Adaptive neural network tracking control-based reinforcement learning for wheeled mobile robots with skidding and slipping
To track the desired trajectories of the wheeled mobile robot (WMR) with time-varying forward direction, a reinforcement learning-based adaptive neural tracking algorithm is proposed for the nonlinear discrete-time (DT) dynamic system of the WMR with skidding and slipping. And, the typical model is...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 283; pp. 20 - 30 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
29.03.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2017.12.051 |
Cover
| Abstract | To track the desired trajectories of the wheeled mobile robot (WMR) with time-varying forward direction, a reinforcement learning-based adaptive neural tracking algorithm is proposed for the nonlinear discrete-time (DT) dynamic system of the WMR with skidding and slipping. And, the typical model is transformed into an affine nonlinear DT system, the constraint of the coupling robot input torque is extended to pseudo dead zone (PDZ) control input. Three neural networks (NNs) are introduced as action NNs to approximate the unknown modeling item, the skidding and the slipping item and the PDZ item, whereas another NN is employed as critic NN to approximate the strategy utility function. Then, the critic and action NN adaptive laws are designed through the standard gradient-based adaptation method. The uniform ultimate boundedness (UUB) of all signals in the affine nonlinear DT WMR system can be ensured, while the tracking error converging to a small compact set by zero. Numerical simulations are conduced to validate the proposed method. |
|---|---|
| AbstractList | To track the desired trajectories of the wheeled mobile robot (WMR) with time-varying forward direction, a reinforcement learning-based adaptive neural tracking algorithm is proposed for the nonlinear discrete-time (DT) dynamic system of the WMR with skidding and slipping. And, the typical model is transformed into an affine nonlinear DT system, the constraint of the coupling robot input torque is extended to pseudo dead zone (PDZ) control input. Three neural networks (NNs) are introduced as action NNs to approximate the unknown modeling item, the skidding and the slipping item and the PDZ item, whereas another NN is employed as critic NN to approximate the strategy utility function. Then, the critic and action NN adaptive laws are designed through the standard gradient-based adaptation method. The uniform ultimate boundedness (UUB) of all signals in the affine nonlinear DT WMR system can be ensured, while the tracking error converging to a small compact set by zero. Numerical simulations are conduced to validate the proposed method. |
| Author | Deng, Zongquan Liu, Zhen Gao, Haibo Li, Shu Ding, Liang Chen, Chao |
| Author_xml | – sequence: 1 givenname: Shu surname: Li fullname: Li, Shu – sequence: 2 givenname: Liang surname: Ding fullname: Ding, Liang email: liangding@hit.edu.cn – sequence: 3 givenname: Haibo surname: Gao fullname: Gao, Haibo email: gaohaibo@hit.edu.cn – sequence: 4 givenname: Chao surname: Chen fullname: Chen, Chao email: chenchao2007111@126.com – sequence: 5 givenname: Zhen surname: Liu fullname: Liu, Zhen email: liuzhen_hit@163.com – sequence: 6 givenname: Zongquan surname: Deng fullname: Deng, Zongquan email: dengzq@hit.edu.cn |
| BookMark | eNqFkM1KAzEUhYMoWKtv4CIvMGNuppmZuhBK8Q8EN7oOmeSOTTtNShIt-vRmqCsXujrcy3cOnHNGjp13SMglsBIY1Ffr0uG79tuSM2hK4CUTcEQm0Da8aHlbH5MJm3NR8Ar4KTmLcc0yCHw-IV8Lo3bJfiDNEUENWdLehw1NQemNdW9Ue5eCH4pORTQ0oHW9Dxq36BIdUAU3QvlF9yvEISNb39kBafCdT5HubVrRuLHGjJxyhsbB7nb5OCcnvRoiXvzolLze3b4sH4qn5_vH5eKp0BWrU2EMsLkAUTGGQoi276oW65brFrhSHEDUs56bBrTis0r0teGKdarmCptadF01JdeHXB18jAF7qW1SyY69lB0kMDmuKNfysKIcV5TAZV4xm2e_zLtgtyp8_me7OdgwF_uwGGTUFp1GYwPqJI23fwd8Azthk9M |
| CitedBy_id | crossref_primary_10_1155_2018_9648126 crossref_primary_10_1109_ACCESS_2021_3053396 crossref_primary_10_1007_s40313_024_01143_4 crossref_primary_10_1088_1742_6596_2417_1_012032 crossref_primary_10_1016_j_ymssp_2020_107478 crossref_primary_10_1049_iet_cta_2019_0335 crossref_primary_10_1016_j_neucom_2019_06_067 crossref_primary_10_1155_2020_4048507 crossref_primary_10_1016_j_neucom_2020_04_070 crossref_primary_10_1155_2019_4602052 crossref_primary_10_1016_j_snb_2021_131329 crossref_primary_10_1109_TSMC_2018_2870724 crossref_primary_10_1016_j_jmsy_2023_06_011 crossref_primary_10_1109_TCYB_2019_2939424 crossref_primary_10_1007_s40998_019_00286_4 crossref_primary_10_1109_ACCESS_2022_3178727 crossref_primary_10_1007_s12555_019_0814_x crossref_primary_10_1007_s13369_021_05752_y crossref_primary_10_1177_1729881418786646 crossref_primary_10_1007_s40435_025_01629_2 crossref_primary_10_1109_TSMC_2019_2911975 crossref_primary_10_1016_j_bios_2024_116954 crossref_primary_10_3390_pathogens12010056 crossref_primary_10_1177_01423312241271888 crossref_primary_10_1007_s11227_021_04160_1 crossref_primary_10_1080_01691864_2019_1597764 crossref_primary_10_1016_j_robot_2019_05_007 crossref_primary_10_3390_en12173305 crossref_primary_10_3233_JCM_226507 crossref_primary_10_1007_s41870_023_01438_w crossref_primary_10_3390_app12147194 crossref_primary_10_1002_rnc_6343 crossref_primary_10_1155_2021_5594053 crossref_primary_10_1177_09544070231203756 crossref_primary_10_1016_j_bios_2023_115897 crossref_primary_10_1109_TASE_2024_3461953 crossref_primary_10_1155_2021_6946210 crossref_primary_10_1186_s10033_019_0373_3 crossref_primary_10_1088_1742_6596_1732_1_012050 crossref_primary_10_3390_pr11041202 crossref_primary_10_1016_j_neucom_2019_11_022 crossref_primary_10_3390_agriengineering4030050 crossref_primary_10_1002_acs_3182 crossref_primary_10_1109_TSMC_2022_3177043 crossref_primary_10_1080_21642583_2018_1555061 crossref_primary_10_1109_ACCESS_2020_3029074 crossref_primary_10_3390_math12040549 crossref_primary_10_1002_rnc_4396 crossref_primary_10_3390_act10090222 crossref_primary_10_1007_s11760_024_03405_9 crossref_primary_10_1007_s12555_019_0643_y crossref_primary_10_1002_asjc_2058 crossref_primary_10_1177_00202940231173629 crossref_primary_10_1016_j_sysconle_2022_105210 crossref_primary_10_3390_aerospace10030219 crossref_primary_10_1016_j_neucom_2022_06_091 crossref_primary_10_3390_electronics10232886 crossref_primary_10_1016_j_neucom_2019_05_062 crossref_primary_10_3390_app11178181 |
| Cites_doi | 10.1109/TSMCB.2011.2166384 10.1109/TSMCB.2004.826827 10.1109/TRO.2006.862476 10.1109/TMECH.2008.2000827 10.5772/55738 10.1109/TFUZZ.2016.2516587 10.1109/TNNLS.2014.2360724 10.1007/s00521-012-1243-4 10.1016/j.automatica.2015.10.034 10.1109/TASE.2014.2300532 10.1109/TSMCB.2009.2013272 10.1109/TCST.2016.2536708 10.1109/TSMCB.2004.840124 10.1109/TFUZZ.2015.2418000 10.1109/TCYB.2017.2720801 10.1109/TNN.2008.2003295 10.1109/70.345944 10.1109/72.701173 10.1109/TSMC.2017.2694020 10.1109/TNNLS.2015.2406812 10.1109/TCYB.2015.2494007 10.1049/iet-cta.2010.0026 10.1109/TIE.2016.2613839 10.1561/1100000005 10.1109/TII.2016.2612646 10.1155/2014/793526 10.1109/MCAS.2009.933854 10.1109/70.481750 10.1109/TNNLS.2017.2665581 10.1109/TCYB.2015.2411285 10.1109/TIE.2013.2282594 10.1016/j.automatica.2010.05.015 10.1109/TCST.2011.2168224 10.1109/TRO.2008.921563 10.5772/55059 10.1109/TCST.2004.824953 10.1109/TSMC.2016.2615061 10.1016/S0967-0661(98)00184-1 10.1109/TSMC.2016.2637063 10.1177/0278364913495721 10.1109/TFUZZ.2016.2604848 10.1109/TRO.2004.829462 10.1177/0278364912468357 10.1177/0142331213509828 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2017.12.051 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 30 |
| ExternalDocumentID | 10_1016_j_neucom_2017_12_051 S0925231217319136 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-dd109515300e5558fb38e682c812aa211564f2d71ca2435f6d2a0ba62ae765bb3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Thu Apr 24 23:11:58 EDT 2025 Wed Oct 01 02:27:37 EDT 2025 Fri Feb 23 02:30:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neural network Wheeled mobile robot Adaptive tracking control Reinforcement learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-dd109515300e5558fb38e682c812aa211564f2d71ca2435f6d2a0ba62ae765bb3 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2017_12_051 crossref_primary_10_1016_j_neucom_2017_12_051 elsevier_sciencedirect_doi_10_1016_j_neucom_2017_12_051 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-03-29 |
| PublicationDateYYYYMMDD | 2018-03-29 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tong, Li, Sui (bib0026) 2016; 24 Liu, Tong (bib0040) 2016; 46 Kober, Bagnell, Peters (bib0046) 2013; 32 C. Yang, J. Luo, Y. Pan, Z. Liu, C.Y. Su, Personalized variable gain control with tremor attenuation for robot teleoperation, IEEE Trans. Syst. Man Cybern. Syst., doi: 10.1109/TSMC.2017.2694020. Chwa (bib0014) 2004; 12 Li, Zhang (bib0030) 2010; 46 Lai, Liu, Zhang, Philip Chen (bib0035) 2016; 27 Chen, Xie, Liu, Zhang, Philip (bib0028) 2017; 25 Fierro, Lewis (bib0032) 1998; 9 Yang, Jagannathan (bib0043) 2012; 42 He, Jagannathan (bib0044) 2005; 35 Goodrich, Schultz (bib0004) 2007; 1 Ding, Gao, Deng, Li, Xia, Duan (bib0007) 2014; 2014 Li, Li (bib0019) 2017; 47 Shih, Kaul, Jagannathan, Drallmeier (bib0045) 2009; 39 He, Zhang (bib0036) 2017; 25 Lewis, Vrabie (bib0039) 2009; 9 Ding, Deng, Gao, Guo, Zhang (bib0002) 2013; 32 Jagannathan, He (bib0022) 2008; 19 Iagnemma, Kang, Shibly, Dubowsky (bib0001) 2004; 20 Liu, Tong (bib0021) 2016; 64 Xu, Guo, Lee (bib0015) 2014; 61 Low, Wang (bib0013) 2008; 13 Yang, Jiang, Li, He, Su (bib0037) 2017; 13 Yang, Fan, Shi, Hua (bib0016) 2016; 24 Balakrishna, Ghosal (bib0005) 1995; 11 Gifford, Akers, Stansbury, Agah (bib0003) 2009 Kang, Kim, Hyun, Park (bib0017) 2013; 10 Li, Liu, Wang (bib0042) 2014; 11 Yang, Wang, Li, Li, Su (bib0025) 2017; 47 W. He, Y.T. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2017.2665581. Hwang, Kang, Hyun, Park (bib0018) 2013; 10 Kim, Oh (bib0011) 1999; 7 He, Chen, Yin (bib0033) 2016; 46 Campion, Bastin, Dandrea-Novel (bib0008) 1996; 12 Ge, Zhang, Lee (bib0020) 2004; 34 Yang, Zeng, Liang, Li, Li, Su (bib0034) 2017 Chen (bib0010) 2016; 64 Liu, Gao, Tong, Li (bib0027) 2016; 24 Chen, Dixon, Dawson, McIntyre (bib0012) 2006; 22 Liu, Tang, Tong, Chen, Li (bib0041) 2015; 26 Wang, Low (bib0009) 2006 Luy, Thanh, Tri (bib0047) 2014; 36 Wang, Low (bib0006) 2008; 24 He, Yan, Sun, Chen (bib0023) 2017; 47 Li, Yang (bib0031) 2012; 20 Yoo (bib0038) 2010; 4 Zuo, Xu, Liu, Huang (bib0048) 2013; 23 Yang (10.1016/j.neucom.2017.12.051_bib0025) 2017; 47 Yoo (10.1016/j.neucom.2017.12.051_bib0038) 2010; 4 Wang (10.1016/j.neucom.2017.12.051_bib0009) 2006 Kang (10.1016/j.neucom.2017.12.051_bib0017) 2013; 10 Ding (10.1016/j.neucom.2017.12.051_bib0007) 2014; 2014 Li (10.1016/j.neucom.2017.12.051_bib0042) 2014; 11 Xu (10.1016/j.neucom.2017.12.051_bib0015) 2014; 61 Yang (10.1016/j.neucom.2017.12.051_bib0016) 2016; 24 Low (10.1016/j.neucom.2017.12.051_bib0013) 2008; 13 Shih (10.1016/j.neucom.2017.12.051_bib0045) 2009; 39 Ding (10.1016/j.neucom.2017.12.051_bib0002) 2013; 32 Yang (10.1016/j.neucom.2017.12.051_bib0037) 2017; 13 Jagannathan (10.1016/j.neucom.2017.12.051_bib0022) 2008; 19 Lai (10.1016/j.neucom.2017.12.051_bib0035) 2016; 27 Luy (10.1016/j.neucom.2017.12.051_bib0047) 2014; 36 Chwa (10.1016/j.neucom.2017.12.051_bib0014) 2004; 12 Li (10.1016/j.neucom.2017.12.051_bib0019) 2017; 47 Goodrich (10.1016/j.neucom.2017.12.051_bib0004) 2007; 1 Lewis (10.1016/j.neucom.2017.12.051_bib0039) 2009; 9 Wang (10.1016/j.neucom.2017.12.051_bib0006) 2008; 24 Hwang (10.1016/j.neucom.2017.12.051_bib0018) 2013; 10 10.1016/j.neucom.2017.12.051_bib0029 Ge (10.1016/j.neucom.2017.12.051_bib0020) 2004; 34 10.1016/j.neucom.2017.12.051_bib0024 Zuo (10.1016/j.neucom.2017.12.051_bib0048) 2013; 23 Iagnemma (10.1016/j.neucom.2017.12.051_bib0001) 2004; 20 Chen (10.1016/j.neucom.2017.12.051_bib0010) 2016; 64 Liu (10.1016/j.neucom.2017.12.051_bib0027) 2016; 24 Liu (10.1016/j.neucom.2017.12.051_bib0041) 2015; 26 Kim (10.1016/j.neucom.2017.12.051_bib0011) 1999; 7 Yang (10.1016/j.neucom.2017.12.051_bib0043) 2012; 42 Gifford (10.1016/j.neucom.2017.12.051_bib0003) 2009 Campion (10.1016/j.neucom.2017.12.051_bib0008) 1996; 12 Fierro (10.1016/j.neucom.2017.12.051_bib0032) 1998; 9 Kober (10.1016/j.neucom.2017.12.051_bib0046) 2013; 32 Chen (10.1016/j.neucom.2017.12.051_bib0028) 2017; 25 Liu (10.1016/j.neucom.2017.12.051_bib0040) 2016; 46 He (10.1016/j.neucom.2017.12.051_bib0044) 2005; 35 Chen (10.1016/j.neucom.2017.12.051_bib0012) 2006; 22 Balakrishna (10.1016/j.neucom.2017.12.051_bib0005) 1995; 11 He (10.1016/j.neucom.2017.12.051_bib0023) 2017; 47 Tong (10.1016/j.neucom.2017.12.051_bib0026) 2016; 24 Yang (10.1016/j.neucom.2017.12.051_bib0034) 2017 Liu (10.1016/j.neucom.2017.12.051_bib0021) 2016; 64 He (10.1016/j.neucom.2017.12.051_bib0033) 2016; 46 Li (10.1016/j.neucom.2017.12.051_bib0030) 2010; 46 Li (10.1016/j.neucom.2017.12.051_bib0031) 2012; 20 He (10.1016/j.neucom.2017.12.051_bib0036) 2017; 25 |
| References_xml | – volume: 13 start-page: 480 year: 2008 end-page: 484 ident: bib0013 article-title: GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping publication-title: IEEE/ASME Trans. Mechatron. – volume: 34 start-page: 1630 year: 2004 end-page: 1645 ident: bib0020 article-title: Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – start-page: 274 year: 2017 end-page: 3000 ident: bib0034 article-title: Interface design of a physical human robot interaction system for human impedance adaptive skill transfer publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 35 start-page: 150 year: 2005 end-page: 154 ident: bib0044 article-title: Reinforcement learning-based output feedback control of nonlinear systems with input constraints publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 13 start-page: 1162 year: 2017 end-page: 1171 ident: bib0037 article-title: Neural control of bimanual robots with guaranteed global stability and motion precision publication-title: IEEE Trans. Ind. Inform. – volume: 42 start-page: 377 year: 2012 end-page: 390 ident: bib0043 article-title: Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 20 start-page: 1583 year: 2012 end-page: 1591 ident: bib0031 article-title: Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models publication-title: IEEE Trans. Control Syst. Technol. – volume: 1 start-page: 203 year: 2007 end-page: 275 ident: bib0004 article-title: Human-robot interaction: a survey publication-title: Found. Trends Hum. Comput. Interact. – volume: 2014 year: 2014 ident: bib0007 article-title: Path-following control of wheeled planetary exploration robots moving on deformable rough terrain publication-title: Sci. World J. – volume: 7 start-page: 369 year: 1999 end-page: 373 ident: bib0011 article-title: Tracking control of a two-wheeled mobile robot using input–output linearization publication-title: Control Eng. Pract. – volume: 10 start-page: 155 year: 2013 ident: bib0017 article-title: Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping publication-title: Int. J. Adv. Robot. Syst. – volume: 64 start-page: 3359 year: 2016 end-page: 3368 ident: bib0010 article-title: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping publication-title: IEEE Trans. Ind. Electron. – volume: 12 start-page: 637 year: 2004 end-page: 644 ident: bib0014 article-title: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates publication-title: IEEE Trans. Control Syst. Technol. – reference: W. He, Y.T. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Trans. Neural Netw. Learn. Syst., doi: 10.1109/TNNLS.2017.2665581. – volume: 32 start-page: 1238 year: 2013 end-page: 1274 ident: bib0046 article-title: Reinforcement learning in robotics: a survey publication-title: Int. J. Robot. Res. – start-page: 1 year: 2009 end-page: 22 ident: bib0003 article-title: Mobile robots for polar remote sensing publication-title: The Path to Autonomous Robots – volume: 11 start-page: 126 year: 1995 end-page: 132 ident: bib0005 article-title: Modeling of slip for wheeled mobile robots publication-title: IEEE Trans. Robot. Autom. – volume: 4 start-page: 2109 year: 2010 end-page: 2119 ident: bib0038 article-title: Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping publication-title: IET Control Theory Appl. – volume: 61 start-page: 3671 year: 2014 end-page: 3681 ident: bib0015 article-title: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot publication-title: IEEE Trans. Ind. Electron. – volume: 20 start-page: 921 year: 2004 end-page: 927 ident: bib0001 article-title: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers publication-title: IEEE Trans. Robot. – volume: 26 start-page: 165 year: 2015 end-page: 176 ident: bib0041 article-title: Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 24 start-page: 1426 year: 2016 end-page: 1440 ident: bib0026 article-title: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities publication-title: IEEE Trans. Fuzzy Syst. – volume: 23 start-page: 1873 year: 2013 end-page: 1883 ident: bib0048 article-title: A hierarchical reinforcement learning approach for optimal path tracking of wheeled mobile robots publication-title: Neural Comput. Appl. – volume: 24 start-page: 16 year: 2016 end-page: 28 ident: bib0027 article-title: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone publication-title: IEEE Trans. Fuzzy Syst. – volume: 22 start-page: 406 year: 2006 end-page: 415 ident: bib0012 article-title: Homography-based visual servo tracking control of a wheeled mobile robot publication-title: IEEE Trans. Robot. – volume: 47 start-page: 3452 year: 2017 end-page: 3465 ident: bib0023 article-title: Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer” publication-title: IEEE Trans. Cybern. – volume: 47 start-page: 2125 year: 2017 end-page: 2136 ident: bib0025 article-title: Teleoperation control based on combination of wave variable and neural networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: 1867 year: 2006 end-page: 1872 ident: bib0009 article-title: Modeling skidding and slipping in wheeled mobile robots: control design perspective publication-title: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 24 start-page: 741 year: 2016 end-page: 746 ident: bib0016 article-title: Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint publication-title: IEEE Trans. Control Syst. Technol. – volume: 25 start-page: 1252 year: 2017 end-page: 1263 ident: bib0028 article-title: Adaptive fuzzy asymptotic control of MIMO systems with unknown input coefficients via a robust Nussbaum gain based approach publication-title: IEEE Trans. Fuzzy Syst. – reference: C. Yang, J. Luo, Y. Pan, Z. Liu, C.Y. Su, Personalized variable gain control with tremor attenuation for robot teleoperation, IEEE Trans. Syst. Man Cybern. Syst., doi: 10.1109/TSMC.2017.2694020. – volume: 24 start-page: 676 year: 2008 end-page: 687 ident: bib0006 article-title: Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective publication-title: IEEE Trans. Robot. – volume: 25 start-page: 351 year: 2017 end-page: 357 ident: bib0036 article-title: Control design for nonlinear flexible wings of a robotic aircraft publication-title: IEEE Trans. Control Syst. Technol. – volume: 11 start-page: 706 year: 2014 end-page: 714 ident: bib0042 article-title: Integral reinforcement learning for linear continuous-time zero-sum games with completely unknown dynamics publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 39 start-page: 1162 year: 2009 end-page: 1179 ident: bib0045 article-title: Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. – volume: 12 start-page: 47 year: 1996 end-page: 62 ident: bib0008 article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots publication-title: IEEE Trans. Robot. Autom. – volume: 47 start-page: 1590 year: 2017 end-page: 1601 ident: bib0019 article-title: Adaptive neural tracking control for nonlinear time-delay systems with full state constraints publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 9 start-page: 589 year: 1998 end-page: 600 ident: bib0032 article-title: Control of a nonholonomic mobile robot using neural networks publication-title: IEEE Trans. Neural Netw. – volume: 19 start-page: 2073 year: 2008 end-page: 2087 ident: bib0022 article-title: Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form publication-title: IEEE Trans. Neural Netw. – volume: 27 start-page: 18 year: 2016 end-page: 31 ident: bib0035 article-title: Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 36 start-page: 868 year: 2014 end-page: 877 ident: bib0047 article-title: Reinforcement learning-based intelligent tracking control for wheeled mobile robot publication-title: Trans. Inst. Meas. Control – volume: 9 start-page: 33 year: 2009 end-page: 50 ident: bib0039 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits Syst. Mag. – volume: 46 start-page: 2670 year: 2016 end-page: 2680 ident: bib0040 article-title: Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems publication-title: IEEE Trans. Cybern. – volume: 46 start-page: 1346 year: 2010 end-page: 1353 ident: bib0030 article-title: Robust adaptive motion/force control for wheeled inverted pendulums publication-title: Automatica – volume: 46 start-page: 620 year: 2016 end-page: 629 ident: bib0033 article-title: Adaptive neural network control of an uncertain robot with full-state constraints publication-title: IEEE Trans. Cybern. – volume: 10 start-page: 26 year: 2013 ident: bib0018 article-title: Robust backstepping control based on a Lyapunov redesign for skid-steered wheeled mobile robots publication-title: Int. J. Adv. Robot. Syst. – volume: 32 start-page: 712 year: 2013 end-page: 743 ident: bib0002 article-title: Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain publication-title: Int. J. Robot. Res. – volume: 64 start-page: 70 year: 2016 end-page: 75 ident: bib0021 article-title: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints publication-title: Automatica – volume: 42 start-page: 377 issue: 2 year: 2012 ident: 10.1016/j.neucom.2017.12.051_bib0043 article-title: Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2011.2166384 – volume: 34 start-page: 1630 issue: 4 year: 2004 ident: 10.1016/j.neucom.2017.12.051_bib0020 article-title: Adaptive neural network control for a class of MIMO nonlinear systems with disturbances in discrete-time publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2004.826827 – volume: 22 start-page: 406 issue: 2 year: 2006 ident: 10.1016/j.neucom.2017.12.051_bib0012 article-title: Homography-based visual servo tracking control of a wheeled mobile robot publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2006.862476 – volume: 13 start-page: 480 issue: 4 year: 2008 ident: 10.1016/j.neucom.2017.12.051_bib0013 article-title: GPS-based tracking control for a car-like wheeled mobile robot with skidding and slipping publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2008.2000827 – volume: 10 start-page: 155 issue: 3 year: 2013 ident: 10.1016/j.neucom.2017.12.051_bib0017 article-title: Generalized extended state observer approach to robust tracking control for wheeled mobile robot with skidding and slipping publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/55738 – volume: 24 start-page: 1426 issue: 6 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0026 article-title: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2516587 – volume: 26 start-page: 165 issue: 1 year: 2015 ident: 10.1016/j.neucom.2017.12.051_bib0041 article-title: Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2360724 – volume: 23 start-page: 1873 issue: 7–8 year: 2013 ident: 10.1016/j.neucom.2017.12.051_bib0048 article-title: A hierarchical reinforcement learning approach for optimal path tracking of wheeled mobile robots publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1243-4 – volume: 64 start-page: 70 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0021 article-title: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints publication-title: Automatica doi: 10.1016/j.automatica.2015.10.034 – volume: 11 start-page: 706 issue: 3 year: 2014 ident: 10.1016/j.neucom.2017.12.051_bib0042 article-title: Integral reinforcement learning for linear continuous-time zero-sum games with completely unknown dynamics publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2014.2300532 – volume: 39 start-page: 1162 issue: 5 year: 2009 ident: 10.1016/j.neucom.2017.12.051_bib0045 article-title: Reinforcement-learning-based output-feedback control of nonstrict nonlinear discrete-time systems with application to engine emission control publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2009.2013272 – volume: 25 start-page: 351 issue: 1 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0036 article-title: Control design for nonlinear flexible wings of a robotic aircraft publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2016.2536708 – volume: 35 start-page: 150 issue: 1 year: 2005 ident: 10.1016/j.neucom.2017.12.051_bib0044 article-title: Reinforcement learning-based output feedback control of nonlinear systems with input constraints publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2004.840124 – volume: 24 start-page: 16 issue: 1 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0027 article-title: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2418000 – volume: 47 start-page: 3452 issue: 10 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0023 article-title: Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer” publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2720801 – volume: 19 start-page: 2073 issue: 12 year: 2008 ident: 10.1016/j.neucom.2017.12.051_bib0022 article-title: Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2003295 – volume: 11 start-page: 126 issue: 1 year: 1995 ident: 10.1016/j.neucom.2017.12.051_bib0005 article-title: Modeling of slip for wheeled mobile robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.345944 – volume: 9 start-page: 589 issue: 4 year: 1998 ident: 10.1016/j.neucom.2017.12.051_bib0032 article-title: Control of a nonholonomic mobile robot using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.701173 – ident: 10.1016/j.neucom.2017.12.051_bib0024 doi: 10.1109/TSMC.2017.2694020 – volume: 27 start-page: 18 issue: 1 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0035 article-title: Adaptive position/attitude tracking control of aerial robot with unknown inertial matrix based on a new robust neural identifier publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2406812 – volume: 24 start-page: 741 issue: 2 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0016 article-title: Nonlinear control for tracking and obstacle avoidance of a wheeled mobile robot with nonholonomic constraint publication-title: IEEE Trans. Control Syst. Technol. – volume: 46 start-page: 2670 issue: 11 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0040 article-title: Optimal control-based adaptive NN design for a class of nonlinear discrete-time block-triangular systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2494007 – volume: 4 start-page: 2109 issue: 10 year: 2010 ident: 10.1016/j.neucom.2017.12.051_bib0038 article-title: Adaptive tracking control for a class of wheeled mobile robots with unknown skidding and slipping publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2010.0026 – volume: 64 start-page: 3359 issue: 4 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0010 article-title: Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2613839 – volume: 1 start-page: 203 issue: 3 year: 2007 ident: 10.1016/j.neucom.2017.12.051_bib0004 article-title: Human-robot interaction: a survey publication-title: Found. Trends Hum. Comput. Interact. doi: 10.1561/1100000005 – volume: 13 start-page: 1162 issue: 3 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0037 article-title: Neural control of bimanual robots with guaranteed global stability and motion precision publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2016.2612646 – volume: 2014 year: 2014 ident: 10.1016/j.neucom.2017.12.051_bib0007 article-title: Path-following control of wheeled planetary exploration robots moving on deformable rough terrain publication-title: Sci. World J. doi: 10.1155/2014/793526 – volume: 9 start-page: 33 issue: 3 year: 2009 ident: 10.1016/j.neucom.2017.12.051_bib0039 article-title: Reinforcement learning and adaptive dynamic programming for feedback control publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2009.933854 – start-page: 1867 year: 2006 ident: 10.1016/j.neucom.2017.12.051_bib0009 article-title: Modeling skidding and slipping in wheeled mobile robots: control design perspective – volume: 12 start-page: 47 issue: 1 year: 1996 ident: 10.1016/j.neucom.2017.12.051_bib0008 article-title: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.481750 – ident: 10.1016/j.neucom.2017.12.051_bib0029 doi: 10.1109/TNNLS.2017.2665581 – volume: 46 start-page: 620 issue: 3 year: 2016 ident: 10.1016/j.neucom.2017.12.051_bib0033 article-title: Adaptive neural network control of an uncertain robot with full-state constraints publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2411285 – volume: 61 start-page: 3671 issue: 7 year: 2014 ident: 10.1016/j.neucom.2017.12.051_bib0015 article-title: Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2282594 – volume: 46 start-page: 1346 issue: 8 year: 2010 ident: 10.1016/j.neucom.2017.12.051_bib0030 article-title: Robust adaptive motion/force control for wheeled inverted pendulums publication-title: Automatica doi: 10.1016/j.automatica.2010.05.015 – volume: 20 start-page: 1583 issue: 6 year: 2012 ident: 10.1016/j.neucom.2017.12.051_bib0031 article-title: Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2011.2168224 – volume: 24 start-page: 676 issue: 3 year: 2008 ident: 10.1016/j.neucom.2017.12.051_bib0006 article-title: Modeling and analysis of skidding and slipping in wheeled mobile robots: control design perspective publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2008.921563 – volume: 10 start-page: 26 issue: 1 year: 2013 ident: 10.1016/j.neucom.2017.12.051_bib0018 article-title: Robust backstepping control based on a Lyapunov redesign for skid-steered wheeled mobile robots publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/55059 – volume: 12 start-page: 637 issue: 4 year: 2004 ident: 10.1016/j.neucom.2017.12.051_bib0014 article-title: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2004.824953 – volume: 47 start-page: 2125 issue: 8 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0025 article-title: Teleoperation control based on combination of wave variable and neural networks publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2615061 – volume: 7 start-page: 369 issue: 3 year: 1999 ident: 10.1016/j.neucom.2017.12.051_bib0011 article-title: Tracking control of a two-wheeled mobile robot using input–output linearization publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(98)00184-1 – volume: 47 start-page: 1590 issue: 7 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0019 article-title: Adaptive neural tracking control for nonlinear time-delay systems with full state constraints publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2016.2637063 – volume: 32 start-page: 1238 issue: 11 year: 2013 ident: 10.1016/j.neucom.2017.12.051_bib0046 article-title: Reinforcement learning in robotics: a survey publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913495721 – volume: 25 start-page: 1252 issue: 5 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0028 article-title: Adaptive fuzzy asymptotic control of MIMO systems with unknown input coefficients via a robust Nussbaum gain based approach publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2016.2604848 – start-page: 1 year: 2009 ident: 10.1016/j.neucom.2017.12.051_bib0003 article-title: Mobile robots for polar remote sensing – volume: 20 start-page: 921 issue: 5 year: 2004 ident: 10.1016/j.neucom.2017.12.051_bib0001 article-title: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2004.829462 – volume: 32 start-page: 712 issue: 6 year: 2013 ident: 10.1016/j.neucom.2017.12.051_bib0002 article-title: Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain publication-title: Int. J. Robot. Res. doi: 10.1177/0278364912468357 – volume: 36 start-page: 868 issue: 7 year: 2014 ident: 10.1016/j.neucom.2017.12.051_bib0047 article-title: Reinforcement learning-based intelligent tracking control for wheeled mobile robot publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331213509828 – start-page: 274 year: 2017 ident: 10.1016/j.neucom.2017.12.051_bib0034 article-title: Interface design of a physical human robot interaction system for human impedance adaptive skill transfer publication-title: IEEE Trans. Autom. Sci. Eng. |
| SSID | ssj0017129 |
| Score | 2.481609 |
| Snippet | To track the desired trajectories of the wheeled mobile robot (WMR) with time-varying forward direction, a reinforcement learning-based adaptive neural... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 20 |
| SubjectTerms | Adaptive tracking control Neural network Reinforcement learning Wheeled mobile robot |
| Title | Adaptive neural network tracking control-based reinforcement learning for wheeled mobile robots with skidding and slipping |
| URI | https://dx.doi.org/10.1016/j.neucom.2017.12.051 |
| Volume | 283 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAau8luNt1jEaUqetFCb0uyydb62JZ2i-DB3-7MblYURMHjhgwsmWS-L8PkG0JOlBQ9m-eaWQAEFnGTs0QZxwJgw4C4Vtepi5vbeDCMrkZy1CJnzVsYLKv0sb-O6VW09iNdv5rd2WTSvQsSAbcoDpwathEPUXY7ihR2MTh9_yzz4IqLWm9PSIazm-dzVY1X4ZZYMwIgqKqkoOQ_w9MXyLnYJOueK9J-_TtbpOWKbbLR9GGg_ljukLe-1TMMWxTVKcGiqGu7aTnXGabCqS9IZ4hZls5dJZeaVZlB6vtGjCkM0dcHBzhk6cvUQLig86mZlguKyVq6eJpYBDqqC0uBnaKww3iXDC_O788GzPdUYBlcDkpmLUdSJcMgcCj1lZuw5-KeyADotYbboIyjXFjFMy2ASeWxFTowOhbaqVgaE-6RlWJauH1CXRTHQWKlcqGMuNYJatO7nAcu61lrozYJm6VMMy84jn0vntOmsuwxrR2QogNSLlJwQJuwT6tZLbjxx3zVeCn9tnFSwIRfLQ_-bXlI1uCrepookiOyUs6X7hi4SWk61ebrkNX-5fXg9gOio-aA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLa7PHLzGbdIm2R5FlPWxe1HBW0iaVNdHd9ntInjwtztpU1EQBa9pB0omnW9m-PINQoeSs47Nc00sAAJJqMlJKo0jEWTDgLhW162LXl90b5OLO343g06auzCeVhlifx3Tq2gdVtphN9ujwaB9HaUMqigKOTUcIxqLWTSfcCZ9BXb0_snzoJKyWnCPceJfb-7PVSSvwk09aQRQUFZdQU5_xqcvmHO2gpZCsoiP6-9ZRTOuWEPLzSAGHP7LdfR2bPXIxy3s5SnBoqjJ3bgc68z3wnFgpBMPWhaPXaWXmlWtQRwGR9xjWMKvDw6AyOKXoYF4gcdDMywn2Hdr8eRpYD3SYV1YDOmpV3a430C3Z6c3J10ShiqQDKqDklhLfVbF4yhyXusrN3HHiQ7LAOm1hnKQiyRnVtJMM0ilcmGZjowWTDspuDHxJporhoXbQtglQkSp5dLFPKFap16c3uU0clnHWpu0UNxspcqC4rgffPGsGmrZo6odoLwDFGUKHNBC5NNqVCtu_PG-bLykvp0cBaDwq-X2vy0P0EL3pnelrs77lztoEZ5U9xRZuovmyvHU7UGiUpr96iB-AAe16BU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+neural+network+tracking+control-based+reinforcement+learning+for+wheeled+mobile+robots+with+skidding+and+slipping&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Shu&rft.au=Ding%2C+Liang&rft.au=Gao%2C+Haibo&rft.au=Chen%2C+Chao&rft.date=2018-03-29&rft.issn=0925-2312&rft.volume=283&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.neucom.2017.12.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_12_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |