Adaptive Decision Forest: An incremental machine learning framework
•An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Com...
Saved in:
| Published in | Pattern recognition Vol. 122; p. 108345 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 1873-5142 |
| DOI | 10.1016/j.patcog.2021.108345 |
Cover
| Abstract | •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Comparison with eight existing techniques.
In this study, we present an incremental machine learning framework called Adaptive Decision Forest (ADF), which produces a decision forest to classify new records. Based on our two novel theorems, we introduce a new splitting strategy called iSAT, which allows ADF to classify new records even if they are associated with previously unseen classes. ADF is capable of identifying and handling concept drift; it, however, does not forget previously gained knowledge. Moreover, ADF is capable of handling big data if the data can be divided into batches. We evaluate ADF on nine publicly available natural datasets and one synthetic dataset, and compare the performance of ADF against the performance of eight state-of-the-art techniques. We also examine the effectiveness of ADF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques. |
|---|---|
| AbstractList | •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical analyses and a complexity analysis of all techniques.•Experimentation on ten data sets, two evaluation criteria, two statistical analyses.•Comparison with eight existing techniques.
In this study, we present an incremental machine learning framework called Adaptive Decision Forest (ADF), which produces a decision forest to classify new records. Based on our two novel theorems, we introduce a new splitting strategy called iSAT, which allows ADF to classify new records even if they are associated with previously unseen classes. ADF is capable of identifying and handling concept drift; it, however, does not forget previously gained knowledge. Moreover, ADF is capable of handling big data if the data can be divided into batches. We evaluate ADF on nine publicly available natural datasets and one synthetic dataset, and compare the performance of ADF against the performance of eight state-of-the-art techniques. We also examine the effectiveness of ADF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques. |
| ArticleNumber | 108345 |
| Author | Rahman, Md Geaur Islam, Md Zahidul |
| Author_xml | – sequence: 1 givenname: Md Geaur surname: Rahman fullname: Rahman, Md Geaur email: grahman@csu.edu.au – sequence: 2 givenname: Md Zahidul surname: Islam fullname: Islam, Md Zahidul email: zislam@csu.edu.au |
| BookMark | eNqFkMFKw0AURQepYFv9Axf5gdQ3mWSSdCGUalUouNH18DJ5qVOTSZkZKv69KenKha4e3Me5cM-MTWxvibFbDgsOXN7tFwcMut8tEkj4EBUizS7YlBe5iDOeJhM2BRA8FgmIKzbzfg_A8-ExZetVjYdgjhQ9kDbe9Dba9I58WEYrGxmrHXVkA7ZRh_rDWIpaQmeN3UWNw46-evd5zS4bbD3dnO-cvW8e39bP8fb16WW92sZagAxxXWWVJlkkTVaSlrIpOBJmhFzWkGRp1VSQ5iTyUoimBg4lgsQ6Sctcy4JSMWfp2Ktd772jRh2c6dB9Kw7qJELt1ShCnUSoUcSALX9h2gQMw9Tg0LT_wfcjTMOwoyGnvDZkNdXGkQ6q7s3fBT8dsn5S |
| CitedBy_id | crossref_primary_10_1007_s12145_024_01608_9 crossref_primary_10_1016_j_inffus_2023_02_023 crossref_primary_10_1016_j_jwpe_2024_106600 crossref_primary_10_1016_j_patcog_2022_109171 crossref_primary_10_1016_j_patcog_2022_108702 crossref_primary_10_1109_TSMC_2023_3344942 crossref_primary_10_1007_s00500_025_10469_3 crossref_primary_10_1016_j_renene_2023_119373 crossref_primary_10_1109_TSC_2022_3213238 crossref_primary_10_1145_3638777 |
| Cites_doi | 10.1023/A:1018628609742 10.1023/A:1022627411411 10.1023/A:1010933404324 10.1023/A:1022643204877 10.1016/j.patcog.2019.107100 10.1109/TPAMI.2015.2459678 10.1109/TNN.2011.2171713 10.1016/j.ins.2018.05.035 10.1145/2523813 10.1109/TPAMI.2013.83 10.1016/j.patcog.2019.107164 10.1016/j.patcog.2018.01.025 10.1109/TKDE.2018.2855159 10.1016/j.knosys.2013.08.023 10.1109/TRO.2011.2127110 10.1007/s10994-017-5642-8 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2021.108345 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2021_108345 S0031320321005252 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-db5bce682f59ec66f81aea5ea16d0254bfb047e37933fd0109a06ad2497c68e43 |
| IEDL.DBID | .~1 |
| ISSN | 0031-3203 |
| IngestDate | Thu Apr 24 23:06:27 EDT 2025 Wed Oct 01 05:12:57 EDT 2025 Fri Feb 23 02:44:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Decision forest algorithm Incremental learning Big data Concept drift Online learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-db5bce682f59ec66f81aea5ea16d0254bfb047e37933fd0109a06ad2497c68e43 |
| ParticipantIDs | crossref_primary_10_1016_j_patcog_2021_108345 crossref_citationtrail_10_1016_j_patcog_2021_108345 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108345 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Breiman, Friedman, Olshen, Stone (bib0019) 1984 Gama, Žliobaitė, Bifet, Pechenizkiy, Bouchachia (bib0001) 2014; 46 Boyd, Vandenberghe (bib0020) 2004 Su, Zhang (bib0022) 2006; volume 21 Bifet, Holmes, Kirkby, Pfahringer (bib0025) 2010; 11 Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger, Holmes, Abdessalem (bib0014) 2017; 106 Ristin, Guillaumin, Gall, Van Gool (bib0007) 2015; 38 Rahman, Islam (bib0030) 2013; 53 Liu, Ting, Zhou (bib0031) 2008 Mensink, Verbeek, Perronnin, Csurka (bib0006) 2013; 35 Liu, Zhang, Zhan, Zhu (bib0015) 2008 Quinlan (bib0018) 1986; 1 Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (bib0033) 2011; 17 Arvo (bib0009) 1990 Hu, Chen, Peng, Yu, Gao, Hu (bib0004) 2018; 31 Siers, Islam (bib0032) 2018; 459 Hu, Chen, Hu, Peng (bib0003) 2018; 78 Jamali, Sammut (bib0027) 2011; 27 Islam, Giggins (bib0012) 2011; 121 Suykens, Vandewalle (bib0016) 1999; 9 Mason, Lind, Marchal (bib0028) 1994 Breiman (bib0002) 2001; 45 Oza (bib0005) 2005; 3 Cortes, Vapnik (bib0021) 1995; 20 Zhang, Wang, Liu, Mi, Zhang (bib0034) 2020; 99 Demšar (bib0029) 2006; 7 Cevikalp, Benligiray, Gerek (bib0035) 2020; 100 A. Frank, A. Asuncion, UCI machine learning repository, 2010. Accessed August 25, 2020. E. Frank, M.A. Hall, I.H. Witten, The weka workbench. online appendix for ”data mining: Practical machine learning tools and techniques”, 2016. He, Chen, Li, Xu (bib0017) 2011; 22 Domingos, Hulten (bib0011) 2000 Bifet, Gavaldà (bib0023) 2009 Ristin, Guillaumin, Gall, Van Gool (bib0008) 2014 Gottschalk (bib0010) 1996 Bifet, Holmes, Pfahringer (bib0024) 2010 Cevikalp (10.1016/j.patcog.2021.108345_bib0035) 2020; 100 10.1016/j.patcog.2021.108345_bib0013 Ristin (10.1016/j.patcog.2021.108345_bib0007) 2015; 38 Jamali (10.1016/j.patcog.2021.108345_bib0027) 2011; 27 Hu (10.1016/j.patcog.2021.108345_bib0003) 2018; 78 Arvo (10.1016/j.patcog.2021.108345_bib0009) 1990 Cortes (10.1016/j.patcog.2021.108345_bib0021) 1995; 20 Rahman (10.1016/j.patcog.2021.108345_bib0030) 2013; 53 Breiman (10.1016/j.patcog.2021.108345_bib0002) 2001; 45 Oza (10.1016/j.patcog.2021.108345_bib0005) 2005; 3 Bifet (10.1016/j.patcog.2021.108345_bib0023) 2009 Domingos (10.1016/j.patcog.2021.108345_bib0011) 2000 Liu (10.1016/j.patcog.2021.108345_bib0031) 2008 Suykens (10.1016/j.patcog.2021.108345_bib0016) 1999; 9 Alcalá-Fdez (10.1016/j.patcog.2021.108345_bib0033) 2011; 17 Zhang (10.1016/j.patcog.2021.108345_bib0034) 2020; 99 Gama (10.1016/j.patcog.2021.108345_bib0001) 2014; 46 Islam (10.1016/j.patcog.2021.108345_bib0012) 2011; 121 10.1016/j.patcog.2021.108345_bib0026 Hu (10.1016/j.patcog.2021.108345_bib0004) 2018; 31 Liu (10.1016/j.patcog.2021.108345_bib0015) 2008 He (10.1016/j.patcog.2021.108345_bib0017) 2011; 22 Mensink (10.1016/j.patcog.2021.108345_bib0006) 2013; 35 Mason (10.1016/j.patcog.2021.108345_bib0028) 1994 Quinlan (10.1016/j.patcog.2021.108345_bib0018) 1986; 1 Bifet (10.1016/j.patcog.2021.108345_bib0024) 2010 Demšar (10.1016/j.patcog.2021.108345_bib0029) 2006; 7 Ristin (10.1016/j.patcog.2021.108345_bib0008) 2014 Siers (10.1016/j.patcog.2021.108345_bib0032) 2018; 459 Su (10.1016/j.patcog.2021.108345_bib0022) 2006; volume 21 Gomes (10.1016/j.patcog.2021.108345_bib0014) 2017; 106 Breiman (10.1016/j.patcog.2021.108345_bib0019) 1984 Boyd (10.1016/j.patcog.2021.108345_bib0020) 2004 Gottschalk (10.1016/j.patcog.2021.108345_bib0010) 1996 Bifet (10.1016/j.patcog.2021.108345_bib0025) 2010; 11 |
| References_xml | – volume: 31 start-page: 1038 year: 2018 end-page: 1050 ident: bib0004 article-title: A novel feature incremental learning method for sensor-based activity recognition publication-title: IEEE Trans. Knowl. Data Eng. – volume: volume 21 start-page: 500 year: 2006 ident: bib0022 article-title: A fast decision tree learning algorithm publication-title: Proceedings of the National Conference on Artificial Intelligence – volume: 78 start-page: 277 year: 2018 end-page: 290 ident: bib0003 article-title: A novel random forests based class incremental learning method for activity recognition publication-title: Pattern Recognit. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0002 article-title: Random forests publication-title: Mach. Learn. – volume: 17 year: 2011 ident: bib0033 article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework publication-title: J. Multiple-Valued Logic & Soft Comput. – start-page: 71 year: 2000 end-page: 80 ident: bib0011 article-title: Mining high-speed data streams publication-title: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining – volume: 11 start-page: 1601 year: 2010 end-page: 1604 ident: bib0025 article-title: MOA: Massive online analysis publication-title: J. Mach. Learn. Res. – volume: 3 start-page: 2340 year: 2005 end-page: 2345 ident: bib0005 article-title: Online bagging and boosting publication-title: 2005 IEEE international conference on systems, man and cybernetics – start-page: 548 year: 1990 end-page: 550 ident: bib0009 article-title: Transforming axis-aligned bounding boxes publication-title: Graphics gems – reference: E. Frank, M.A. Hall, I.H. Witten, The weka workbench. online appendix for ”data mining: Practical machine learning tools and techniques”, 2016. – year: 1984 ident: bib0019 article-title: Classification and regression trees–crc press publication-title: Boca Raton, Florida – volume: 121 start-page: 195 year: 2011 end-page: 204 ident: bib0012 article-title: Knowledge discovery through sysfor: a systematically developed forest of multiple decision trees publication-title: Proceedings of the Ninth Australasian Data Mining Conference – volume: 27 start-page: 508 year: 2011 end-page: 521 ident: bib0027 article-title: Majority voting: material classification by tactile sensing using surface texture publication-title: IEEE Trans. Rob. – volume: 100 start-page: 107164 year: 2020 ident: bib0035 article-title: Semi-supervised robust deep neural networks for multi-label image classification publication-title: Pattern Recognit. – volume: 106 start-page: 1469 year: 2017 end-page: 1495 ident: bib0014 article-title: Adaptive random forests for evolving data stream classification publication-title: Mach. Learn. – start-page: 330 year: 2008 end-page: 338 ident: bib0015 article-title: An incremental feature learning algorithm based on least square support vector machine publication-title: International Workshop on Frontiers in Algorithmics – volume: 38 start-page: 490 year: 2015 end-page: 503 ident: bib0007 article-title: Incremental learning of random forests for large-scale image classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: bib0016 article-title: Least squares support vector machine classifiers publication-title: Neural processing letters – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0029 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. learn. res. – volume: 22 start-page: 1901 year: 2011 end-page: 1914 ident: bib0017 article-title: Incremental learning from stream data publication-title: IEEE Trans. Neural Networks – year: 1996 ident: bib0010 article-title: Separating axis theorem publication-title: Technical Report – volume: 459 start-page: 53 year: 2018 end-page: 70 ident: bib0032 article-title: Novel algorithms for cost-sensitive classification and knowledge discovery in class imbalanced datasets with an application to nasa software defects publication-title: Inf. Sci. (Ny) – start-page: 3654 year: 2014 end-page: 3661 ident: bib0008 article-title: Incremental learning of ncm forests for large-scale image classification publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 46 start-page: 44 year: 2014 ident: bib0001 article-title: A survey on concept drift adaptation publication-title: ACM computing surveys (CSUR) – volume: 99 start-page: 107100 year: 2020 ident: bib0034 article-title: Large-scale multi-label classification using unknown streaming images publication-title: Pattern Recognit. – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib0018 article-title: Induction of decision trees publication-title: Mach Learn – volume: 35 start-page: 2624 year: 2013 end-page: 2637 ident: bib0006 article-title: Distance-based image classification: generalizing to new classes at near-zero cost publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. – start-page: 413 year: 2008 end-page: 422 ident: bib0031 article-title: Isolation forest publication-title: 2008 eighth ieee international conference on data mining – year: 2004 ident: bib0020 article-title: Convex optimization – volume: 53 start-page: 51 year: 2013 end-page: 65 ident: bib0030 article-title: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques publication-title: Knowl. Based Syst. – year: 1994 ident: bib0028 article-title: Statistics: An introduction – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0021 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 135 year: 2010 end-page: 150 ident: bib0024 article-title: Leveraging bagging for evolving data streams publication-title: Joint European conference on machine learning and knowledge discovery in databases – reference: A. Frank, A. Asuncion, UCI machine learning repository, 2010. Accessed August 25, 2020. – start-page: 249 year: 2009 end-page: 260 ident: bib0023 article-title: Adaptive learning from evolving data streams publication-title: International Symposium on Intelligent Data Analysis – start-page: 3654 year: 2014 ident: 10.1016/j.patcog.2021.108345_bib0008 article-title: Incremental learning of ncm forests for large-scale image classification – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.patcog.2021.108345_bib0016 article-title: Least squares support vector machine classifiers publication-title: Neural processing letters doi: 10.1023/A:1018628609742 – year: 2004 ident: 10.1016/j.patcog.2021.108345_bib0020 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.patcog.2021.108345_bib0029 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. learn. res. – volume: 11 start-page: 1601 year: 2010 ident: 10.1016/j.patcog.2021.108345_bib0025 article-title: MOA: Massive online analysis publication-title: J. Mach. Learn. Res. – volume: volume 21 start-page: 500 year: 2006 ident: 10.1016/j.patcog.2021.108345_bib0022 article-title: A fast decision tree learning algorithm – start-page: 135 year: 2010 ident: 10.1016/j.patcog.2021.108345_bib0024 article-title: Leveraging bagging for evolving data streams – ident: 10.1016/j.patcog.2021.108345_bib0026 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.patcog.2021.108345_bib0021 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 3 start-page: 2340 year: 2005 ident: 10.1016/j.patcog.2021.108345_bib0005 article-title: Online bagging and boosting – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.patcog.2021.108345_bib0002 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 10.1016/j.patcog.2021.108345_bib0018 article-title: Induction of decision trees publication-title: Mach Learn doi: 10.1023/A:1022643204877 – volume: 99 start-page: 107100 year: 2020 ident: 10.1016/j.patcog.2021.108345_bib0034 article-title: Large-scale multi-label classification using unknown streaming images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107100 – start-page: 71 year: 2000 ident: 10.1016/j.patcog.2021.108345_bib0011 article-title: Mining high-speed data streams – start-page: 413 year: 2008 ident: 10.1016/j.patcog.2021.108345_bib0031 article-title: Isolation forest – year: 1996 ident: 10.1016/j.patcog.2021.108345_bib0010 article-title: Separating axis theorem – volume: 38 start-page: 490 issue: 3 year: 2015 ident: 10.1016/j.patcog.2021.108345_bib0007 article-title: Incremental learning of random forests for large-scale image classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2459678 – start-page: 548 year: 1990 ident: 10.1016/j.patcog.2021.108345_bib0009 article-title: Transforming axis-aligned bounding boxes – volume: 22 start-page: 1901 issue: 12 year: 2011 ident: 10.1016/j.patcog.2021.108345_bib0017 article-title: Incremental learning from stream data publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2011.2171713 – volume: 459 start-page: 53 year: 2018 ident: 10.1016/j.patcog.2021.108345_bib0032 article-title: Novel algorithms for cost-sensitive classification and knowledge discovery in class imbalanced datasets with an application to nasa software defects publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2018.05.035 – volume: 46 start-page: 44 issue: 4 year: 2014 ident: 10.1016/j.patcog.2021.108345_bib0001 article-title: A survey on concept drift adaptation publication-title: ACM computing surveys (CSUR) doi: 10.1145/2523813 – start-page: 249 year: 2009 ident: 10.1016/j.patcog.2021.108345_bib0023 article-title: Adaptive learning from evolving data streams – volume: 35 start-page: 2624 issue: 11 year: 2013 ident: 10.1016/j.patcog.2021.108345_bib0006 article-title: Distance-based image classification: generalizing to new classes at near-zero cost publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.83 – volume: 100 start-page: 107164 year: 2020 ident: 10.1016/j.patcog.2021.108345_bib0035 article-title: Semi-supervised robust deep neural networks for multi-label image classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107164 – volume: 78 start-page: 277 year: 2018 ident: 10.1016/j.patcog.2021.108345_bib0003 article-title: A novel random forests based class incremental learning method for activity recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.01.025 – volume: 31 start-page: 1038 issue: 6 year: 2018 ident: 10.1016/j.patcog.2021.108345_bib0004 article-title: A novel feature incremental learning method for sensor-based activity recognition publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2018.2855159 – ident: 10.1016/j.patcog.2021.108345_bib0013 – volume: 53 start-page: 51 year: 2013 ident: 10.1016/j.patcog.2021.108345_bib0030 article-title: Missing value imputation using decision trees and decision forests by splitting and merging records: two novel techniques publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.08.023 – year: 1984 ident: 10.1016/j.patcog.2021.108345_bib0019 article-title: Classification and regression trees–crc press publication-title: Boca Raton, Florida – volume: 17 year: 2011 ident: 10.1016/j.patcog.2021.108345_bib0033 article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework publication-title: J. Multiple-Valued Logic & Soft Comput. – volume: 27 start-page: 508 issue: 3 year: 2011 ident: 10.1016/j.patcog.2021.108345_bib0027 article-title: Majority voting: material classification by tactile sensing using surface texture publication-title: IEEE Trans. Rob. doi: 10.1109/TRO.2011.2127110 – year: 1994 ident: 10.1016/j.patcog.2021.108345_bib0028 – volume: 121 start-page: 195 year: 2011 ident: 10.1016/j.patcog.2021.108345_bib0012 article-title: Knowledge discovery through sysfor: a systematically developed forest of multiple decision trees – start-page: 330 year: 2008 ident: 10.1016/j.patcog.2021.108345_bib0015 article-title: An incremental feature learning algorithm based on least square support vector machine – volume: 106 start-page: 1469 issue: 9–10 year: 2017 ident: 10.1016/j.patcog.2021.108345_bib0014 article-title: Adaptive random forests for evolving data stream classification publication-title: Mach. Learn. doi: 10.1007/s10994-017-5642-8 |
| SSID | ssj0017142 |
| Score | 2.4781637 |
| Snippet | •An Incremental Machine Learning Framework.•Justification of the basic concepts and theoretical insights of the technique.•Two novel theorems, some empirical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108345 |
| SubjectTerms | Big data Concept drift Decision forest algorithm Incremental learning Online learning |
| Title | Adaptive Decision Forest: An incremental machine learning framework |
| URI | https://dx.doi.org/10.1016/j.patcog.2021.108345 |
| Volume | 122 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection (Lizenz: Bibliothek MedUni Wien) customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5142 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZWHhG1E-Kg-spknjOAlbVKgKiE5U6hYljl0VQRqVsPLbuUucCiQEEmtkR9GT_e7svLsHcCl9jVEg1FxifODCTQWPMqW5CCnZjXIRKLqHfJzKyUzcz_15B0ZtLQzJKi33N5xes7V9MrBoDsrlkmp8qe2gQ0UoZMZGPCxEQC4GVx8bmQf5ezcdwz2X0-i2fK7WeJVId6sFnhKHLontPCpq-ik8fQk54z3Ysbkii5vP2YeOLg5gt_VhYHZbHsIoztOSaIvdWMccRo6bb9U1iwu2LFRzB4iveq2lk5pZr4gFM6026whm49un0YRbcwSuMMuveJ75iKkMh8aPtJLShG6qU1-nrsypwj0zmSMC7eH-80xOP8BSR6Y5nrYCJUMtvGPoFqtCnwDDLCALQiN8zC6EMCLKXYWYGpPh8cl1dA-8FpNE2c7hZGDxkrQSseekQTIhJJMGyR7wzayy6Zzxx_ighTv5tgISJPdfZ57-e-YZbA-pnKFWYZ9Dt1q_6wtMMqqsX6-iPmzFdw-T6Sc70c-P |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHlhN83CchK0qVAXaTq3UzUocuyqCNIKw8tu5S5wKJAQSa-SLok_2PZzv7iPkSgQaokCkmYD4wLibcBanSjMeYbIbZzxUeA85nojhjD_Mg3mL9JteGKRVWt9f-_TKW9snXYtmt1gusccXxw462ISCYmzghzd44IVYgV1_rHkeKPBdjwz3XYbLm_65iuRVgL9bLaBM9Fxk2_nY1fRTfPoScwa7ZNsmi7RXf88eael8n-w0QgzUnssD0u9lSYF-i95ayRyKkptv5Q3t5XSZq_oSEF71UnEnNbViEQtqGnLWIZkN7qb9IbPqCExBml-yLA0AVBF5Joi1EsJEbqKTQCeuyLDFPTWpw0PtwwH0TYZ_wBJHJBmUW6ESkeb-EWnnq1wfEwppQBpGhgeQXnBueJy5CkA1JoX6yXV0h_gNJlLZ0eGoYPEsG47Yk6yRlIikrJHsELa2KurRGX-sDxu45bctIMG7_2p58m_LS7I5nI5HcnQ_eTwlWx72NlSU7DPSLl_f9TlkHGV6Ue2oTzj80SQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Decision+Forest%3A+An+incremental+machine+learning+framework&rft.jtitle=Pattern+recognition&rft.au=Rahman%2C+Md+Geaur&rft.au=Islam%2C+Md+Zahidul&rft.date=2022-02-01&rft.issn=0031-3203&rft.volume=122&rft.spage=108345&rft_id=info:doi/10.1016%2Fj.patcog.2021.108345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_108345 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |