Adaptive Decision Forest: An incremental machine learning framework

•An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Com...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 122; p. 108345
Main Authors Rahman, Md Geaur, Islam, Md Zahidul
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2022
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2021.108345

Cover

Abstract •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Comparison with eight existing techniques. In this study, we present an incremental machine learning framework called Adaptive Decision Forest (ADF), which produces a decision forest to classify new records. Based on our two novel theorems, we introduce a new splitting strategy called iSAT, which allows ADF to classify new records even if they are associated with previously unseen classes. ADF is capable of identifying and handling concept drift; it, however, does not forget previously gained knowledge. Moreover, ADF is capable of handling big data if the data can be divided into batches. We evaluate ADF on nine publicly available natural datasets and one synthetic dataset, and compare the performance of ADF against the performance of eight state-of-the-art techniques. We also examine the effectiveness of ADF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques.
AbstractList •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Comparison with eight existing techniques. In this study, we present an incremental machine learning framework called Adaptive Decision Forest (ADF), which produces a decision forest to classify new records. Based on our two novel theorems, we introduce a new splitting strategy called iSAT, which allows ADF to classify new records even if they are associated with previously unseen classes. ADF is capable of identifying and handling concept drift; it, however, does not forget previously gained knowledge. Moreover, ADF is capable of handling big data if the data can be divided into batches. We evaluate ADF on nine publicly available natural datasets and one synthetic dataset, and compare the performance of ADF against the performance of eight state-of-the-art techniques. We also examine the effectiveness of ADF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques.
ArticleNumber 108345
Author Rahman, Md Geaur
Islam, Md Zahidul
Author_xml – sequence: 1
  givenname: Md Geaur
  surname: Rahman
  fullname: Rahman, Md Geaur
  email: grahman@csu.edu.au
– sequence: 2
  givenname: Md Zahidul
  surname: Islam
  fullname: Islam, Md Zahidul
  email: zislam@csu.edu.au
BookMark eNqFkMFKw0AURQepYFv9Axf5gdQ3mWSSdCGUalUouNH18DJ5qVOTSZkZKv69KenKha4e3Me5cM-MTWxvibFbDgsOXN7tFwcMut8tEkj4EBUizS7YlBe5iDOeJhM2BRA8FgmIKzbzfg_A8-ExZetVjYdgjhQ9kDbe9Dba9I58WEYrGxmrHXVkA7ZRh_rDWIpaQmeN3UWNw46-evd5zS4bbD3dnO-cvW8e39bP8fb16WW92sZagAxxXWWVJlkkTVaSlrIpOBJmhFzWkGRp1VSQ5iTyUoimBg4lgsQ6Sctcy4JSMWfp2Ktd772jRh2c6dB9Kw7qJELt1ShCnUSoUcSALX9h2gQMw9Tg0LT_wfcjTMOwoyGnvDZkNdXGkQ6q7s3fBT8dsn5S
CitedBy_id crossref_primary_10_1007_s12145_024_01608_9
crossref_primary_10_1016_j_inffus_2023_02_023
crossref_primary_10_1016_j_jwpe_2024_106600
crossref_primary_10_1016_j_patcog_2022_109171
crossref_primary_10_1016_j_patcog_2022_108702
crossref_primary_10_1109_TSMC_2023_3344942
crossref_primary_10_1007_s00500_025_10469_3
crossref_primary_10_1016_j_renene_2023_119373
crossref_primary_10_1109_TSC_2022_3213238
crossref_primary_10_1145_3638777
Cites_doi 10.1023/A:1018628609742
10.1023/A:1022627411411
10.1023/A:1010933404324
10.1023/A:1022643204877
10.1016/j.patcog.2019.107100
10.1109/TPAMI.2015.2459678
10.1109/TNN.2011.2171713
10.1016/j.ins.2018.05.035
10.1145/2523813
10.1109/TPAMI.2013.83
10.1016/j.patcog.2019.107164
10.1016/j.patcog.2018.01.025
10.1109/TKDE.2018.2855159
10.1016/j.knosys.2013.08.023
10.1109/TRO.2011.2127110
10.1007/s10994-017-5642-8
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2021.108345
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_108345
S0031320321005252
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-db5bce682f59ec66f81aea5ea16d0254bfb047e37933fd0109a06ad2497c68e43
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:06:27 EDT 2025
Wed Oct 01 05:12:57 EDT 2025
Fri Feb 23 02:44:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decision forest algorithm
Incremental learning
Big data
Concept drift
Online learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-db5bce682f59ec66f81aea5ea16d0254bfb047e37933fd0109a06ad2497c68e43
ParticipantIDs crossref_primary_10_1016_j_patcog_2021_108345
crossref_citationtrail_10_1016_j_patcog_2021_108345
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Breiman, Friedman, Olshen, Stone (bib0019) 1984
Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (bib0001) 2014; 46
Boyd, Vandenberghe (bib0020) 2004
Su, Zhang (bib0022) 2006; volume 21
Bifet, Holmes, Kirkby, Pfahringer (bib0025) 2010; 11
Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger, Holmes, Abdessalem (bib0014) 2017; 106
Ristin, Guillaumin, Gall, Van Gool (bib0007) 2015; 38
Rahman, Islam (bib0030) 2013; 53
Liu, Ting, Zhou (bib0031) 2008
Mensink, Verbeek, Perronnin, Csurka (bib0006) 2013; 35
Liu, Zhang, Zhan, Zhu (bib0015) 2008
Quinlan (bib0018) 1986; 1
Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (bib0033) 2011; 17
Arvo (bib0009) 1990
Hu, Chen, Peng, Yu, Gao, Hu (bib0004) 2018; 31
Siers, Islam (bib0032) 2018; 459
Hu, Chen, Hu, Peng (bib0003) 2018; 78
Jamali, Sammut (bib0027) 2011; 27
Islam, Giggins (bib0012) 2011; 121
Suykens, Vandewalle (bib0016) 1999; 9
Mason, Lind, Marchal (bib0028) 1994
Breiman (bib0002) 2001; 45
Oza (bib0005) 2005; 3
Cortes, Vapnik (bib0021) 1995; 20
Zhang, Wang, Liu, Mi, Zhang (bib0034) 2020; 99
Demšar (bib0029) 2006; 7
Cevikalp, Benligiray, Gerek (bib0035) 2020; 100
A. Frank, A. Asuncion, UCI machine learning repository, 2010. Accessed August 25, 2020.
E. Frank, M.A. Hall, I.H. Witten, The weka workbench. online appendix for ”data mining: Practical machine learning tools and techniques”, 2016.
He, Chen, Li, Xu (bib0017) 2011; 22
Domingos, Hulten (bib0011) 2000
Bifet, Gavaldà (bib0023) 2009
Ristin, Guillaumin, Gall, Van Gool (bib0008) 2014
Gottschalk (bib0010) 1996
Bifet, Holmes, Pfahringer (bib0024) 2010
Cevikalp (10.1016/j.patcog.2021.108345_bib0035) 2020; 100
10.1016/j.patcog.2021.108345_bib0013
Ristin (10.1016/j.patcog.2021.108345_bib0007) 2015; 38
Jamali (10.1016/j.patcog.2021.108345_bib0027) 2011; 27
Hu (10.1016/j.patcog.2021.108345_bib0003) 2018; 78
Arvo (10.1016/j.patcog.2021.108345_bib0009) 1990
Cortes (10.1016/j.patcog.2021.108345_bib0021) 1995; 20
Rahman (10.1016/j.patcog.2021.108345_bib0030) 2013; 53
Breiman (10.1016/j.patcog.2021.108345_bib0002) 2001; 45
Oza (10.1016/j.patcog.2021.108345_bib0005) 2005; 3
Bifet (10.1016/j.patcog.2021.108345_bib0023) 2009
Domingos (10.1016/j.patcog.2021.108345_bib0011) 2000
Liu (10.1016/j.patcog.2021.108345_bib0031) 2008
Suykens (10.1016/j.patcog.2021.108345_bib0016) 1999; 9
Alcalá-Fdez (10.1016/j.patcog.2021.108345_bib0033) 2011; 17
Zhang (10.1016/j.patcog.2021.108345_bib0034) 2020; 99
Gama (10.1016/j.patcog.2021.108345_bib0001) 2014; 46
Islam (10.1016/j.patcog.2021.108345_bib0012) 2011; 121
10.1016/j.patcog.2021.108345_bib0026
Hu (10.1016/j.patcog.2021.108345_bib0004) 2018; 31
Liu (10.1016/j.patcog.2021.108345_bib0015) 2008
He (10.1016/j.patcog.2021.108345_bib0017) 2011; 22
Mensink (10.1016/j.patcog.2021.108345_bib0006) 2013; 35
Mason (10.1016/j.patcog.2021.108345_bib0028) 1994
Quinlan (10.1016/j.patcog.2021.108345_bib0018) 1986; 1
Bifet (10.1016/j.patcog.2021.108345_bib0024) 2010
Demšar (10.1016/j.patcog.2021.108345_bib0029) 2006; 7
Ristin (10.1016/j.patcog.2021.108345_bib0008) 2014
Siers (10.1016/j.patcog.2021.108345_bib0032) 2018; 459
Su (10.1016/j.patcog.2021.108345_bib0022) 2006; volume 21
Gomes (10.1016/j.patcog.2021.108345_bib0014) 2017; 106
Breiman (10.1016/j.patcog.2021.108345_bib0019) 1984
Boyd (10.1016/j.patcog.2021.108345_bib0020) 2004
Gottschalk (10.1016/j.patcog.2021.108345_bib0010) 1996
Bifet (10.1016/j.patcog.2021.108345_bib0025) 2010; 11
References_xml – volume: 31
  start-page: 1038
  year: 2018
  end-page: 1050
  ident: bib0004
  article-title: A novel feature incremental learning method for sensor-based activity recognition
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: volume 21
  start-page: 500
  year: 2006
  ident: bib0022
  article-title: A fast decision tree learning algorithm
  publication-title: Proceedings of the National Conference on Artificial Intelligence
– volume: 78
  start-page: 277
  year: 2018
  end-page: 290
  ident: bib0003
  article-title: A novel random forests based class incremental learning method for activity recognition
  publication-title: Pattern Recognit.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0002
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 17
  year: 2011
  ident: bib0033
  article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic & Soft Comput.
– start-page: 71
  year: 2000
  end-page: 80
  ident: bib0011
  article-title: Mining high-speed data streams
  publication-title: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining
– volume: 11
  start-page: 1601
  year: 2010
  end-page: 1604
  ident: bib0025
  article-title: MOA: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 2340
  year: 2005
  end-page: 2345
  ident: bib0005
  article-title: Online bagging and boosting
  publication-title: 2005 IEEE international conference on systems, man and cybernetics
– start-page: 548
  year: 1990
  end-page: 550
  ident: bib0009
  article-title: Transforming axis-aligned bounding boxes
  publication-title: Graphics gems
– reference: E. Frank, M.A. Hall, I.H. Witten, The weka workbench. online appendix for ”data mining: Practical machine learning tools and techniques”, 2016.
– year: 1984
  ident: bib0019
  article-title: Classification and regression trees–crc press
  publication-title: Boca Raton, Florida
– volume: 121
  start-page: 195
  year: 2011
  end-page: 204
  ident: bib0012
  article-title: Knowledge discovery through sysfor: a systematically developed forest of multiple decision trees
  publication-title: Proceedings of the Ninth Australasian Data Mining Conference
– volume: 27
  start-page: 508
  year: 2011
  end-page: 521
  ident: bib0027
  article-title: Majority voting: material classification by tactile sensing using surface texture
  publication-title: IEEE Trans. Rob.
– volume: 100
  start-page: 107164
  year: 2020
  ident: bib0035
  article-title: Semi-supervised robust deep neural networks for multi-label image classification
  publication-title: Pattern Recognit.
– volume: 106
  start-page: 1469
  year: 2017
  end-page: 1495
  ident: bib0014
  article-title: Adaptive random forests for evolving data stream classification
  publication-title: Mach. Learn.
– start-page: 330
  year: 2008
  end-page: 338
  ident: bib0015
  article-title: An incremental feature learning algorithm based on least square support vector machine
  publication-title: International Workshop on Frontiers in Algorithmics
– volume: 38
  start-page: 490
  year: 2015
  end-page: 503
  ident: bib0007
  article-title: Incremental learning of random forests for large-scale image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: bib0016
  article-title: Least squares support vector machine classifiers
  publication-title: Neural processing letters
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0029
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. learn. res.
– volume: 22
  start-page: 1901
  year: 2011
  end-page: 1914
  ident: bib0017
  article-title: Incremental learning from stream data
  publication-title: IEEE Trans. Neural Networks
– year: 1996
  ident: bib0010
  article-title: Separating axis theorem
  publication-title: Technical Report
– volume: 459
  start-page: 53
  year: 2018
  end-page: 70
  ident: bib0032
  article-title: Novel algorithms for cost-sensitive classification and knowledge discovery in class imbalanced datasets with an application to nasa software defects
  publication-title: Inf. Sci. (Ny)
– start-page: 3654
  year: 2014
  end-page: 3661
  ident: bib0008
  article-title: Incremental learning of ncm forests for large-scale image classification
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 46
  start-page: 44
  year: 2014
  ident: bib0001
  article-title: A survey on concept drift adaptation
  publication-title: ACM computing surveys (CSUR)
– volume: 99
  start-page: 107100
  year: 2020
  ident: bib0034
  article-title: Large-scale multi-label classification using unknown streaming images
  publication-title: Pattern Recognit.
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib0018
  article-title: Induction of decision trees
  publication-title: Mach Learn
– volume: 35
  start-page: 2624
  year: 2013
  end-page: 2637
  ident: bib0006
  article-title: Distance-based image classification: generalizing to new classes at near-zero cost
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
– start-page: 413
  year: 2008
  end-page: 422
  ident: bib0031
  article-title: Isolation forest
  publication-title: 2008 eighth ieee international conference on data mining
– year: 2004
  ident: bib0020
  article-title: Convex optimization
– volume: 53
  start-page: 51
  year: 2013
  end-page: 65
  ident: bib0030
  article-title: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques
  publication-title: Knowl. Based Syst.
– year: 1994
  ident: bib0028
  article-title: Statistics: An introduction
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0021
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 135
  year: 2010
  end-page: 150
  ident: bib0024
  article-title: Leveraging bagging for evolving data streams
  publication-title: Joint European conference on machine learning and knowledge discovery in databases
– reference: A. Frank, A. Asuncion, UCI machine learning repository, 2010. Accessed August 25, 2020.
– start-page: 249
  year: 2009
  end-page: 260
  ident: bib0023
  article-title: Adaptive learning from evolving data streams
  publication-title: International Symposium on Intelligent Data Analysis
– start-page: 3654
  year: 2014
  ident: 10.1016/j.patcog.2021.108345_bib0008
  article-title: Incremental learning of ncm forests for large-scale image classification
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.patcog.2021.108345_bib0016
  article-title: Least squares support vector machine classifiers
  publication-title: Neural processing letters
  doi: 10.1023/A:1018628609742
– year: 2004
  ident: 10.1016/j.patcog.2021.108345_bib0020
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.patcog.2021.108345_bib0029
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. learn. res.
– volume: 11
  start-page: 1601
  year: 2010
  ident: 10.1016/j.patcog.2021.108345_bib0025
  article-title: MOA: Massive online analysis
  publication-title: J. Mach. Learn. Res.
– volume: volume 21
  start-page: 500
  year: 2006
  ident: 10.1016/j.patcog.2021.108345_bib0022
  article-title: A fast decision tree learning algorithm
– start-page: 135
  year: 2010
  ident: 10.1016/j.patcog.2021.108345_bib0024
  article-title: Leveraging bagging for evolving data streams
– ident: 10.1016/j.patcog.2021.108345_bib0026
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.patcog.2021.108345_bib0021
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 3
  start-page: 2340
  year: 2005
  ident: 10.1016/j.patcog.2021.108345_bib0005
  article-title: Online bagging and boosting
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.patcog.2021.108345_bib0002
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.patcog.2021.108345_bib0018
  article-title: Induction of decision trees
  publication-title: Mach Learn
  doi: 10.1023/A:1022643204877
– volume: 99
  start-page: 107100
  year: 2020
  ident: 10.1016/j.patcog.2021.108345_bib0034
  article-title: Large-scale multi-label classification using unknown streaming images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107100
– start-page: 71
  year: 2000
  ident: 10.1016/j.patcog.2021.108345_bib0011
  article-title: Mining high-speed data streams
– start-page: 413
  year: 2008
  ident: 10.1016/j.patcog.2021.108345_bib0031
  article-title: Isolation forest
– year: 1996
  ident: 10.1016/j.patcog.2021.108345_bib0010
  article-title: Separating axis theorem
– volume: 38
  start-page: 490
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2021.108345_bib0007
  article-title: Incremental learning of random forests for large-scale image classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2459678
– start-page: 548
  year: 1990
  ident: 10.1016/j.patcog.2021.108345_bib0009
  article-title: Transforming axis-aligned bounding boxes
– volume: 22
  start-page: 1901
  issue: 12
  year: 2011
  ident: 10.1016/j.patcog.2021.108345_bib0017
  article-title: Incremental learning from stream data
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2011.2171713
– volume: 459
  start-page: 53
  year: 2018
  ident: 10.1016/j.patcog.2021.108345_bib0032
  article-title: Novel algorithms for cost-sensitive classification and knowledge discovery in class imbalanced datasets with an application to nasa software defects
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2018.05.035
– volume: 46
  start-page: 44
  issue: 4
  year: 2014
  ident: 10.1016/j.patcog.2021.108345_bib0001
  article-title: A survey on concept drift adaptation
  publication-title: ACM computing surveys (CSUR)
  doi: 10.1145/2523813
– start-page: 249
  year: 2009
  ident: 10.1016/j.patcog.2021.108345_bib0023
  article-title: Adaptive learning from evolving data streams
– volume: 35
  start-page: 2624
  issue: 11
  year: 2013
  ident: 10.1016/j.patcog.2021.108345_bib0006
  article-title: Distance-based image classification: generalizing to new classes at near-zero cost
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.83
– volume: 100
  start-page: 107164
  year: 2020
  ident: 10.1016/j.patcog.2021.108345_bib0035
  article-title: Semi-supervised robust deep neural networks for multi-label image classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107164
– volume: 78
  start-page: 277
  year: 2018
  ident: 10.1016/j.patcog.2021.108345_bib0003
  article-title: A novel random forests based class incremental learning method for activity recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.01.025
– volume: 31
  start-page: 1038
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2021.108345_bib0004
  article-title: A novel feature incremental learning method for sensor-based activity recognition
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2018.2855159
– ident: 10.1016/j.patcog.2021.108345_bib0013
– volume: 53
  start-page: 51
  year: 2013
  ident: 10.1016/j.patcog.2021.108345_bib0030
  article-title: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.08.023
– year: 1984
  ident: 10.1016/j.patcog.2021.108345_bib0019
  article-title: Classification and regression trees–crc press
  publication-title: Boca Raton, Florida
– volume: 17
  year: 2011
  ident: 10.1016/j.patcog.2021.108345_bib0033
  article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Multiple-Valued Logic & Soft Comput.
– volume: 27
  start-page: 508
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2021.108345_bib0027
  article-title: Majority voting: material classification by tactile sensing using surface texture
  publication-title: IEEE Trans. Rob.
  doi: 10.1109/TRO.2011.2127110
– year: 1994
  ident: 10.1016/j.patcog.2021.108345_bib0028
– volume: 121
  start-page: 195
  year: 2011
  ident: 10.1016/j.patcog.2021.108345_bib0012
  article-title: Knowledge discovery through sysfor: a systematically developed forest of multiple decision trees
– start-page: 330
  year: 2008
  ident: 10.1016/j.patcog.2021.108345_bib0015
  article-title: An incremental feature learning algorithm based on least square support vector machine
– volume: 106
  start-page: 1469
  issue: 9–10
  year: 2017
  ident: 10.1016/j.patcog.2021.108345_bib0014
  article-title: Adaptive random forests for evolving data stream classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5642-8
SSID ssj0017142
Score 2.4781637
Snippet •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108345
SubjectTerms Big data
Concept drift
Decision forest algorithm
Incremental learning
Online learning
Title Adaptive Decision Forest: An incremental machine learning framework
URI https://dx.doi.org/10.1016/j.patcog.2021.108345
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection (Lizenz: Bibliothek MedUni Wien)
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZWHhG1E-Kg-spknjOAlbVKgKiE5U6hYljl0VQRqVsPLbuUucCiQEEmtkR9GT_e7svLsHcCl9jVEg1FxifODCTQWPMqW5CCnZjXIRKLqHfJzKyUzcz_15B0ZtLQzJKi33N5xes7V9MrBoDsrlkmp8qe2gQ0UoZMZGPCxEQC4GVx8bmQf5ezcdwz2X0-i2fK7WeJVId6sFnhKHLontPCpq-ik8fQk54z3Ysbkii5vP2YeOLg5gt_VhYHZbHsIoztOSaIvdWMccRo6bb9U1iwu2LFRzB4iveq2lk5pZr4gFM6026whm49un0YRbcwSuMMuveJ75iKkMh8aPtJLShG6qU1-nrsypwj0zmSMC7eH-80xOP8BSR6Y5nrYCJUMtvGPoFqtCnwDDLCALQiN8zC6EMCLKXYWYGpPh8cl1dA-8FpNE2c7hZGDxkrQSseekQTIhJJMGyR7wzayy6Zzxx_ighTv5tgISJPdfZ57-e-YZbA-pnKFWYZ9Dt1q_6wtMMqqsX6-iPmzFdw-T6Sc70c-P
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhN83CchK0qVAXaTq3UzUocuyqCNIKw8tu5S5wKJAQSa-SLok_2PZzv7iPkSgQaokCkmYD4wLibcBanSjMeYbIbZzxUeA85nojhjD_Mg3mL9JteGKRVWt9f-_TKW9snXYtmt1gusccXxw462ISCYmzghzd44IVYgV1_rHkeKPBdjwz3XYbLm_65iuRVgL9bLaBM9Fxk2_nY1fRTfPoScwa7ZNsmi7RXf88eael8n-w0QgzUnssD0u9lSYF-i95ayRyKkptv5Q3t5XSZq_oSEF71UnEnNbViEQtqGnLWIZkN7qb9IbPqCExBml-yLA0AVBF5Joi1EsJEbqKTQCeuyLDFPTWpw0PtwwH0TYZ_wBJHJBmUW6ESkeb-EWnnq1wfEwppQBpGhgeQXnBueJy5CkA1JoX6yXV0h_gNJlLZ0eGoYPEsG47Yk6yRlIikrJHsELa2KurRGX-sDxu45bctIMG7_2p58m_LS7I5nI5HcnQ_eTwlWx72NlSU7DPSLl_f9TlkHGV6Ue2oTzj80SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Decision+Forest%3A+An+incremental+machine+learning+framework&rft.jtitle=Pattern+recognition&rft.au=Rahman%2C+Md+Geaur&rft.au=Islam%2C+Md+Zahidul&rft.date=2022-02-01&rft.issn=0031-3203&rft.volume=122&rft.spage=108345&rft_id=info:doi/10.1016%2Fj.patcog.2021.108345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon