Pulsed laser deposition of Ga doped ZnO films - Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties
The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable para...
Saved in:
Published in | Vacuum Vol. 159; pp. 134 - 140 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0042-207X 1879-2715 |
DOI | 10.1016/j.vacuum.2018.10.031 |
Cover
Abstract | The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable parameters were: deposition temperature (RT to 500 °C) and growth rate (controlled by laser pulsing repetition frequency in range 2–50 Hz). Investigation by SEM and XRD confirmed columnar structure of prepared films with highly uniform crystallographic orientation regardless of applied deposition parameters. Samples exhibited high optical transparency in VIS region with sharp absorption edge near 380 nm and band gap energies varied between 3.19 and 3.24 eV at room temperature. The best electrical properties (resistivity ∼5.96 × 10−4 Ω cm) was achieved at 400 °C and 10 Hz of laser frequency, however the application of deposition at RT or highest laser frequency (50 Hz) still maintain average resistivity at levels of 10−3 Ω cm. The results suggest that PLD can play an important role in production of high conductive transparent thin film deposited on temperature sensitive organic materials at RT deposition levels.
•Pulsed laser deposition of Ga doped ZnO thin films.•Applied Ga concentration: 99% ZnO : 1% Ga2O3.•Influence of two deposition parameters were compared (deposition temperature and laser pulse frequency of ablative laser).•Electrical properties – highly conductive thin films were prepared even at room temperature.•Deposition at room temperature is proper way for creating transparent conductive films on thermally degradable materials. |
---|---|
AbstractList | The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable parameters were: deposition temperature (RT to 500 °C) and growth rate (controlled by laser pulsing repetition frequency in range 2–50 Hz). Investigation by SEM and XRD confirmed columnar structure of prepared films with highly uniform crystallographic orientation regardless of applied deposition parameters. Samples exhibited high optical transparency in VIS region with sharp absorption edge near 380 nm and band gap energies varied between 3.19 and 3.24 eV at room temperature. The best electrical properties (resistivity ∼5.96 × 10−4 Ω cm) was achieved at 400 °C and 10 Hz of laser frequency, however the application of deposition at RT or highest laser frequency (50 Hz) still maintain average resistivity at levels of 10−3 Ω cm. The results suggest that PLD can play an important role in production of high conductive transparent thin film deposited on temperature sensitive organic materials at RT deposition levels.
•Pulsed laser deposition of Ga doped ZnO thin films.•Applied Ga concentration: 99% ZnO : 1% Ga2O3.•Influence of two deposition parameters were compared (deposition temperature and laser pulse frequency of ablative laser).•Electrical properties – highly conductive thin films were prepared even at room temperature.•Deposition at room temperature is proper way for creating transparent conductive films on thermally degradable materials. |
Author | Bruncko, Jaroslav Netrvalová, Marie Michalka, Miroslav Šutta, Pavol Vincze, Andrej |
Author_xml | – sequence: 1 givenname: Jaroslav surname: Bruncko fullname: Bruncko, Jaroslav email: jaroslav.bruncko@ilc.sk organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic – sequence: 2 givenname: Pavol surname: Šutta fullname: Šutta, Pavol organization: University of West Bohemia - New Technologies – Research Centre, Univerzitni 8, 306 14, Plzen, Czech Republic – sequence: 3 givenname: Marie orcidid: 0000-0003-3143-4859 surname: Netrvalová fullname: Netrvalová, Marie organization: University of West Bohemia - New Technologies – Research Centre, Univerzitni 8, 306 14, Plzen, Czech Republic – sequence: 4 givenname: Miroslav surname: Michalka fullname: Michalka, Miroslav organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic – sequence: 5 givenname: Andrej surname: Vincze fullname: Vincze, Andrej organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic |
BookMark | eNqFkM1KAzEURoNUsFbfwEUewKk3M50_F4KI1oKgCwVxM9wmN5AynRmTTKEv47OaaRXEha5Cbr7zhXuO2ahpG2LsTMBUgMguVtMNyr5fT2MQRRhNIREHbCyKvIziXKQjNgaYxVEM-esRO3ZuBQBxBsWYfTz1tSPFa3RkuaKudcabtuGt5nPkqu3C41vzyLWp145HfNHouqdG0pD4kfe07sii7y1xbL4Lu6Gda0vvA7PlIei87WWIYX3O284bifUOoJqkt7trZ8O31htyJ-xQY6g4_Ton7OXu9vnmPnp4nC9urh8imUDmIwLEUooSliKXMSKlmsqSVJKqGRZFukyLpEww0ZAqIWOFs0JSlgOJZaozAcmEXe57pW2ds6QraTwOi3mLpq4EVIPpalXtTVeD6WEaTAd49gvurFmj3f6HXe0xCottDNnKSTOYVcYGFZVqzd8Fn3J9oYc |
CitedBy_id | crossref_primary_10_1016_j_vacuum_2021_110528 crossref_primary_10_2139_ssrn_4061591 crossref_primary_10_1007_s41779_021_00604_2 crossref_primary_10_1016_j_vacuum_2019_02_050 crossref_primary_10_1016_j_jallcom_2025_179291 crossref_primary_10_1063_1_5129065 crossref_primary_10_1016_j_jallcom_2020_153902 crossref_primary_10_1016_j_jallcom_2022_164480 crossref_primary_10_1063_5_0179267 crossref_primary_10_1088_1402_4896_acf68f crossref_primary_10_1016_j_tsf_2022_139393 crossref_primary_10_3390_en13010012 crossref_primary_10_1039_D1TA01291F crossref_primary_10_1080_16583655_2022_2048518 crossref_primary_10_1016_j_ceramint_2022_10_054 crossref_primary_10_1016_j_solmat_2019_110278 crossref_primary_10_1007_s41779_023_00831_9 crossref_primary_10_1063_5_0101593 crossref_primary_10_1016_j_jallcom_2020_157142 crossref_primary_10_1016_j_vacuum_2020_109369 crossref_primary_10_1007_s10854_021_06704_w |
Cites_doi | 10.1016/S0040-6090(03)00243-8 10.1103/RevModPhys.72.315 10.1007/BF00482725 10.1002/pssb.201552007 10.1088/0022-3727/34/21/301 10.1002/pip.2601 10.1063/1.323240 10.1016/j.apsusc.2008.10.101 10.1088/0022-3727/47/3/034005 10.1016/j.jallcom.2017.07.269 10.1016/j.tsf.2014.04.037 10.1016/j.vacuum.2016.09.013 10.1107/S0021889878012601 10.1016/j.apsusc.2016.10.043 10.1103/PhysRevB.84.115202 10.1016/j.tsf.2013.01.078 10.1007/s12598-011-0220-x 10.1016/j.jallcom.2014.07.098 10.1016/j.jallcom.2015.02.162 10.1016/j.tsf.2015.08.015 10.1016/j.tsf.2007.03.072 10.1038/nphoton.2012.282 10.1016/j.mser.2016.08.002 10.1063/1.4748869 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.vacuum.2018.10.031 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1879-2715 |
EndPage | 140 |
ExternalDocumentID | 10_1016_j_vacuum_2018_10_031 S0042207X17318304 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD ADOJD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM M38 M41 MAGPM MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSM SSQ SSZ T5K T9H TAE TN5 WUQ ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHDLI AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-e0aa9c190b17c2aae5fe99ed35d4a885b58393a3f05d1c2da48ce670e1b5f6103 |
IEDL.DBID | .~1 |
ISSN | 0042-207X |
IngestDate | Tue Jul 01 03:43:46 EDT 2025 Thu Apr 24 23:11:11 EDT 2025 Fri Feb 23 02:28:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pulsed laser deposition XRD Excimer laser Transmittance Ga:Zinc oxide Resistivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-e0aa9c190b17c2aae5fe99ed35d4a885b58393a3f05d1c2da48ce670e1b5f6103 |
ORCID | 0000-0003-3143-4859 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_vacuum_2018_10_031 crossref_primary_10_1016_j_vacuum_2018_10_031 elsevier_sciencedirect_doi_10_1016_j_vacuum_2018_10_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Vacuum |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhao, Shao, Song, Qin, Han (bib5) 2011; 30 Lee, Peng, Wu (bib30) 2014; 616 Kim, Kim, Jeong, Park, Baik, Seong (bib26) 2013; 531 Ginley, Hosono, Paine (bib1) 2011 Ellmer (bib7) 2001; 34 Morkoc, Ozgur (bib9) 2007 Hala, Fujii, Redinger, Inoue, Rey, Thevenin, Deprédurand, Weiss, Bertram, Siebentritt (bib27) 2015; 23 Look, Leedy, Vines, Svensson, Zubiaga, Tuomisto, Doutt, Brillson (bib29) 2011; 84 Tauc (bib24) 1972 He, Tjong (bib4) 2016; 109 Kittel (bib28) 1996 Haacke (bib34) 1976; 47 Matsubara, Fons, Iwata, Yamada, Sakurai, Tampo, Niki (bib15) 2003; 431–432 Langford (bib21) 1978; 11 McGill, Chrisey (bib16) 2000 Greer (bib12) 2014; 47 Look, Droubay, Chambers (bib14) 2012; 101 Shewale, Lee, Yu (bib31) 2017; 725 Šutta, Jackuliak (bib22) 1998 Ellmer (bib3) 2012; 6 Ajimsha, Das, Misra, Joshi, Kukreja, Kumar, Sharma, Oak (bib13) 2015; 638 Litton, Reynolds, Collins (bib2) 2011 Popescu-Pelin, Sima, Sima, Mihailescu, Luculescu, Iordache, Socol, Socol, Mihailescu (bib17) 2017; 418 B Viezbicke, Patel, Davis, Birnie (bib25) 2015; 252 Ahn, Kim, Kang, Lee, Oh, Kim, Jang, Lee (bib32) 2008; 516 Schou (bib19) 2009; 255 Bruncko, Pavol Sutta, Netrvalova, Michalka, Vincze (bib20) 2017; 138 Dosmailov, Leonat, Patek, Roth, Bauer, Scharber, Sariciftci, Pedarnig (bib33) 2015; 591 Morkoc, Ozgur (bib8) 2009 Lee, Pengb, Lu, Zhub, Wu (bib10) 2014; 570 Ellmer, Klein, Rech (bib6) 2008 Chrisey, Hubler (bib11) 1994 Delhez, Keijser, Mittemeijer (bib23) 1982; 312 Willmot, Huber (bib18) 2000; 72 Schou (10.1016/j.vacuum.2018.10.031_bib19) 2009; 255 Ginley (10.1016/j.vacuum.2018.10.031_bib1) 2011 Lee (10.1016/j.vacuum.2018.10.031_bib10) 2014; 570 McGill (10.1016/j.vacuum.2018.10.031_bib16) 2000 Shewale (10.1016/j.vacuum.2018.10.031_bib31) 2017; 725 Viezbicke (10.1016/j.vacuum.2018.10.031_bib25) 2015; 252 Ajimsha (10.1016/j.vacuum.2018.10.031_bib13) 2015; 638 Ellmer (10.1016/j.vacuum.2018.10.031_bib7) 2001; 34 Morkoc (10.1016/j.vacuum.2018.10.031_bib8) 2009 Look (10.1016/j.vacuum.2018.10.031_bib14) 2012; 101 Delhez (10.1016/j.vacuum.2018.10.031_bib23) 1982; 312 Šutta (10.1016/j.vacuum.2018.10.031_bib22) 1998 Litton (10.1016/j.vacuum.2018.10.031_bib2) 2011 Ellmer (10.1016/j.vacuum.2018.10.031_bib3) 2012; 6 Bruncko (10.1016/j.vacuum.2018.10.031_bib20) 2017; 138 Ellmer (10.1016/j.vacuum.2018.10.031_bib6) 2008 Dosmailov (10.1016/j.vacuum.2018.10.031_bib33) 2015; 591 Haacke (10.1016/j.vacuum.2018.10.031_bib34) 1976; 47 Popescu-Pelin (10.1016/j.vacuum.2018.10.031_bib17) 2017; 418 B Matsubara (10.1016/j.vacuum.2018.10.031_bib15) 2003; 431–432 Hala (10.1016/j.vacuum.2018.10.031_bib27) 2015; 23 Look (10.1016/j.vacuum.2018.10.031_bib29) 2011; 84 Greer (10.1016/j.vacuum.2018.10.031_bib12) 2014; 47 Chrisey (10.1016/j.vacuum.2018.10.031_bib11) 1994 He (10.1016/j.vacuum.2018.10.031_bib4) 2016; 109 Kim (10.1016/j.vacuum.2018.10.031_bib26) 2013; 531 Langford (10.1016/j.vacuum.2018.10.031_bib21) 1978; 11 Kittel (10.1016/j.vacuum.2018.10.031_bib28) 1996 Willmot (10.1016/j.vacuum.2018.10.031_bib18) 2000; 72 Zhao (10.1016/j.vacuum.2018.10.031_bib5) 2011; 30 Morkoc (10.1016/j.vacuum.2018.10.031_bib9) 2007 Tauc (10.1016/j.vacuum.2018.10.031_bib24) 1972 Lee (10.1016/j.vacuum.2018.10.031_bib30) 2014; 616 Ahn (10.1016/j.vacuum.2018.10.031_bib32) 2008; 516 |
References_xml | – start-page: 227 year: 1998 end-page: 230 ident: bib22 article-title: Macro-stress formation in thin films and its determination by X-ray diffraction publication-title: Proc. Of the 2nd International Conference on Advanced Semi-conductor Devices and Microsystems ASDAM’98 – year: 1994 ident: bib11 article-title: Pulsed Laser Deposition of Thin Films – volume: 531 start-page: 430 year: 2013 end-page: 435 ident: bib26 article-title: Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters publication-title: Thin Solid Films – volume: 23 start-page: 1630 year: 2015 end-page: 1641 ident: bib27 article-title: Highly conductive ZnO films with high near infrared transparency publication-title: Prog. Photovoltaics Res. Appl. – year: 2008 ident: bib6 article-title: Transparent Conductive Zinc Oxide – year: 1996 ident: bib28 article-title: Introduction to Solid State Physics – year: 2011 ident: bib2 article-title: Zinc Oxide Materials for Electronic and Optoelectronic Device Applications – volume: 47 start-page: 034005 year: 2014 ident: bib12 article-title: History and current status of commercial pulsed laser deposition equipment publication-title: J. Phys. D Appl. Phys. – volume: 312 start-page: 1 year: 1982 end-page: 16 ident: bib23 article-title: Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis publication-title: Fres. Z. Anal. Chem. – year: 1972 ident: bib24 article-title: Optical properties of non-crystalline solids publication-title: Optical Properties of Solids – volume: 30 start-page: 175 year: 2011 end-page: 182 ident: bib5 article-title: Development on transparent conductive ZnO thin films doped with various impurity elements publication-title: Rare Met. – volume: 431–432 start-page: 369 year: 2003 end-page: 372 ident: bib15 article-title: ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications publication-title: Thin Solid Films – volume: 255 start-page: 5191 year: 2009 end-page: 5198 ident: bib19 article-title: Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film publication-title: Appl. Surf. Sci. – volume: 84 start-page: 115202 year: 2011 ident: bib29 article-title: Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO publication-title: Phys. Rev. B – year: 2009 ident: bib8 article-title: Zinc Oxide, Fundamentals, Materials and Device Technology – year: 2007 ident: bib9 article-title: Zinc Oxide, Fundamentals,Materials and Device Technology – volume: 252 start-page: 1700 year: 2015 end-page: 1710 ident: bib25 article-title: Evaluation of the Tauc method for optical absorption edge determination ZnO thin films as a model system publication-title: Phys. Status Solidi B – volume: 516 start-page: 1382 year: 2008 end-page: 1385 ident: bib32 article-title: Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films publication-title: Thin Solid Films – volume: 6 start-page: 809 year: 2012 end-page: 817 ident: bib3 article-title: Nature Photonics, Past achievements and future challenges in the development of optically transparent electrodes publication-title: Nat. Photon. – volume: 725 start-page: 1106 year: 2017 end-page: 1114 ident: bib31 article-title: Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition publication-title: J. Alloy. Comp. – volume: 72 start-page: 315 year: 2000 end-page: 328 ident: bib18 article-title: Pulsed laser vaporization and deposition publication-title: Rev. Mod. Phys. – volume: 616 start-page: 122 year: 2014 end-page: 127 ident: bib30 article-title: Effects of intrinsic defects on electronic structure and optical properties of Ga-doped ZnO publication-title: J. Alloy. Comp. – year: 2011 ident: bib1 article-title: Handbook of Transparent Conductors – volume: 570 start-page: 464 year: 2014 end-page: 470 ident: bib10 article-title: Electronic and optical properties of Ga-doped ZnO publication-title: Thin Solid Films – volume: 418 B start-page: 580 year: 2017 end-page: 588 ident: bib17 article-title: Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: comparative study publication-title: Appl. Surf. Sci. – volume: 34 start-page: 3097 year: 2001 end-page: 3108 ident: bib7 article-title: Resistivity of polycrystalline zinc oxide films: current status and physical limits publication-title: J. Phys. D Appl. Phys. – volume: 638 start-page: 55 year: 2015 end-page: 58 ident: bib13 article-title: Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition publication-title: J. Alloy. Comp. – volume: 11 start-page: 10 year: 1978 end-page: 14 ident: bib21 article-title: A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function publication-title: J. Appl. Crystallogr. – year: 2000 ident: bib16 article-title: Method of Producing a Film Coating by Matrix Assisted Pulsed Laser Deposition – volume: 138 start-page: 184 year: 2017 end-page: 190 ident: bib20 article-title: Comparative study of ZnO thin film prepared by pulsed laser deposition e Comparison of influence of different ablative lasers publication-title: Vacuum – volume: 591 start-page: 97 year: 2015 end-page: 104 ident: bib33 article-title: Transparent conductive ZnO layers on polymer substrates: thin film deposition and application in organic solar cells publication-title: Thin Solid Films – volume: 101 start-page: 102101 year: 2012 ident: bib14 article-title: Stable highly conductive ZnO via reduction of Zn vacancies publication-title: Appl. Phys. Lett. – volume: 109 start-page: 1 year: 2016 end-page: 101 ident: bib4 article-title: Nanostructured transparent conductive films: fabrication, characterization and applications publication-title: Mater. Sci. Eng. R. – volume: 47 start-page: 4086 year: 1976 end-page: 4089 ident: bib34 article-title: New figure of merit for transparent conductors publication-title: J. Appl. Phys. – volume: 431–432 start-page: 369 year: 2003 ident: 10.1016/j.vacuum.2018.10.031_bib15 article-title: ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications publication-title: Thin Solid Films doi: 10.1016/S0040-6090(03)00243-8 – volume: 72 start-page: 315 year: 2000 ident: 10.1016/j.vacuum.2018.10.031_bib18 article-title: Pulsed laser vaporization and deposition publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.315 – volume: 312 start-page: 1 year: 1982 ident: 10.1016/j.vacuum.2018.10.031_bib23 article-title: Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis publication-title: Fres. Z. Anal. Chem. doi: 10.1007/BF00482725 – volume: 252 start-page: 1700 year: 2015 ident: 10.1016/j.vacuum.2018.10.031_bib25 article-title: Evaluation of the Tauc method for optical absorption edge determination ZnO thin films as a model system publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201552007 – volume: 34 start-page: 3097 year: 2001 ident: 10.1016/j.vacuum.2018.10.031_bib7 article-title: Resistivity of polycrystalline zinc oxide films: current status and physical limits publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/34/21/301 – volume: 23 start-page: 1630 year: 2015 ident: 10.1016/j.vacuum.2018.10.031_bib27 article-title: Highly conductive ZnO films with high near infrared transparency publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.2601 – volume: 47 start-page: 4086 year: 1976 ident: 10.1016/j.vacuum.2018.10.031_bib34 article-title: New figure of merit for transparent conductors publication-title: J. Appl. Phys. doi: 10.1063/1.323240 – year: 2011 ident: 10.1016/j.vacuum.2018.10.031_bib1 – volume: 255 start-page: 5191 year: 2009 ident: 10.1016/j.vacuum.2018.10.031_bib19 article-title: Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2008.10.101 – volume: 47 start-page: 034005 year: 2014 ident: 10.1016/j.vacuum.2018.10.031_bib12 article-title: History and current status of commercial pulsed laser deposition equipment publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/3/034005 – start-page: 227 year: 1998 ident: 10.1016/j.vacuum.2018.10.031_bib22 article-title: Macro-stress formation in thin films and its determination by X-ray diffraction – volume: 725 start-page: 1106 year: 2017 ident: 10.1016/j.vacuum.2018.10.031_bib31 article-title: Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.07.269 – volume: 570 start-page: 464 year: 2014 ident: 10.1016/j.vacuum.2018.10.031_bib10 article-title: Electronic and optical properties of Ga-doped ZnO publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.04.037 – year: 1994 ident: 10.1016/j.vacuum.2018.10.031_bib11 – year: 2009 ident: 10.1016/j.vacuum.2018.10.031_bib8 – volume: 138 start-page: 184 year: 2017 ident: 10.1016/j.vacuum.2018.10.031_bib20 article-title: Comparative study of ZnO thin film prepared by pulsed laser deposition e Comparison of influence of different ablative lasers publication-title: Vacuum doi: 10.1016/j.vacuum.2016.09.013 – volume: 11 start-page: 10 year: 1978 ident: 10.1016/j.vacuum.2018.10.031_bib21 article-title: A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889878012601 – volume: 418 B start-page: 580 year: 2017 ident: 10.1016/j.vacuum.2018.10.031_bib17 article-title: Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: comparative study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.043 – volume: 84 start-page: 115202 year: 2011 ident: 10.1016/j.vacuum.2018.10.031_bib29 article-title: Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.115202 – volume: 531 start-page: 430 year: 2013 ident: 10.1016/j.vacuum.2018.10.031_bib26 article-title: Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.01.078 – volume: 30 start-page: 175 year: 2011 ident: 10.1016/j.vacuum.2018.10.031_bib5 article-title: Development on transparent conductive ZnO thin films doped with various impurity elements publication-title: Rare Met. doi: 10.1007/s12598-011-0220-x – volume: 616 start-page: 122 year: 2014 ident: 10.1016/j.vacuum.2018.10.031_bib30 article-title: Effects of intrinsic defects on electronic structure and optical properties of Ga-doped ZnO publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.07.098 – volume: 638 start-page: 55 year: 2015 ident: 10.1016/j.vacuum.2018.10.031_bib13 article-title: Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2015.02.162 – year: 2007 ident: 10.1016/j.vacuum.2018.10.031_bib9 – year: 1996 ident: 10.1016/j.vacuum.2018.10.031_bib28 – volume: 591 start-page: 97 year: 2015 ident: 10.1016/j.vacuum.2018.10.031_bib33 article-title: Transparent conductive ZnO layers on polymer substrates: thin film deposition and application in organic solar cells publication-title: Thin Solid Films doi: 10.1016/j.tsf.2015.08.015 – volume: 516 start-page: 1382 year: 2008 ident: 10.1016/j.vacuum.2018.10.031_bib32 article-title: Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.03.072 – year: 2011 ident: 10.1016/j.vacuum.2018.10.031_bib2 – year: 2008 ident: 10.1016/j.vacuum.2018.10.031_bib6 – volume: 6 start-page: 809 year: 2012 ident: 10.1016/j.vacuum.2018.10.031_bib3 article-title: Nature Photonics, Past achievements and future challenges in the development of optically transparent electrodes publication-title: Nat. Photon. doi: 10.1038/nphoton.2012.282 – year: 2000 ident: 10.1016/j.vacuum.2018.10.031_bib16 – volume: 109 start-page: 1 year: 2016 ident: 10.1016/j.vacuum.2018.10.031_bib4 article-title: Nanostructured transparent conductive films: fabrication, characterization and applications publication-title: Mater. Sci. Eng. R. doi: 10.1016/j.mser.2016.08.002 – year: 1972 ident: 10.1016/j.vacuum.2018.10.031_bib24 article-title: Optical properties of non-crystalline solids – volume: 101 start-page: 102101 year: 2012 ident: 10.1016/j.vacuum.2018.10.031_bib14 article-title: Stable highly conductive ZnO via reduction of Zn vacancies publication-title: Appl. Phys. Lett. doi: 10.1063/1.4748869 |
SSID | ssj0002608 |
Score | 2.3370533 |
Snippet | The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 134 |
SubjectTerms | Excimer laser Ga:Zinc oxide Pulsed laser deposition Resistivity Transmittance XRD |
Title | Pulsed laser deposition of Ga doped ZnO films - Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties |
URI | https://dx.doi.org/10.1016/j.vacuum.2018.10.031 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 0042-207X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 0042-207X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 0042-207X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 0042-207X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002608 issn: 0042-207X databaseCode: AKRWK dateStart: 19510101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbz4qIrPkoNH12720eweS7G2itWDQvGyZJMsVHS79CF48af4W53JZmsFUfCY7CQsmSTzJXzzhZBTiBocoqQHC0nETiCiwBGcaYe3AuUKpYUwWWk3g1bvIbgahsMa6VS5MEirtHt_uaeb3drWNO1oNovRCHN8A89z-ZBxnJdGExTVv2BOn79_0TwAr0eLNBSwrtLnDMfrVcj5HPPRWXSOHC-f_RyelkJOd4tsWKxI2-XvbJOazutk0-JGalfltE7WDI1TTnfIx90c-lIUILGeUKUrShYdZ_RSUDUu4ONjfkuz0fPLlDq0X71RghZL9qhYZeWWqcirDgvsnWaTkn79RsGw1J9F7Y4zOi7MxbhpUD6vY4oF3vdPULh1lzx0L-47Pce-wOBIOErMHO0KEUvADCnj0hNCIzUt1soPFbg1CtMQ8JUv_MwNFZOeEkEkdYu7mqVhBsDM3yMr-TjX-4QGqZ_G0osiFmaIIgEW8RYc1pT0MsYjfUD8auATaeXJ8ZWM56TioT0lpbsSdBfWgrsOiLNoVZTyHH_Y88qnybdplkAE-bXl4b9bHpF1KMXlvc0xWQG_6BNAMrO0YaZqg6y2-9e9wSf4SvZP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kF9GLb_FtDh6tNn1s2uMi6q6P1YPC4qWkSQora7fsuoJ_xt_qTJsuCqLgsclMKJlk5kv4ZgJwhFFDYJT0cCPJ2AlkFDhScOOIVqBdqY2UZVbaba_VeQyu-mF_Ds7qXBiiVVrfX_n00lvbllM7m6fFYEA5voHnuaLPBa1LqgnaDEL0yQ1otrvXnd7MISNkj2aZKKhQZ9CVNK83qaZTSknn0QnRvHz-c4T6EnUuVmDJwkXWrv5oFeZMvgbLFjoyuzEnazBfMjnVZB0-7qc4lmaIis2YaVOzstgoY5eS6VGBnU_5HcsGw5cJc1i3fqaEJL7IU9EqW3GZybwesKDRWTauGNjvDAWrErRUvuOYjYrybrxUqF7YKT8LuvIfU-3WDXi8OH846zj2EQZH4Wni1TGulLFC2JByoTwpDbHTYqP9UKNlozANEWL50s_cUHPlaRlEyrSEa3gaZojN_E1o5KPcbAELUj-NlRdFPMwISCIyEi08r2nlZVxEZhv8euITZSuU00MZw6Smoj0nlbkSMhe1orm2wZlpFVWFjj_kRW3T5NtKSzCI_Kq582_NQ1joPNzeJDfd3vUuLGJPXF3j7EEDbWT2Edi8pgd24X4CTwD4-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+laser+deposition+of+Ga+doped+ZnO+films+-+Influence+of+deposition+temperature+and+laser+pulse+frequency+on+structural%2C+optical+and+electrical+properties&rft.jtitle=Vacuum&rft.au=Bruncko%2C+Jaroslav&rft.au=%C5%A0utta%2C+Pavol&rft.au=Netrvalov%C3%A1%2C+Marie&rft.au=Michalka%2C+Miroslav&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0042-207X&rft.eissn=1879-2715&rft.volume=159&rft.spage=134&rft.epage=140&rft_id=info:doi/10.1016%2Fj.vacuum.2018.10.031&rft.externalDocID=S0042207X17318304 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon |