Pulsed laser deposition of Ga doped ZnO films - Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties

The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable para...

Full description

Saved in:
Bibliographic Details
Published inVacuum Vol. 159; pp. 134 - 140
Main Authors Bruncko, Jaroslav, Šutta, Pavol, Netrvalová, Marie, Michalka, Miroslav, Vincze, Andrej
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text
ISSN0042-207X
1879-2715
DOI10.1016/j.vacuum.2018.10.031

Cover

Abstract The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable parameters were: deposition temperature (RT to 500 °C) and growth rate (controlled by laser pulsing repetition frequency in range 2–50 Hz). Investigation by SEM and XRD confirmed columnar structure of prepared films with highly uniform crystallographic orientation regardless of applied deposition parameters. Samples exhibited high optical transparency in VIS region with sharp absorption edge near 380 nm and band gap energies varied between 3.19 and 3.24 eV at room temperature. The best electrical properties (resistivity ∼5.96 × 10−4 Ω cm) was achieved at 400 °C and 10 Hz of laser frequency, however the application of deposition at RT or highest laser frequency (50 Hz) still maintain average resistivity at levels of 10−3 Ω cm. The results suggest that PLD can play an important role in production of high conductive transparent thin film deposited on temperature sensitive organic materials at RT deposition levels. •Pulsed laser deposition of Ga doped ZnO thin films.•Applied Ga concentration: 99% ZnO : 1% Ga2O3.•Influence of two deposition parameters were compared (deposition temperature and laser pulse frequency of ablative laser).•Electrical properties – highly conductive thin films were prepared even at room temperature.•Deposition at room temperature is proper way for creating transparent conductive films on thermally degradable materials.
AbstractList The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser deposition (PLD). Experimentally were compared the deposition parameters influence on structural, optical and electrical properties. The variable parameters were: deposition temperature (RT to 500 °C) and growth rate (controlled by laser pulsing repetition frequency in range 2–50 Hz). Investigation by SEM and XRD confirmed columnar structure of prepared films with highly uniform crystallographic orientation regardless of applied deposition parameters. Samples exhibited high optical transparency in VIS region with sharp absorption edge near 380 nm and band gap energies varied between 3.19 and 3.24 eV at room temperature. The best electrical properties (resistivity ∼5.96 × 10−4 Ω cm) was achieved at 400 °C and 10 Hz of laser frequency, however the application of deposition at RT or highest laser frequency (50 Hz) still maintain average resistivity at levels of 10−3 Ω cm. The results suggest that PLD can play an important role in production of high conductive transparent thin film deposited on temperature sensitive organic materials at RT deposition levels. •Pulsed laser deposition of Ga doped ZnO thin films.•Applied Ga concentration: 99% ZnO : 1% Ga2O3.•Influence of two deposition parameters were compared (deposition temperature and laser pulse frequency of ablative laser).•Electrical properties – highly conductive thin films were prepared even at room temperature.•Deposition at room temperature is proper way for creating transparent conductive films on thermally degradable materials.
Author Bruncko, Jaroslav
Netrvalová, Marie
Michalka, Miroslav
Šutta, Pavol
Vincze, Andrej
Author_xml – sequence: 1
  givenname: Jaroslav
  surname: Bruncko
  fullname: Bruncko, Jaroslav
  email: jaroslav.bruncko@ilc.sk
  organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
– sequence: 2
  givenname: Pavol
  surname: Šutta
  fullname: Šutta, Pavol
  organization: University of West Bohemia - New Technologies – Research Centre, Univerzitni 8, 306 14, Plzen, Czech Republic
– sequence: 3
  givenname: Marie
  orcidid: 0000-0003-3143-4859
  surname: Netrvalová
  fullname: Netrvalová, Marie
  organization: University of West Bohemia - New Technologies – Research Centre, Univerzitni 8, 306 14, Plzen, Czech Republic
– sequence: 4
  givenname: Miroslav
  surname: Michalka
  fullname: Michalka, Miroslav
  organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
– sequence: 5
  givenname: Andrej
  surname: Vincze
  fullname: Vincze, Andrej
  organization: International Laser Centre, Ilkovicova 3, 841 04, Bratislava, Slovak Republic
BookMark eNqFkM1KAzEURoNUsFbfwEUewKk3M50_F4KI1oKgCwVxM9wmN5AynRmTTKEv47OaaRXEha5Cbr7zhXuO2ahpG2LsTMBUgMguVtMNyr5fT2MQRRhNIREHbCyKvIziXKQjNgaYxVEM-esRO3ZuBQBxBsWYfTz1tSPFa3RkuaKudcabtuGt5nPkqu3C41vzyLWp145HfNHouqdG0pD4kfe07sii7y1xbL4Lu6Gda0vvA7PlIei87WWIYX3O284bifUOoJqkt7trZ8O31htyJ-xQY6g4_Ton7OXu9vnmPnp4nC9urh8imUDmIwLEUooSliKXMSKlmsqSVJKqGRZFukyLpEww0ZAqIWOFs0JSlgOJZaozAcmEXe57pW2ds6QraTwOi3mLpq4EVIPpalXtTVeD6WEaTAd49gvurFmj3f6HXe0xCottDNnKSTOYVcYGFZVqzd8Fn3J9oYc
CitedBy_id crossref_primary_10_1016_j_vacuum_2021_110528
crossref_primary_10_2139_ssrn_4061591
crossref_primary_10_1007_s41779_021_00604_2
crossref_primary_10_1016_j_vacuum_2019_02_050
crossref_primary_10_1016_j_jallcom_2025_179291
crossref_primary_10_1063_1_5129065
crossref_primary_10_1016_j_jallcom_2020_153902
crossref_primary_10_1016_j_jallcom_2022_164480
crossref_primary_10_1063_5_0179267
crossref_primary_10_1088_1402_4896_acf68f
crossref_primary_10_1016_j_tsf_2022_139393
crossref_primary_10_3390_en13010012
crossref_primary_10_1039_D1TA01291F
crossref_primary_10_1080_16583655_2022_2048518
crossref_primary_10_1016_j_ceramint_2022_10_054
crossref_primary_10_1016_j_solmat_2019_110278
crossref_primary_10_1007_s41779_023_00831_9
crossref_primary_10_1063_5_0101593
crossref_primary_10_1016_j_jallcom_2020_157142
crossref_primary_10_1016_j_vacuum_2020_109369
crossref_primary_10_1007_s10854_021_06704_w
Cites_doi 10.1016/S0040-6090(03)00243-8
10.1103/RevModPhys.72.315
10.1007/BF00482725
10.1002/pssb.201552007
10.1088/0022-3727/34/21/301
10.1002/pip.2601
10.1063/1.323240
10.1016/j.apsusc.2008.10.101
10.1088/0022-3727/47/3/034005
10.1016/j.jallcom.2017.07.269
10.1016/j.tsf.2014.04.037
10.1016/j.vacuum.2016.09.013
10.1107/S0021889878012601
10.1016/j.apsusc.2016.10.043
10.1103/PhysRevB.84.115202
10.1016/j.tsf.2013.01.078
10.1007/s12598-011-0220-x
10.1016/j.jallcom.2014.07.098
10.1016/j.jallcom.2015.02.162
10.1016/j.tsf.2015.08.015
10.1016/j.tsf.2007.03.072
10.1038/nphoton.2012.282
10.1016/j.mser.2016.08.002
10.1063/1.4748869
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.vacuum.2018.10.031
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1879-2715
EndPage 140
ExternalDocumentID 10_1016_j_vacuum_2018_10_031
S0042207X17318304
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADOJD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M38
M41
MAGPM
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
T9H
TAE
TN5
WUQ
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHDLI
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-e0aa9c190b17c2aae5fe99ed35d4a885b58393a3f05d1c2da48ce670e1b5f6103
IEDL.DBID .~1
ISSN 0042-207X
IngestDate Tue Jul 01 03:43:46 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:28:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pulsed laser deposition
XRD
Excimer laser
Transmittance
Ga:Zinc oxide
Resistivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-e0aa9c190b17c2aae5fe99ed35d4a885b58393a3f05d1c2da48ce670e1b5f6103
ORCID 0000-0003-3143-4859
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_vacuum_2018_10_031
crossref_primary_10_1016_j_vacuum_2018_10_031
elsevier_sciencedirect_doi_10_1016_j_vacuum_2018_10_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Vacuum
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhao, Shao, Song, Qin, Han (bib5) 2011; 30
Lee, Peng, Wu (bib30) 2014; 616
Kim, Kim, Jeong, Park, Baik, Seong (bib26) 2013; 531
Ginley, Hosono, Paine (bib1) 2011
Ellmer (bib7) 2001; 34
Morkoc, Ozgur (bib9) 2007
Hala, Fujii, Redinger, Inoue, Rey, Thevenin, Deprédurand, Weiss, Bertram, Siebentritt (bib27) 2015; 23
Look, Leedy, Vines, Svensson, Zubiaga, Tuomisto, Doutt, Brillson (bib29) 2011; 84
Tauc (bib24) 1972
He, Tjong (bib4) 2016; 109
Kittel (bib28) 1996
Haacke (bib34) 1976; 47
Matsubara, Fons, Iwata, Yamada, Sakurai, Tampo, Niki (bib15) 2003; 431–432
Langford (bib21) 1978; 11
McGill, Chrisey (bib16) 2000
Greer (bib12) 2014; 47
Look, Droubay, Chambers (bib14) 2012; 101
Shewale, Lee, Yu (bib31) 2017; 725
Šutta, Jackuliak (bib22) 1998
Ellmer (bib3) 2012; 6
Ajimsha, Das, Misra, Joshi, Kukreja, Kumar, Sharma, Oak (bib13) 2015; 638
Litton, Reynolds, Collins (bib2) 2011
Popescu-Pelin, Sima, Sima, Mihailescu, Luculescu, Iordache, Socol, Socol, Mihailescu (bib17) 2017; 418 B
Viezbicke, Patel, Davis, Birnie (bib25) 2015; 252
Ahn, Kim, Kang, Lee, Oh, Kim, Jang, Lee (bib32) 2008; 516
Schou (bib19) 2009; 255
Bruncko, Pavol Sutta, Netrvalova, Michalka, Vincze (bib20) 2017; 138
Dosmailov, Leonat, Patek, Roth, Bauer, Scharber, Sariciftci, Pedarnig (bib33) 2015; 591
Morkoc, Ozgur (bib8) 2009
Lee, Pengb, Lu, Zhub, Wu (bib10) 2014; 570
Ellmer, Klein, Rech (bib6) 2008
Chrisey, Hubler (bib11) 1994
Delhez, Keijser, Mittemeijer (bib23) 1982; 312
Willmot, Huber (bib18) 2000; 72
Schou (10.1016/j.vacuum.2018.10.031_bib19) 2009; 255
Ginley (10.1016/j.vacuum.2018.10.031_bib1) 2011
Lee (10.1016/j.vacuum.2018.10.031_bib10) 2014; 570
McGill (10.1016/j.vacuum.2018.10.031_bib16) 2000
Shewale (10.1016/j.vacuum.2018.10.031_bib31) 2017; 725
Viezbicke (10.1016/j.vacuum.2018.10.031_bib25) 2015; 252
Ajimsha (10.1016/j.vacuum.2018.10.031_bib13) 2015; 638
Ellmer (10.1016/j.vacuum.2018.10.031_bib7) 2001; 34
Morkoc (10.1016/j.vacuum.2018.10.031_bib8) 2009
Look (10.1016/j.vacuum.2018.10.031_bib14) 2012; 101
Delhez (10.1016/j.vacuum.2018.10.031_bib23) 1982; 312
Šutta (10.1016/j.vacuum.2018.10.031_bib22) 1998
Litton (10.1016/j.vacuum.2018.10.031_bib2) 2011
Ellmer (10.1016/j.vacuum.2018.10.031_bib3) 2012; 6
Bruncko (10.1016/j.vacuum.2018.10.031_bib20) 2017; 138
Ellmer (10.1016/j.vacuum.2018.10.031_bib6) 2008
Dosmailov (10.1016/j.vacuum.2018.10.031_bib33) 2015; 591
Haacke (10.1016/j.vacuum.2018.10.031_bib34) 1976; 47
Popescu-Pelin (10.1016/j.vacuum.2018.10.031_bib17) 2017; 418 B
Matsubara (10.1016/j.vacuum.2018.10.031_bib15) 2003; 431–432
Hala (10.1016/j.vacuum.2018.10.031_bib27) 2015; 23
Look (10.1016/j.vacuum.2018.10.031_bib29) 2011; 84
Greer (10.1016/j.vacuum.2018.10.031_bib12) 2014; 47
Chrisey (10.1016/j.vacuum.2018.10.031_bib11) 1994
He (10.1016/j.vacuum.2018.10.031_bib4) 2016; 109
Kim (10.1016/j.vacuum.2018.10.031_bib26) 2013; 531
Langford (10.1016/j.vacuum.2018.10.031_bib21) 1978; 11
Kittel (10.1016/j.vacuum.2018.10.031_bib28) 1996
Willmot (10.1016/j.vacuum.2018.10.031_bib18) 2000; 72
Zhao (10.1016/j.vacuum.2018.10.031_bib5) 2011; 30
Morkoc (10.1016/j.vacuum.2018.10.031_bib9) 2007
Tauc (10.1016/j.vacuum.2018.10.031_bib24) 1972
Lee (10.1016/j.vacuum.2018.10.031_bib30) 2014; 616
Ahn (10.1016/j.vacuum.2018.10.031_bib32) 2008; 516
References_xml – start-page: 227
  year: 1998
  end-page: 230
  ident: bib22
  article-title: Macro-stress formation in thin films and its determination by X-ray diffraction
  publication-title: Proc. Of the 2nd International Conference on Advanced Semi-conductor Devices and Microsystems ASDAM’98
– year: 1994
  ident: bib11
  article-title: Pulsed Laser Deposition of Thin Films
– volume: 531
  start-page: 430
  year: 2013
  end-page: 435
  ident: bib26
  article-title: Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters
  publication-title: Thin Solid Films
– volume: 23
  start-page: 1630
  year: 2015
  end-page: 1641
  ident: bib27
  article-title: Highly conductive ZnO films with high near infrared transparency
  publication-title: Prog. Photovoltaics Res. Appl.
– year: 2008
  ident: bib6
  article-title: Transparent Conductive Zinc Oxide
– year: 1996
  ident: bib28
  article-title: Introduction to Solid State Physics
– year: 2011
  ident: bib2
  article-title: Zinc Oxide Materials for Electronic and Optoelectronic Device Applications
– volume: 47
  start-page: 034005
  year: 2014
  ident: bib12
  article-title: History and current status of commercial pulsed laser deposition equipment
  publication-title: J. Phys. D Appl. Phys.
– volume: 312
  start-page: 1
  year: 1982
  end-page: 16
  ident: bib23
  article-title: Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis
  publication-title: Fres. Z. Anal. Chem.
– year: 1972
  ident: bib24
  article-title: Optical properties of non-crystalline solids
  publication-title: Optical Properties of Solids
– volume: 30
  start-page: 175
  year: 2011
  end-page: 182
  ident: bib5
  article-title: Development on transparent conductive ZnO thin films doped with various impurity elements
  publication-title: Rare Met.
– volume: 431–432
  start-page: 369
  year: 2003
  end-page: 372
  ident: bib15
  article-title: ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications
  publication-title: Thin Solid Films
– volume: 255
  start-page: 5191
  year: 2009
  end-page: 5198
  ident: bib19
  article-title: Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film
  publication-title: Appl. Surf. Sci.
– volume: 84
  start-page: 115202
  year: 2011
  ident: bib29
  article-title: Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO
  publication-title: Phys. Rev. B
– year: 2009
  ident: bib8
  article-title: Zinc Oxide, Fundamentals, Materials and Device Technology
– year: 2007
  ident: bib9
  article-title: Zinc Oxide, Fundamentals,Materials and Device Technology
– volume: 252
  start-page: 1700
  year: 2015
  end-page: 1710
  ident: bib25
  article-title: Evaluation of the Tauc method for optical absorption edge determination ZnO thin films as a model system
  publication-title: Phys. Status Solidi B
– volume: 516
  start-page: 1382
  year: 2008
  end-page: 1385
  ident: bib32
  article-title: Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films
  publication-title: Thin Solid Films
– volume: 6
  start-page: 809
  year: 2012
  end-page: 817
  ident: bib3
  article-title: Nature Photonics, Past achievements and future challenges in the development of optically transparent electrodes
  publication-title: Nat. Photon.
– volume: 725
  start-page: 1106
  year: 2017
  end-page: 1114
  ident: bib31
  article-title: Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition
  publication-title: J. Alloy. Comp.
– volume: 72
  start-page: 315
  year: 2000
  end-page: 328
  ident: bib18
  article-title: Pulsed laser vaporization and deposition
  publication-title: Rev. Mod. Phys.
– volume: 616
  start-page: 122
  year: 2014
  end-page: 127
  ident: bib30
  article-title: Effects of intrinsic defects on electronic structure and optical properties of Ga-doped ZnO
  publication-title: J. Alloy. Comp.
– year: 2011
  ident: bib1
  article-title: Handbook of Transparent Conductors
– volume: 570
  start-page: 464
  year: 2014
  end-page: 470
  ident: bib10
  article-title: Electronic and optical properties of Ga-doped ZnO
  publication-title: Thin Solid Films
– volume: 418 B
  start-page: 580
  year: 2017
  end-page: 588
  ident: bib17
  article-title: Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: comparative study
  publication-title: Appl. Surf. Sci.
– volume: 34
  start-page: 3097
  year: 2001
  end-page: 3108
  ident: bib7
  article-title: Resistivity of polycrystalline zinc oxide films: current status and physical limits
  publication-title: J. Phys. D Appl. Phys.
– volume: 638
  start-page: 55
  year: 2015
  end-page: 58
  ident: bib13
  article-title: Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition
  publication-title: J. Alloy. Comp.
– volume: 11
  start-page: 10
  year: 1978
  end-page: 14
  ident: bib21
  article-title: A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function
  publication-title: J. Appl. Crystallogr.
– year: 2000
  ident: bib16
  article-title: Method of Producing a Film Coating by Matrix Assisted Pulsed Laser Deposition
– volume: 138
  start-page: 184
  year: 2017
  end-page: 190
  ident: bib20
  article-title: Comparative study of ZnO thin film prepared by pulsed laser deposition e Comparison of influence of different ablative lasers
  publication-title: Vacuum
– volume: 591
  start-page: 97
  year: 2015
  end-page: 104
  ident: bib33
  article-title: Transparent conductive ZnO layers on polymer substrates: thin film deposition and application in organic solar cells
  publication-title: Thin Solid Films
– volume: 101
  start-page: 102101
  year: 2012
  ident: bib14
  article-title: Stable highly conductive ZnO via reduction of Zn vacancies
  publication-title: Appl. Phys. Lett.
– volume: 109
  start-page: 1
  year: 2016
  end-page: 101
  ident: bib4
  article-title: Nanostructured transparent conductive films: fabrication, characterization and applications
  publication-title: Mater. Sci. Eng. R.
– volume: 47
  start-page: 4086
  year: 1976
  end-page: 4089
  ident: bib34
  article-title: New figure of merit for transparent conductors
  publication-title: J. Appl. Phys.
– volume: 431–432
  start-page: 369
  year: 2003
  ident: 10.1016/j.vacuum.2018.10.031_bib15
  article-title: ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(03)00243-8
– volume: 72
  start-page: 315
  year: 2000
  ident: 10.1016/j.vacuum.2018.10.031_bib18
  article-title: Pulsed laser vaporization and deposition
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.72.315
– volume: 312
  start-page: 1
  year: 1982
  ident: 10.1016/j.vacuum.2018.10.031_bib23
  article-title: Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis
  publication-title: Fres. Z. Anal. Chem.
  doi: 10.1007/BF00482725
– volume: 252
  start-page: 1700
  year: 2015
  ident: 10.1016/j.vacuum.2018.10.031_bib25
  article-title: Evaluation of the Tauc method for optical absorption edge determination ZnO thin films as a model system
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201552007
– volume: 34
  start-page: 3097
  year: 2001
  ident: 10.1016/j.vacuum.2018.10.031_bib7
  article-title: Resistivity of polycrystalline zinc oxide films: current status and physical limits
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/34/21/301
– volume: 23
  start-page: 1630
  year: 2015
  ident: 10.1016/j.vacuum.2018.10.031_bib27
  article-title: Highly conductive ZnO films with high near infrared transparency
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.2601
– volume: 47
  start-page: 4086
  year: 1976
  ident: 10.1016/j.vacuum.2018.10.031_bib34
  article-title: New figure of merit for transparent conductors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323240
– year: 2011
  ident: 10.1016/j.vacuum.2018.10.031_bib1
– volume: 255
  start-page: 5191
  year: 2009
  ident: 10.1016/j.vacuum.2018.10.031_bib19
  article-title: Physical aspects of the pulsed laser deposition technique: the stoichiometric transfer of material from target to film
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.10.101
– volume: 47
  start-page: 034005
  year: 2014
  ident: 10.1016/j.vacuum.2018.10.031_bib12
  article-title: History and current status of commercial pulsed laser deposition equipment
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/3/034005
– start-page: 227
  year: 1998
  ident: 10.1016/j.vacuum.2018.10.031_bib22
  article-title: Macro-stress formation in thin films and its determination by X-ray diffraction
– volume: 725
  start-page: 1106
  year: 2017
  ident: 10.1016/j.vacuum.2018.10.031_bib31
  article-title: Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.07.269
– volume: 570
  start-page: 464
  year: 2014
  ident: 10.1016/j.vacuum.2018.10.031_bib10
  article-title: Electronic and optical properties of Ga-doped ZnO
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.04.037
– year: 1994
  ident: 10.1016/j.vacuum.2018.10.031_bib11
– year: 2009
  ident: 10.1016/j.vacuum.2018.10.031_bib8
– volume: 138
  start-page: 184
  year: 2017
  ident: 10.1016/j.vacuum.2018.10.031_bib20
  article-title: Comparative study of ZnO thin film prepared by pulsed laser deposition e Comparison of influence of different ablative lasers
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2016.09.013
– volume: 11
  start-page: 10
  year: 1978
  ident: 10.1016/j.vacuum.2018.10.031_bib21
  article-title: A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889878012601
– volume: 418 B
  start-page: 580
  year: 2017
  ident: 10.1016/j.vacuum.2018.10.031_bib17
  article-title: Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: comparative study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.043
– volume: 84
  start-page: 115202
  year: 2011
  ident: 10.1016/j.vacuum.2018.10.031_bib29
  article-title: Self-compensation in semiconductors: the Zn vacancy in Ga-doped ZnO
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.115202
– volume: 531
  start-page: 430
  year: 2013
  ident: 10.1016/j.vacuum.2018.10.031_bib26
  article-title: Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.01.078
– volume: 30
  start-page: 175
  year: 2011
  ident: 10.1016/j.vacuum.2018.10.031_bib5
  article-title: Development on transparent conductive ZnO thin films doped with various impurity elements
  publication-title: Rare Met.
  doi: 10.1007/s12598-011-0220-x
– volume: 616
  start-page: 122
  year: 2014
  ident: 10.1016/j.vacuum.2018.10.031_bib30
  article-title: Effects of intrinsic defects on electronic structure and optical properties of Ga-doped ZnO
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2014.07.098
– volume: 638
  start-page: 55
  year: 2015
  ident: 10.1016/j.vacuum.2018.10.031_bib13
  article-title: Observation of low resistivity and high mobility in Ga doped ZnO thin films grown by buffer assisted pulsed laser deposition
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2015.02.162
– year: 2007
  ident: 10.1016/j.vacuum.2018.10.031_bib9
– year: 1996
  ident: 10.1016/j.vacuum.2018.10.031_bib28
– volume: 591
  start-page: 97
  year: 2015
  ident: 10.1016/j.vacuum.2018.10.031_bib33
  article-title: Transparent conductive ZnO layers on polymer substrates: thin film deposition and application in organic solar cells
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2015.08.015
– volume: 516
  start-page: 1382
  year: 2008
  ident: 10.1016/j.vacuum.2018.10.031_bib32
  article-title: Thermally stable, highly conductive, and transparent Ga-doped ZnO thin films
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.03.072
– year: 2011
  ident: 10.1016/j.vacuum.2018.10.031_bib2
– year: 2008
  ident: 10.1016/j.vacuum.2018.10.031_bib6
– volume: 6
  start-page: 809
  year: 2012
  ident: 10.1016/j.vacuum.2018.10.031_bib3
  article-title: Nature Photonics, Past achievements and future challenges in the development of optically transparent electrodes
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.282
– year: 2000
  ident: 10.1016/j.vacuum.2018.10.031_bib16
– volume: 109
  start-page: 1
  year: 2016
  ident: 10.1016/j.vacuum.2018.10.031_bib4
  article-title: Nanostructured transparent conductive films: fabrication, characterization and applications
  publication-title: Mater. Sci. Eng. R.
  doi: 10.1016/j.mser.2016.08.002
– year: 1972
  ident: 10.1016/j.vacuum.2018.10.031_bib24
  article-title: Optical properties of non-crystalline solids
– volume: 101
  start-page: 102101
  year: 2012
  ident: 10.1016/j.vacuum.2018.10.031_bib14
  article-title: Stable highly conductive ZnO via reduction of Zn vacancies
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4748869
SSID ssj0002608
Score 2.3370533
Snippet The contribution deals with Ga doped ZnO films (deposited from a sintered target composed of 99.0 ZnO and 1.0 wt % of Ga2O3) prepared by pulsed laser...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Excimer laser
Ga:Zinc oxide
Pulsed laser deposition
Resistivity
Transmittance
XRD
Title Pulsed laser deposition of Ga doped ZnO films - Influence of deposition temperature and laser pulse frequency on structural, optical and electrical properties
URI https://dx.doi.org/10.1016/j.vacuum.2018.10.031
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002608
  issn: 0042-207X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002608
  issn: 0042-207X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002608
  issn: 0042-207X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002608
  issn: 0042-207X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002608
  issn: 0042-207X
  databaseCode: AKRWK
  dateStart: 19510101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FEbz4qIrPkoNH12720eweS7G2itWDQvGyZJMsVHS79CF48af4W53JZmsFUfCY7CQsmSTzJXzzhZBTiBocoqQHC0nETiCiwBGcaYe3AuUKpYUwWWk3g1bvIbgahsMa6VS5MEirtHt_uaeb3drWNO1oNovRCHN8A89z-ZBxnJdGExTVv2BOn79_0TwAr0eLNBSwrtLnDMfrVcj5HPPRWXSOHC-f_RyelkJOd4tsWKxI2-XvbJOazutk0-JGalfltE7WDI1TTnfIx90c-lIUILGeUKUrShYdZ_RSUDUu4ONjfkuz0fPLlDq0X71RghZL9qhYZeWWqcirDgvsnWaTkn79RsGw1J9F7Y4zOi7MxbhpUD6vY4oF3vdPULh1lzx0L-47Pce-wOBIOErMHO0KEUvADCnj0hNCIzUt1soPFbg1CtMQ8JUv_MwNFZOeEkEkdYu7mqVhBsDM3yMr-TjX-4QGqZ_G0osiFmaIIgEW8RYc1pT0MsYjfUD8auATaeXJ8ZWM56TioT0lpbsSdBfWgrsOiLNoVZTyHH_Y88qnybdplkAE-bXl4b9bHpF1KMXlvc0xWQG_6BNAMrO0YaZqg6y2-9e9wSf4SvZP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kF9GLb_FtDh6tNn1s2uMi6q6P1YPC4qWkSQora7fsuoJ_xt_qTJsuCqLgsclMKJlk5kv4ZgJwhFFDYJT0cCPJ2AlkFDhScOOIVqBdqY2UZVbaba_VeQyu-mF_Ds7qXBiiVVrfX_n00lvbllM7m6fFYEA5voHnuaLPBa1LqgnaDEL0yQ1otrvXnd7MISNkj2aZKKhQZ9CVNK83qaZTSknn0QnRvHz-c4T6EnUuVmDJwkXWrv5oFeZMvgbLFjoyuzEnazBfMjnVZB0-7qc4lmaIis2YaVOzstgoY5eS6VGBnU_5HcsGw5cJc1i3fqaEJL7IU9EqW3GZybwesKDRWTauGNjvDAWrErRUvuOYjYrybrxUqF7YKT8LuvIfU-3WDXi8OH846zj2EQZH4Wni1TGulLFC2JByoTwpDbHTYqP9UKNlozANEWL50s_cUHPlaRlEyrSEa3gaZojN_E1o5KPcbAELUj-NlRdFPMwISCIyEi08r2nlZVxEZhv8euITZSuU00MZw6Smoj0nlbkSMhe1orm2wZlpFVWFjj_kRW3T5NtKSzCI_Kq582_NQ1joPNzeJDfd3vUuLGJPXF3j7EEDbWT2Edi8pgd24X4CTwD4-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulsed+laser+deposition+of+Ga+doped+ZnO+films+-+Influence+of+deposition+temperature+and+laser+pulse+frequency+on+structural%2C+optical+and+electrical+properties&rft.jtitle=Vacuum&rft.au=Bruncko%2C+Jaroslav&rft.au=%C5%A0utta%2C+Pavol&rft.au=Netrvalov%C3%A1%2C+Marie&rft.au=Michalka%2C+Miroslav&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0042-207X&rft.eissn=1879-2715&rft.volume=159&rft.spage=134&rft.epage=140&rft_id=info:doi/10.1016%2Fj.vacuum.2018.10.031&rft.externalDocID=S0042207X17318304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-207X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-207X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-207X&client=summon