs-cxzWrYx7NBy8hBxQZ_NzCH4lOM9ZNohT-R_z1jdkbXoq9k8YeQO0boQH0y03GN-CPFP4kXg-Jj3LnxGE30B-WLgjjzyyaSyJHi-NTETzMW30AsP20wL_TWZgv_MPjozJ_zyv5-w28uLm_Or6vrXj5_nZ9cV1KLLFTZ9jz1CeVg4205uMqJtVIfN0I9D041951pULdSuF0MzOWegq9UEk5GqA1ufsG8HX4ghpYhOA-WXC3I0NGsp9D5avdGHaPU-Wi3GUqrAzSt4G2kx8ek97PsBw_LYjjDqBIQe0FJEyNoGetvgHyVknWA
CitedBy_id crossref_primary_10_1007_s11063_018_9865_x
crossref_primary_10_1016_j_bdr_2022_100356
crossref_primary_10_1016_j_tre_2020_102189
crossref_primary_10_1108_IMDS_07_2019_0361
crossref_primary_10_1007_s00521_019_04398_0
crossref_primary_10_3390_rs16091565
crossref_primary_10_1016_j_jairtraman_2023_102488
crossref_primary_10_1109_TII_2024_3423487
crossref_primary_10_1007_s00170_023_10957_6
crossref_primary_10_1016_j_swevo_2021_100863
crossref_primary_10_1016_j_neucom_2019_03_086
crossref_primary_10_1016_j_neucom_2018_07_080
crossref_primary_10_1002_we_2323
crossref_primary_10_1080_00032719_2023_2212821
crossref_primary_10_1007_s11042_019_7543_2
crossref_primary_10_1016_j_jprocont_2023_103159
crossref_primary_10_1038_s41598_024_74446_w
crossref_primary_10_1109_ACCESS_2018_2873627
crossref_primary_10_1016_j_neucom_2021_03_077
crossref_primary_10_3390_app9050835
crossref_primary_10_1007_s40430_021_03257_1
crossref_primary_10_1007_s13042_022_01578_8
crossref_primary_10_1177_0040517518764020
crossref_primary_10_1109_TIM_2024_3470037
crossref_primary_10_1007_s10489_018_01403_2
crossref_primary_10_1108_IMDS_06_2019_0351
crossref_primary_10_1177_0954406220928370
crossref_primary_10_1016_j_neucom_2017_09_047
crossref_primary_10_1016_j_neucom_2024_129020
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_1007_s12065_022_00813_z
Cites_doi 10.1109/TNNLS.2011.2178124
10.1109/TNN.2006.875977
10.1016/j.neucom.2015.08.121
10.1109/ICNN.1995.488968
10.1080/00207179208934315
10.1109/TCYB.2013.2239987
10.1109/TEVC.2006.886448
10.1109/IJCNN.2004.1380068
10.1016/j.neucom.2007.10.008
10.1016/j.neucom.2011.12.062
10.1109/ICICS.2009.5397617
10.1109/TNN.2004.824424
10.1162/089976604774201668
10.1109/MHS.1995.494215
10.1109/TEVC.2005.859468
10.1109/TNN.2005.844912
10.1109/TNN.2009.2036259
10.1109/IJCNN.2008.4633951
10.1007/978-3-319-22053-6_11
10.1007/11759966_95
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2016.01.005
10.1109/TNN.2006.880583
10.1109/TNN.2009.2024147
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.09.092
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 142
ExternalDocumentID 10_1016_j_neucom_2016_09_092
S0925231216312826
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-e477e7ec2010fd5bfba05426e4879846976f5e25c3f7084bffac632bcba126cd3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Wed Oct 01 06:02:17 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Generalization performance
Network structure
Condition value
Extreme learning machine
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e477e7ec2010fd5bfba05426e4879846976f5e25c3f7084bffac632bcba126cd3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2016_09_092
crossref_primary_10_1016_j_neucom_2016_09_092
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_09_092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-08
PublicationDateYYYYMMDD 2017-03-08
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-08
  day: 08
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Huang, Lin, Gay (bib15) 2009; 20
Huang, Chen, Siew (bib12) 2006; 17
G.-B.Huang, Q.-Y.Zhu, C.-K.Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings International Joint Conference Neural Netwvol. 2, pp. 985–990, 2004.
Zhao, Huerta (bib7) 2016; 191
Huang, H.S.Ip, Chi (bib3) 2004; 16
Han, Yao, Ling (bib20) 2013; 116
Huang (bib2) 2004; 15
Huang, Zhu, Siew (bib13) 2006; 70
R.C. Eberhart, J. Kennedy, A new optimizer using particles swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human science, Nagoya, Japan, 1995, pp. 39–43.
Huang, H.S.Ip, C K, Chi (bib4) 2005; 16
J.Kennedy, R.Eberhart, Particle , Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1995, pp. 1942–1948.
Langdon, Poli (bib23) 2007; 11
Miche, Sorjamaa, Bas, Simula, Jutten, Lendasse (bib1) 2010; 21
Huang, Chen (bib14) 2008; 71
Y.Shi, R.C.Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE World Conference on Computation Intelligence, 1998, pp. 69–73.
You Xu, Yang Shu, Evolutionary extreme learning machine-based on particle swarm op-timization, in: International Symposium on Neural Networks 2006 (ISNN2006), LNCS, vol. 3971, 2006, pp. 644–652.
G.P. Zhao, Z.Q. Shen, C.Y. Miao, Z.H. Man, On improving the conditioning of extreme learning machine: a linear case, in: Proceedings of the 7th International Conference on Information, Communi-cations and Signal Processing, 2009 (ICICS2009), Maucu, China, December 8–10, 2009, pp. 1–5.
C.L.Black, C.J.Merz, UCI Repository of Machine Learning Databases. Dept. Inf. Comput. Sci., Univ. California, Irvine
Han, Yang, Jiang (bib8) 2016; 198
Pao, Phillips, Sobajic (bib5) 1992; 56
G.-B.Huang, N.-Y.Liang, H.-J.Rong, P.Saratchandran, N.Sundararajan, On-line sequential extreme learning machine, in: Proceedings IASTED International Conference Comput. Intell., Calgary, AB, Canada, 2005.
G.Zhao, Z.Shen, C.Miao, R..Gay, Enhanced extreme learning machine with stacked generalization, in: Proceedings International Joint Conference on Neural Networkspp. 1192–1199, 2008.
Liang, Huang, Saratchandran, Sundararajan (bib11) 2006; 17
Zhang, Lan, Huang, Xu (bib16) 2012; 23
Han, Zhao, Zhang (bib25) 2015; 9927
Parrott, dong Li (bib22) 2006; 10
G.-B.Huang, C.-K.Siew, Extreme learning machine: RBF network case, in: Proceedings of the 8th International Conference Control Autom. Robot. Visvol. 2, pp. 1029–1036, 2004.
Zhang, Lan, Huang, Xu, Soh (bib17) 2013; 43
Zhang (10.1016/j.neucom.2016.09.092_bib17) 2013; 43
Zhang (10.1016/j.neucom.2016.09.092_bib16) 2012; 23
10.1016/j.neucom.2016.09.092_bib24
10.1016/j.neucom.2016.09.092_bib27
10.1016/j.neucom.2016.09.092_bib26
Han (10.1016/j.neucom.2016.09.092_bib25) 2015; 9927
10.1016/j.neucom.2016.09.092_bib28
10.1016/j.neucom.2016.09.092_bib10
Huang (10.1016/j.neucom.2016.09.092_bib13) 2006; 70
Feng (10.1016/j.neucom.2016.09.092_bib15) 2009; 20
Liang (10.1016/j.neucom.2016.09.092_bib11) 2006; 17
Pao (10.1016/j.neucom.2016.09.092_bib5) 1992; 56
Huang (10.1016/j.neucom.2016.09.092_bib14) 2008; 71
10.1016/j.neucom.2016.09.092_bib19
10.1016/j.neucom.2016.09.092_bib6
Han (10.1016/j.neucom.2016.09.092_bib8) 2016; 198
Zhao (10.1016/j.neucom.2016.09.092_bib7) 2016; 191
Huang (10.1016/j.neucom.2016.09.092_bib4) 2005; 16
Han (10.1016/j.neucom.2016.09.092_bib20) 2013; 116
Parrott (10.1016/j.neucom.2016.09.092_bib22) 2006; 10
10.1016/j.neucom.2016.09.092_bib9
Miche (10.1016/j.neucom.2016.09.092_bib1) 2010; 21
Huang (10.1016/j.neucom.2016.09.092_bib2) 2004; 15
10.1016/j.neucom.2016.09.092_bib18
10.1016/j.neucom.2016.09.092_bib21
Huang (10.1016/j.neucom.2016.09.092_bib3) 2004; 16
Langdon (10.1016/j.neucom.2016.09.092_bib23) 2007; 11
Huang (10.1016/j.neucom.2016.09.092_bib12) 2006; 17
References_xml – volume: 71
  start-page: 3460
  year: 2008
  end-page: 3468
  ident: bib14
  article-title: Enhanced random search based incremental extreme learning machine,
  publication-title: Neurocomputing
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib13
  article-title: Extreme learning machine: theory and applications,
  publication-title: Neurocomputing
– reference: G.-B.Huang, N.-Y.Liang, H.-J.Rong, P.Saratchandran, N.Sundararajan, On-line sequential extreme learning machine, in: Proceedings IASTED International Conference Comput. Intell., Calgary, AB, Canada, 2005.
– volume: 116
  start-page: 87
  year: 2013
  end-page: 93
  ident: bib20
  article-title: An improved evolutionary extreme learning machine based on particle swarm optimization,
  publication-title: Neurocomputing
– volume: 9927
  start-page: 94
  year: 2015
  end-page: 100
  ident: bib25
  article-title: An improved incremental error minimized extreme learning machine for regression problem based on particle swarm optimization,
  publication-title: Lect. Notes Comput. Sci.
– volume: 21
  start-page: 158
  year: 2010
  end-page: 162
  ident: bib1
  article-title: OP-ELM: optimally pruned extreme learning machine,
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  start-page: 1411
  year: 2006
  end-page: 1423
  ident: bib11
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks,
  publication-title: IEEE Trans. Neural Netw.
– reference: R.C. Eberhart, J. Kennedy, A new optimizer using particles swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human science, Nagoya, Japan, 1995, pp. 39–43.
– reference: G.-B.Huang, Q.-Y.Zhu, C.-K.Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings International Joint Conference Neural Netwvol. 2, pp. 985–990, 2004.
– volume: 15
  start-page: 477
  year: 2004
  end-page: 491
  ident: bib2
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks,
  publication-title: IEEE Trans. Neural Netw.
– volume: 17
  start-page: 879
  year: 2006
  end-page: 892
  ident: bib12
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes,
  publication-title: IEEE Trans. Neural Netw.
– volume: 56
  start-page: 263
  year: 1992
  end-page: 289
  ident: bib5
  article-title: Neural-net computing and the intelligent control of systems,
  publication-title: Int. J. Control
– volume: 191
  start-page: 82
  year: 2016
  end-page: 94
  ident: bib7
  article-title: Improvements on parsimonious extreme learning machine using recursive orthogonal least squares,
  publication-title: Neurocomputing
– volume: 23
  start-page: 365
  year: 2012
  end-page: 371
  ident: bib16
  article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes,
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 20
  start-page: 1352
  year: 2009
  end-page: 1357
  ident: bib15
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning,
  publication-title: IEEE Trans. Neural Netw.
– volume: 10
  start-page: 440
  year: 2006
  end-page: 458
  ident: bib22
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 198
  start-page: 27
  year: 2016
  end-page: 34
  ident: bib8
  article-title: An extreme learning machine based on Celluar Automata of edge detection for remote sensing images,
  publication-title: Neurocomputing
– reference: G.-B.Huang, C.-K.Siew, Extreme learning machine: RBF network case, in: Proceedings of the 8th International Conference Control Autom. Robot. Visvol. 2, pp. 1029–1036, 2004.
– reference: G.P. Zhao, Z.Q. Shen, C.Y. Miao, Z.H. Man, On improving the conditioning of extreme learning machine: a linear case, in: Proceedings of the 7th International Conference on Information, Communi-cations and Signal Processing, 2009 (ICICS2009), Maucu, China, December 8–10, 2009, pp. 1–5.
– reference: C.L.Black, C.J.Merz, UCI Repository of Machine Learning Databases. Dept. Inf. Comput. Sci., Univ. California, Irvine,
– volume: 16
  start-page: 721
  year: 2005
  end-page: 732
  ident: bib4
  article-title: ”Zeroing polynomials using modified constrained neural network approach,”
  publication-title: IEEE Trans. Neural Netw.
– volume: 16
  start-page: 1721
  year: 2004
  end-page: 1762
  ident: bib3
  article-title: " A neural root finder of polynomials based on root moments
  publication-title: Neural Comput.
– reference: J.Kennedy, R.Eberhart, Particle , Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1995, pp. 1942–1948.
– volume: 11
  start-page: 561
  year: 2007
  end-page: 578
  ident: bib23
  article-title: Evolving problems to learn about particle swarm optimizers and other search algorithms,
  publication-title: IEEE Trans. Evol. Comput.
– reference: You Xu, Yang Shu, Evolutionary extreme learning machine-based on particle swarm op-timization, in: International Symposium on Neural Networks 2006 (ISNN2006), LNCS, vol. 3971, 2006, pp. 644–652.
– reference: G.Zhao, Z.Shen, C.Miao, R..Gay, Enhanced extreme learning machine with stacked generalization, in: Proceedings International Joint Conference on Neural Networkspp. 1192–1199, 2008.
– reference: Y.Shi, R.C.Eberhart, A modified particle swarm optimizer, in: Proceedings of IEEE World Conference on Computation Intelligence, 1998, pp. 69–73.
– volume: 43
  start-page: 2054
  year: 2013
  end-page: 2065
  ident: bib17
  article-title: Dynamic extreme learning machine and its approximation capability,
  publication-title: IEEE Trans. Cybern.
– volume: 23
  start-page: 365
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2016.09.092_bib16
  article-title: Universal approximation of extreme learning machine with adaptive growth of hidden nodes,
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178124
– volume: 17
  start-page: 879
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2016.09.092_bib12
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes,
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875977
– volume: 198
  start-page: 27
  year: 2016
  ident: 10.1016/j.neucom.2016.09.092_bib8
  article-title: An extreme learning machine based on Celluar Automata of edge detection for remote sensing images,
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.121
– ident: 10.1016/j.neucom.2016.09.092_bib21
  doi: 10.1109/ICNN.1995.488968
– volume: 56
  start-page: 263
  issue: 2
  year: 1992
  ident: 10.1016/j.neucom.2016.09.092_bib5
  article-title: Neural-net computing and the intelligent control of systems,
  publication-title: Int. J. Control
  doi: 10.1080/00207179208934315
– volume: 43
  start-page: 2054
  year: 2013
  ident: 10.1016/j.neucom.2016.09.092_bib17
  article-title: Dynamic extreme learning machine and its approximation capability,
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2239987
– ident: 10.1016/j.neucom.2016.09.092_bib9
– ident: 10.1016/j.neucom.2016.09.092_bib27
– volume: 11
  start-page: 561
  issue: 5
  year: 2007
  ident: 10.1016/j.neucom.2016.09.092_bib23
  article-title: Evolving problems to learn about particle swarm optimizers and other search algorithms,
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.886448
– ident: 10.1016/j.neucom.2016.09.092_bib6
  doi: 10.1109/IJCNN.2004.1380068
– volume: 71
  start-page: 3460
  issue: 16–18
  year: 2008
  ident: 10.1016/j.neucom.2016.09.092_bib14
  article-title: Enhanced random search based incremental extreme learning machine,
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.10.008
– volume: 116
  start-page: 87
  year: 2013
  ident: 10.1016/j.neucom.2016.09.092_bib20
  article-title: An improved evolutionary extreme learning machine based on particle swarm optimization,
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.062
– ident: 10.1016/j.neucom.2016.09.092_bib19
  doi: 10.1109/ICICS.2009.5397617
– volume: 15
  start-page: 477
  issue: 2
  year: 2004
  ident: 10.1016/j.neucom.2016.09.092_bib2
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks,
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2004.824424
– volume: 16
  start-page: 1721
  issue: 8
  year: 2004
  ident: 10.1016/j.neucom.2016.09.092_bib3
  article-title: " A neural root finder of polynomials based on root moments
  publication-title: Neural Comput.
  doi: 10.1162/089976604774201668
– ident: 10.1016/j.neucom.2016.09.092_bib26
  doi: 10.1109/MHS.1995.494215
– volume: 10
  start-page: 440
  issue: 4
  year: 2006
  ident: 10.1016/j.neucom.2016.09.092_bib22
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.859468
– volume: 16
  start-page: 721
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2016.09.092_bib4
  article-title: ”Zeroing polynomials using modified constrained neural network approach,”
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2005.844912
– volume: 21
  start-page: 158
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2016.09.092_bib1
  article-title: OP-ELM: optimally pruned extreme learning machine,
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036259
– ident: 10.1016/j.neucom.2016.09.092_bib10
– ident: 10.1016/j.neucom.2016.09.092_bib18
  doi: 10.1109/IJCNN.2008.4633951
– ident: 10.1016/j.neucom.2016.09.092_bib28
– volume: 9927
  start-page: 94
  year: 2015
  ident: 10.1016/j.neucom.2016.09.092_bib25
  article-title: An improved incremental error minimized extreme learning machine for regression problem based on particle swarm optimization,
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-22053-6_11
– ident: 10.1016/j.neucom.2016.09.092_bib24
  doi: 10.1007/11759966_95
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.neucom.2016.09.092_bib13
  article-title: Extreme learning machine: theory and applications,
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 191
  start-page: 82
  year: 2016
  ident: 10.1016/j.neucom.2016.09.092_bib7
  article-title: Improvements on parsimonious extreme learning machine using recursive orthogonal least squares,
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.005
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 10.1016/j.neucom.2016.09.092_bib11
  article-title: A fast and accurate online sequential learning algorithm for feedforward networks,
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.880583
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: 10.1016/j.neucom.2016.09.092_bib15
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning,
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2024147
SSID ssj0017129
Score 2.356115
Snippet How to determine the network structure is an open problem in extreme learning machine (ELM). Error minimized extreme learning machine (EM-ELM) is a simple and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms Condition value
Extreme learning machine
Generalization performance
Network structure
Particle swarm optimization
Title An improved incremental constructive single-hidden-layer feedforward networks for extreme learning machine based on particle swarm optimization
URI https://dx.doi.org/10.1016/j.neucom.2016.09.092
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFy--xTdz8BrbzT7SPRZRqkIvKnhbktlEK21aqHr0L_iXnWSzRUEUhD2FzLJkkpkv2S_fMHaa6hRpHSU8tSrjGRbIVaIkNxQHu6GqcR3YFsNicJ9dP-QPS-y8vQvjaZUx9jcxPUTr2NKJo9mZjUad224paBeVCEIUFGSFl9326l80p8_eFzSPRCai0dsTOfe92-tzgePlzKvnjFASLILaaSl-Tk9fUs7lBluLWBH6zedssiXjtth6W4cB4rLcZh99B6NwOGBqGDlsjvzIEqetPuybAX8oMDb8yWuGOD5WhLXBUu4i1OqZs-AaQvgcqAEoZPu3QCwq8QiTQLo04LNeDVMHszhKMCfrCUwp9Ezinc4ddn95cXc-4LHQAkfaMbxwk0lppEH_Z9zWubZaEZIThaHdTEkAhSCLzY3IMbWy28u0tQqLVGjUKhEF1ukuW3ZTZ_YYSIuGEFavUKrMUNc6C5s0NJjoUua4z9J2fCuMKuS-GMa4aulmz1Xjlcp7peqW9Ih9xhdWs0aF44_-snVd9W02VZQofrU8-LflIVsVPuV7flrviC2Te80xAZYXfRJm5Alb6V_dDIafc8bwHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BOSyXZWEXwX7OgavVxvlwc6wQqGy7vQASt8ie2FDUupWA_Rv8ZcaJg3YlBBJSTlYmijz2m2f7eQbgKDUp8TxKROp0JjIqSOhEK2EZBwdNVeO6UVvMivFl9vsqv9qA4-4uTJBVRuxvMb1B69jSj73ZX8_n_fNBKXkVlUhmFAyystiErSxnTO7B1uhsMp49HyaoRLYp92QugkF3g66ReXn7EGQjHAeLJuFpKV-OUP9EndNP8DHSRRy1f7QLG9bvwU5XigHjzPwMjyOP82Z_wNY499Tu-rElrboUsX8thn2BhRU3IW2IFwvNdBsdhy8mrkE8i77VhN8hNyCjdvgKxroS17hsdJcWQ-CrceVxHTsK79h6iStGn2W81vkFLk9PLo7HItZaEMSLhnthM6WsshQOx12dG2c0kzlZWF7QlMxRmLW43MqcUqcGw8w4p6lIpSGjE1lQne5Dz6-8PQBUjiyTrGGhdZmRqU3WrNPIUmJKldMhpF3_VhQTkYd6GIuqU5zdVq1XquCValDyIw9BPFut20Qcb7yvOtdV_w2oimPFq5Zf3235Cz6ML_5Mq-nZbPINtmVgAEGuNvwOPXa1_cH85d78jOPzCZGw8sk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+incremental+constructive+single-hidden-layer+feedforward+networks+for+extreme+learning+machine+based+on+particle+swarm+optimization&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Han%2C+Fei&rft.au=Zhao%2C+Min-Ru&rft.au=Zhang%2C+Jian-Ming&rft.au=Ling%2C+Qing-Hua&rft.date=2017-03-08&rft.issn=0925-2312&rft.volume=228&rft.spage=133&rft.epage=142&rft_id=info:doi/10.1016%2Fj.neucom.2016.09.092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2016_09_092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon