A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture
Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the pr...
Saved in:
Published in | Computers and electronics in agriculture Vol. 210; p. 107920 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-1699 |
DOI | 10.1016/j.compag.2023.107920 |
Cover
Abstract | Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the preferred choice in the last decade due to its ability to implicitly extract features from images. The combination of hyperspectral images with deep learning has been extensively explored in the context of remote sensing (data collected by drones and satellites), which has generated an extensive literature that has been thoroughly analyzed in a series of reviews and surveys. The application of deep learning to proximal hyperspectral images is more recent, but there are already many articles dedicated to this objective, especially in the areas of agriculture and food science. Although significant progress has been made in just a few years, there are still many aspects that are not well understood and many problems that have not yet been overcome. This review aims at characterizing the current state of the art of deep learning applied to hyperspectral images captured at close range, focusing on the main challenges and research gaps that still need to be properly addressed. Some possible solutions and potential directions for future research are suggested, as an effort to bring the techniques developed in the academy closer to meeting the requirements found in practice. Only applications related to vegetable production and products were considered in this review, because applications related to animal farming and products of animal origin have their own particularities and the literature on the subject is not as extensive.
•The use of hyperspectral images and deep learning in agriculture is analyzed.•More than 120 peer-reviewed articles were considered.•The main challenges and research gaps are identified and discussed.•Possible solutions and directions for future research are proposed. |
---|---|
AbstractList | Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the preferred choice in the last decade due to its ability to implicitly extract features from images. The combination of hyperspectral images with deep learning has been extensively explored in the context of remote sensing (data collected by drones and satellites), which has generated an extensive literature that has been thoroughly analyzed in a series of reviews and surveys. The application of deep learning to proximal hyperspectral images is more recent, but there are already many articles dedicated to this objective, especially in the areas of agriculture and food science. Although significant progress has been made in just a few years, there are still many aspects that are not well understood and many problems that have not yet been overcome. This review aims at characterizing the current state of the art of deep learning applied to hyperspectral images captured at close range, focusing on the main challenges and research gaps that still need to be properly addressed. Some possible solutions and potential directions for future research are suggested, as an effort to bring the techniques developed in the academy closer to meeting the requirements found in practice. Only applications related to vegetable production and products were considered in this review, because applications related to animal farming and products of animal origin have their own particularities and the literature on the subject is not as extensive.
•The use of hyperspectral images and deep learning in agriculture is analyzed.•More than 120 peer-reviewed articles were considered.•The main challenges and research gaps are identified and discussed.•Possible solutions and directions for future research are proposed. |
ArticleNumber | 107920 |
Author | Barbedo, Jayme Garcia Arnal |
Author_xml | – sequence: 1 givenname: Jayme Garcia Arnal orcidid: 0000-0002-1156-8270 surname: Barbedo fullname: Barbedo, Jayme Garcia Arnal email: jayme.barbedo@embrapa.br organization: Embrapa Digital Agriculture, Campinas, SP, Brazil |
BookMark | eNqFkE1OwzAQhb0oEi1wAxa-QIpTp3bMAqmq-JMqsYG15TqTxFXqBNul9PZMKSsWIC9Gb8ZvNO-bkJHvPRBynbNpznJxs5nafjuYZjpjM44tqWZsRMY4KrNcKHVOJjFuGGpVyjFxCxrgw8Ge9p6mFii6186b5FD3Na0ABtqBCd75hiawrXfvO4h071JLh9B_uq3paHsYIMQBbAqosNXgF-epaYKzuy7tAlySs9p0Ea5-6gV5e7h_XT5lq5fH5-VilVnORMoqCfiYLHgFQipl6jkXlnHGVFkoq9bK8JKXALWVUoiS50aUSphiza2ay5pfkNvTXhv6GAPU2rr0nQdvc53OmT6C0ht9AqWPoPQJFJqLX-YhYJpw-M92d7IBBkOaQUfrwFuoXEAmuurd3wu-APAQio4 |
CitedBy_id | crossref_primary_10_1016_j_jfca_2024_106899 crossref_primary_10_3390_agronomy15030625 crossref_primary_10_1016_j_cropro_2024_106992 crossref_primary_10_1016_j_jfca_2025_107424 crossref_primary_10_3390_agriengineering6040225 crossref_primary_10_1016_j_atech_2025_100851 crossref_primary_10_1109_JSTARS_2024_3355071 crossref_primary_10_1016_j_microc_2025_112913 crossref_primary_10_1109_TGRS_2025_3541879 crossref_primary_10_1016_j_plaphe_2025_100021 crossref_primary_10_1016_j_foodchem_2024_141393 crossref_primary_10_1016_j_saa_2024_125676 crossref_primary_10_3390_su17051804 crossref_primary_10_1016_j_jafr_2024_101388 crossref_primary_10_55267_iadt_07_15214 crossref_primary_10_1109_TGRS_2024_3462752 crossref_primary_10_1038_s41598_024_82586_2 crossref_primary_10_1016_j_microc_2024_110034 crossref_primary_10_1016_j_ins_2024_120452 crossref_primary_10_1111_1750_3841_17512 crossref_primary_10_1007_s10661_025_13728_w crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_compag_2025_109940 crossref_primary_10_1016_j_saa_2024_124812 crossref_primary_10_3390_s24248217 crossref_primary_10_1016_j_compag_2024_109847 crossref_primary_10_1016_j_compag_2024_109008 crossref_primary_10_1016_j_compag_2024_109449 crossref_primary_10_1016_j_trac_2024_117981 crossref_primary_10_1016_j_infrared_2024_105532 crossref_primary_10_1016_j_compag_2024_109838 crossref_primary_10_1016_j_jfca_2025_107403 crossref_primary_10_1016_j_compag_2023_108382 crossref_primary_10_1016_j_microc_2024_111499 crossref_primary_10_1109_TAFE_2024_3445119 crossref_primary_10_3389_fpls_2023_1322391 crossref_primary_10_3390_su16146064 crossref_primary_10_1016_j_compag_2024_109037 crossref_primary_10_1016_j_saa_2024_124166 crossref_primary_10_1016_j_infrared_2024_105128 crossref_primary_10_1016_j_jag_2023_103415 crossref_primary_10_1016_j_infrared_2024_105208 crossref_primary_10_1016_j_saa_2024_125451 crossref_primary_10_1016_j_compag_2025_110150 crossref_primary_10_1016_j_compag_2025_110152 crossref_primary_10_1109_JSTARS_2024_3414936 crossref_primary_10_3390_jlpea14020019 crossref_primary_10_1016_j_compag_2024_109346 crossref_primary_10_1038_s41598_023_42190_2 crossref_primary_10_5897_AJAR2024_16714 crossref_primary_10_1016_j_focha_2023_100491 |
Cites_doi | 10.1016/j.chemolab.2021.104404 10.1109/ACCESS.2019.2936892 10.1016/j.foodcont.2022.108819 10.1016/j.biosystemseng.2018.05.013 10.1111/jfpe.13952 10.1002/jsfa.11095 10.25165/j.ijabe.20221502.6881 10.1109/ACCESS.2020.3006495 10.1016/j.saa.2021.120813 10.1007/s41348-017-0124-6 10.3389/fpls.2019.00209 10.3390/horticulturae8090854 10.1109/ACCESS.2021.3051196 10.3389/fpls.2021.736334 10.1016/j.biosystemseng.2022.05.001 10.1016/j.ijleo.2022.169527 10.3390/s20185021 10.1016/j.saa.2019.117973 10.1016/j.isprsjprs.2019.09.006 10.1016/j.biosystemseng.2022.07.013 10.1039/D0RA06938H 10.3389/fbioe.2020.616943 10.1016/j.compag.2022.106963 10.1109/ACCESS.2019.2917267 10.1016/j.chemolab.2020.103996 10.3390/foods11111609 10.1007/s12161-020-01871-8 10.1016/j.compag.2022.107411 10.1186/s40537-019-0197-0 10.1007/s10462-021-10018-y 10.3389/fpls.2022.860656 10.1016/j.compag.2022.107007 10.1016/j.compag.2022.107343 10.1038/nature14539 10.1016/j.lwt.2020.109815 10.1016/j.tplants.2021.12.003 10.3390/s21092899 10.3390/s18041126 10.1016/j.compag.2021.106226 10.3390/s21020613 10.1016/j.infrared.2021.103802 10.1016/j.microc.2022.108020 10.1016/j.compag.2021.105996 10.1007/s11760-021-02029-7 10.1016/j.foodcont.2022.109077 10.3389/fbioe.2021.696292 10.1016/j.isprsjprs.2021.05.003 10.1109/TGRS.2009.2019636 10.3390/fishes7060335 10.1016/j.compag.2021.106252 10.1080/10942912.2022.2027963 10.1016/j.infrared.2022.104270 10.1016/j.ecoinf.2022.101678 10.1016/j.foodcont.2022.109291 10.1016/j.snb.2019.126630 10.1109/ACCESS.2020.2994913 10.1016/j.compag.2019.04.019 10.1016/j.compag.2020.105713 10.1016/j.compag.2020.105780 10.1016/j.compag.2022.106970 10.1016/j.compag.2019.104888 10.1080/07352681003617285 10.1111/jfpe.13767 10.1016/j.compag.2020.105868 10.1080/01431161.2019.1685721 10.3390/plants7010003 10.1016/j.infrared.2022.104100 10.1016/j.infrared.2022.104286 10.1016/j.compag.2022.107153 10.3390/rs13183595 10.1007/s40858-021-00459-9 10.1111/jfpe.13293 10.1016/j.foodchem.2022.134503 10.1016/j.compag.2018.02.025 10.1007/s40858-021-00454-0 10.1016/j.compag.2021.106655 10.1016/j.foodchem.2021.131047 10.1109/LRA.2018.2849514 10.3390/rs12162659 10.1186/s13007-017-0233-z 10.1007/s12161-020-01873-6 10.1016/j.compag.2022.107027 10.3390/rs13224587 10.1109/LGRS.2019.2921011 10.1007/s11947-010-0370-0 10.3390/smartcities3030039 10.1016/j.compag.2018.10.021 10.1016/j.foodchem.2020.126536 10.1016/j.foodchem.2020.126503 10.1016/j.compag.2021.106521 10.3390/molecules25010152 10.3390/agriculture11080687 10.1016/j.saa.2021.120460 10.1016/j.compag.2021.106483 10.3390/s21030742 10.1038/s41598-022-06679-6 10.1186/s13007-019-0479-8 10.1016/j.jhazmat.2021.126706 10.3390/rs12193258 10.1111/jfpe.14120 10.1016/j.compag.2020.105588 10.1186/s13007-022-00882-2 10.1016/j.infrared.2020.103550 10.3390/molecules27186042 10.3390/s19194065 10.25165/j.ijabe.20211402.6023 10.3390/molecules23112831 10.1016/j.infrared.2022.104279 10.1186/s40537-019-0192-5 10.1016/j.infrared.2021.104003 10.1016/j.compag.2021.106426 10.1007/s11694-021-01012-7 10.1016/j.compag.2020.105683 10.3390/foods8120620 10.3390/app8020212 10.1016/j.inpa.2020.10.006 10.1016/j.inpa.2018.05.002 10.1016/j.biosystemseng.2015.01.003 10.3390/molecules24183268 10.1016/j.compag.2019.04.035 10.1007/s11694-020-00646-3 10.3390/agriculture11121274 10.1021/acsomega.1c04102 10.1007/s11042-021-11729-8 10.1111/jfs.12866 10.1016/j.saa.2020.118237 10.1111/tpj.14597 10.1016/j.biosystemseng.2020.10.004 10.1016/j.saa.2022.121641 10.3390/s21041288 10.1016/j.tics.2022.03.007 10.3390/rs10030395 10.1039/C8RA10335F 10.1016/j.biosystemseng.2021.09.010 10.1016/j.foodchem.2022.133563 10.1016/j.biosystemseng.2016.12.004 10.3390/s21103459 10.1109/LGRS.2019.2895697 10.3390/agriculture12081085 10.3390/s21248184 10.3390/agronomy12061451 10.1016/j.compag.2022.106850 10.1111/ppa.13411 10.1016/j.chemolab.2017.12.010 10.1016/j.infrared.2022.104097 10.1016/j.compag.2020.105438 10.3390/s20174940 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compag.2023.107920 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
ExternalDocumentID | 10_1016_j_compag_2023_107920 S0168169923003083 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABMAC ABMZM ABRWV ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AEXOQ AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AATTM AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION |
ID | FETCH-LOGICAL-c306t-d7e7e70743de6799af536c03009849c9b9a3838eefc7766831a6896a4b3c957f3 |
IEDL.DBID | AIKHN |
ISSN | 0168-1699 |
IngestDate | Thu Apr 24 23:08:36 EDT 2025 Tue Jul 01 01:58:30 EDT 2025 Tue Dec 03 03:45:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional neural network Machine learning Electromagnetic spectrum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-d7e7e70743de6799af536c03009849c9b9a3838eefc7766831a6896a4b3c957f3 |
ORCID | 0000-0002-1156-8270 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compag_2023_107920 crossref_primary_10_1016_j_compag_2023_107920 elsevier_sciencedirect_doi_10_1016_j_compag_2023_107920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Chiu, Zou (b15) 2022; 197 Sabzi, Pourdarbani, Rohban, García-Mateos, Arribas (b90) 2021; 217 Zhang, Dai, Cheng (b135) 2021; 14 Pang, Men, Yan, Xiao (b79) 2020; 8 Sethy, Pandey, Sahu, Behera (b93) 2022; 81 Su (b96) 2020; 3 Chen, Yan, Huang, Chien, Chu, Jang, Chen, Lin, Shih, Ou-Yang (b18) 2022; 12 Khan, Vibhute, Mali, Patil (b51) 2022; 69 Wan, Li, Li, Wang, Yang, Wang (b101) 2022; 12 Wu, Zhang, Na, Mi, Zhu, He, Zhang (b114) 2019; 9 Gomes, Mendes-Ferreira, Melo-Pinto (b35) 2021; 21 Rangarajan, Louise Whetton, Mouazen (b87) 2022; 208 Qi, Sandroni, Westergaard, Sundmark, Bagge, Alexandersson, Gao (b84) 2021 Lowe, Harrison, French (b62) 2017; 13 Zhu, Zhang, Chao, Xu, Song, Zhang, Huang (b156) 2020; 25 Brugger, Schramowski, Paulus, Steiner, Kersting, Mahlein (b13) 2021; 70 Cui, Yang, Liu, Li, Ning (b21) 2022; 12 He, Zhang, Zhou, He (b42) 2021; 116 Qiu, Chen, Zhao, Zhu, He, Zhang (b85) 2018; 8 Cui, Li, Wang, Fang, Yu, Zhao (b20) 2022; 202 Raghavendra, Ganguli, Selvan, Nayak, Chaudhury, Espina, Ofori (b86) 2022; 2022 Xiao, Yin, Geng, Wu, Zhang, Liu (b117) 2022; 16 Mansuri, Chakraborty, Mahanti, Pandiselvam (b66) 2022; 139 Nie, Zhang, Feng, Yu, He (b75) 2019; 296 Su, Zhang, Yan, Zhu, Zeng, Lu, Gao, Feng, He, Fan (b97) 2021; 12 Wieme, Mollazade, Malounas, Zude-Sasse, Zhao, Gowen, Argyropoulos, Fountas, Van Beek (b110) 2022; 222 Liu, Yu, Kurihara, Li, Niu, Zhan (b59) 2021; 191 Halstead, McCool, Denman, Perez, Fookes (b37) 2018; 3 Diao, Yan, He, Zhao, Guo (b22) 2022; 201 Li, Jiang, Jiang, Shi (b53) 2021; 11 Wu, Weng, Chen, Xiao, Zhang, He (b112) 2022; 196 Zhao, Pan, Li, Lan, Lu, Yang, Wen (b146) 2021; 14 Yang, Chen, He, Liu, Feng, Zhang (b122) 2020; 10 Han, Liu, Khoshelham, Bai (b39) 2021; 180 Barbedo, Tibola, Lima (b9) 2017; 155 Li, Zhang, Sun, Rao, Ji (b56) 2021; 44 Liu, Jiang, Qiao, Qi, Pan, Pan (b58) 2020; 132 Wang, Cao, Zhang, Li, Xu, Wu (b102) 2022; 14 Agarwal, Al-Shuwaili, Nugaliyadde, Wang, Wong, Ren (b2) 2020; 173 Jin, Qi, Jia, Tang, Gao, Li, Zhao (b46) 2022; 122 Xu, Sun, Yao, Cai, Shen, Tian, Zhou (b119) 2022; 120 Barbedo, Tibola, Fernandes (b8) 2015; 131 Garillos-Manliguez, Chiang (b33) 2021; 21 Nalepa, Myller, Kawulok (b72) 2020; 17 Ang, Seng (b3) 2021; 9 Zhang, Yang, Feng, Xu, Chen, He (b142) 2020; 11 Pandey, Payn, Lu, Heine, Walker, Acosta, Young (b77) 2021; 13 Dong, Hao, Luo, Zhang, Wang, Wu, Liu (b23) 2022; 198 Bock, Barbedo, Del Ponte, Bohnenkamp, Mahlein (b10) 2020; 2 Chen, Qiao, Feng, Xu, Lin, Cai (b16) 2021; 8 Feng, Zhan, Wang, Yang, Yu, Wang, Tang, Jiang, Peng, He (b26) 2020; 101 Fazari, Pellicer-Valero, Gómez-Sanchıs, Bernardi, Cubero, Benalia, Zimbalatti, Blasco (b24) 2021; 187 Sarić, Nguyen, Burge, Berkowitz, Trtílek, Whelan, Lewsey, Čustović (b91) 2022; 27 Liu, Zhou, Wu, Han, Li, Chen (b61) 2022; 198 Yang, Ma, Yao, Cao, Zhu (b125) 2021; 21 Johnson, Khoshgoftaar (b48) 2019; 6 Zhu, Zhou, Zhang, Bao, Wu, Chu, Yu, He, Feng (b158) 2019; 19 Yipeng, Wenbing, Kaixuan, Wentao, Ling, Shizhuang, Linsheng (b128) 2022; 135 Zhou, Sun, Tian, Lu, Hang, Chen (b150) 2020; 41 Han, Gao (b38) 2019; 164 Nguyen, Sagan, Maimaitiyiming, Maimaitijiang, Bhadra, Kwasniewski (b73) 2021; 21 Wu, Liu, Meng, Li, Zhang, He (b111) 2021; 9 Yan, Ren, Tschannerl, Zhao, Harrison, Jack (b120) 2021; 70 Abbas, Peng, Wong, Li, Wang, Ng, Kwok, Hui (b1) 2021; 177 Nalepa, Myller, Kawulok (b71) 2019; 16 Liu, Yu, Kurihara, Xu, Niu, Zhan (b60) 2022; 265 Xiang, Chen, Su, Zhang, Chen, Zhou, Yao, Xuan, Cheng (b115) 2022; 13 Ma, Tsuchikawa, Inagaki (b64) 2020; 177 Zhu, Abdalla, Tang, Cen (b153) 2022; 219 Sun, Cao, Zhou, Wu, Sun, Hu (b98) 2021; 41 Hao, Dong, Li, Wang, Cui, Zhang, Wu (b40) 2022; 125 Seo, Kim, Lim, Lee, Kim, Jang, Mo, Kim (b92) 2021; 21 Wendel, Underwood, Walsh (b107) 2018; 155 Gao, Shao, Xuan, Wang, Liu, Han (b31) 2020; 4 Zhang, Wu, Zhou, Cheng, Ye, He (b141) 2020; 319 He, He, Wang, Wang, Lyu (b41) 2021; 15 Li, Lecourt, Bishop (b54) 2018; 7 Barbedo (b7) 2022; 7 Rehman, Ma, Wang, Zhang, Jin (b89) 2020; 177 Zhang, Zhang, Wu, Liu, Yu, Chen (b143) 2022; 125 Gao, Chandran, Paul, Walia, Yu (b30) 2021; 21 Xin, Jun, Yan, Quansheng, Xiaohong, Yingying (b118) 2020; 200 Polder, Blok, de Villiers, van der Wolf, Kamp (b83) 2019; 10 Jin, Jie, Wang, Qi, Li (b45) 2018; 10 Nagasubramanian, Jones, Singh, Sarkar, Singh, Ganapathysubramanian (b70) 2019; 15 Feng, Li, Cui (b25) 2022; 15 Lu, Dao, Liu, He, Shang (b63) 2020; 12 Karoui, Blecker (b50) 2011; 4 Li, Ma, Li, Yu (b55) 2022; 193 Thomas, Kuska, Bohnenkamp, Brugger, Alisaac, Wahabzada, Behmann, Mahlein (b100) 2018; 125 Zhu, Li, Rao, Ji (b154) 2023; 143 Zhu, Zhou, Gao, Bao, He, Feng (b157) 2019; 24 Weng, Tang, Yuan, Guo, Yu, Huang, Xu (b109) 2020; 234 Bruzzone, Persello (b14) 2009; 47 Gao, Xu, Yan, Zhang, Lv, He (b32) 2019; 8 Jie, Wu, Wang, Li, Ye, Wei (b44) 2020; 14 Xiao, Bai, Gao, He (b116) 2020; 20 Zhu, Yang, Ding, Han (b155) 2022; 183 Ni, Li, Zhang, Sun, Huang, Zhao, Zhu, Wang (b74) 2020; 8 Zhou, Huang, Tian, Yang, Liang (b149) 2021; 101 Wang, Hu, Zhai (b103) 2018; 18 Barbedo (b5) 2019; 162 Yuan, Jiang, Gong, Nie, Sun (b131) 2022; 197 Yang, Gao, Yan, Qi, Zhu, Wang (b123) 2020; 20 Wang, Vinson, Holmes, Seibel, Bechar, Nof, Tao (b105) 2019; 9 Chen, Wang, Wang, Song, Li, Huang, Wang, Jin (b17) 2021; 183 Zhao, Kechasov, Rewald, Bodner, Verheul, Clarke, Clarke (b145) 2020; 12 Gui, Fei, Wu, Fu, Diakite (b36) 2021; 8 Jiang, He, Yang, Fu, Li, Song, He (b43) 2019; 1 Pang, Huang, Fan, Zhou, Wang, Tian (b78) 2022; 45 Jin, Zhang, Jia, Tang, Gao, Zhao, Qi (b47) 2022; 7 Zhang, Wang, Liu, An (b139) 2022; 199 Zheng, Bao, Weng, Tao, Zhang, Huang, Zhao (b148) 2022; 270 Zhang, Feng, Wu, Yang, Tao, Yang, He (b136) 2022; 18 Yang, Jiang, Jie, Li, Shi (b124) 2022; 25 Mishra, Sadeh, Bino, Polder, Boer, Rutledge, Herrmann (b69) 2021; 186 Onmankhong, Ma, Inagaki, Sirisomboon, Tsuchikawa (b76) 2022; 123 Wang, Liu, Liu, Zhu, Hou, Liu, Li (b104) 2021; 54 Zhang, An, Wei, Liu, Wu (b132) 2022; 395 Zhou, Sun, Tian, Yao, Xu (b152) 2022; 266 Bock, Pethybridge, Barbedo, Esker, Mahlein, Ponte (b11) 2022; 47 Raviv, Lupyan, Green (b88) 2022; 26 Steinbrener, Posch, Leitner (b95) 2019; 162 Barbedo (b6) 2022; 47 Pang, Wang, Yuan, Yan, Yang, Xiao (b80) 2021; 190 Paoletti, Haut, Plaza, Plaza (b81) 2019; 158 Shorten, Khoshgoftaar (b94) 2019; 6 Sun, Wu, Hang, Lu, Wu, Chen (b99) 2019; 42 Mishra, Lohumi, Ahmad Khan, Nordon (b68) 2020; 178 Fu, Sun, Wang, Xu, Yao, Cao, Tang (b28) 2022; 45 Golhani, Balasundram, Vadamalai, Pradhan (b34) 2018; 5 Zhang, Sun, Rao, Ji (b137) 2020; 229 Feng, Zhu, Zhou, Zhao, Bao, Zhang, He (b27) 2019; 7 Makantasis, Karantzalos, Doulamis, Doulamis (b65) 2015 Zhang, Sun, Rao, Ji (b138) 2020; 200 Kabir, Guindo, Chen, Liu, Luo, Kong (b49) 2022; 27 LeCun, Bengio, Hinton (b52) 2015; 521 Park, ki Hong, hwan Kim, Lee (b82) 2018; 148 Wang, Xiong, Zhang, Wang, Yuan, Lu, Nie, Nan, Yang, Huang, Yang (b106) 2023; 404 Chu, Zhang, Wang, Gouda, Wei, He, Liu (b19) 2022; 421 Zhang, Wang, Wei, An (b140) 2022; 370 Yu, Lu, Liu (b130) 2018; 172 Zhang, Dai, Cheng (b134) 2021; 15 Zhang, Zhao, Yan, Bai, Xiao, Gao, Li, Huang, Bao, He, Liu (b144) 2020; 111 Zhou, Sun, Tian, Lu, Hang, Chen (b151) 2020; 321 Wu, Zhang, Bai, Du, He (b113) 2018; 23 Zhao, Que, Sun, Zhu, Huang (b147) 2022; 125 Bock, Poole, Parker, Gottwald (b12) 2010; 29 Mesa, Chiang (b67) 2021; 11 Yang, Yang, Hao, Xie, Li (b126) 2019; 7 Zhang, Chen, Yin, Hu, Gu, Pan, Zhou, Chen (b133) 2020; 175 Barbedo (b4) 2018; 172 Yu, Fang, Zhangjin, Mi, Feng, He (b129) 2021; 212 Weng, Han, Chu, Zhu, Liu, Zhu, Zhang, Zheng, Huang (b108) 2021; 190 Ye, Yan, Zhang, Duan, Chen, Song, Zhang, Xu, Gao (b127) 2022; 11 Yang (b121) 2022; 8 Fu, Sun, Wang, Xu, Yao, Zhou (b29) 2022; 281 Liang, Ouyang, Dai (b57) 2021; 13 Liang (10.1016/j.compag.2023.107920_b57) 2021; 13 Sun (10.1016/j.compag.2023.107920_b99) 2019; 42 Wang (10.1016/j.compag.2023.107920_b104) 2021; 54 Zhu (10.1016/j.compag.2023.107920_b153) 2022; 219 Zhou (10.1016/j.compag.2023.107920_b151) 2020; 321 Liu (10.1016/j.compag.2023.107920_b59) 2021; 191 Wan (10.1016/j.compag.2023.107920_b101) 2022; 12 Cui (10.1016/j.compag.2023.107920_b21) 2022; 12 Mishra (10.1016/j.compag.2023.107920_b69) 2021; 186 Yang (10.1016/j.compag.2023.107920_b121) 2022; 8 Johnson (10.1016/j.compag.2023.107920_b48) 2019; 6 Ye (10.1016/j.compag.2023.107920_b127) 2022; 11 Jiang (10.1016/j.compag.2023.107920_b43) 2019; 1 Barbedo (10.1016/j.compag.2023.107920_b4) 2018; 172 Zhang (10.1016/j.compag.2023.107920_b136) 2022; 18 Zhao (10.1016/j.compag.2023.107920_b146) 2021; 14 Garillos-Manliguez (10.1016/j.compag.2023.107920_b33) 2021; 21 Halstead (10.1016/j.compag.2023.107920_b37) 2018; 3 Chu (10.1016/j.compag.2023.107920_b19) 2022; 421 Sethy (10.1016/j.compag.2023.107920_b93) 2022; 81 Wang (10.1016/j.compag.2023.107920_b106) 2023; 404 Zhang (10.1016/j.compag.2023.107920_b143) 2022; 125 Bock (10.1016/j.compag.2023.107920_b11) 2022; 47 Li (10.1016/j.compag.2023.107920_b54) 2018; 7 Nagasubramanian (10.1016/j.compag.2023.107920_b70) 2019; 15 Bruzzone (10.1016/j.compag.2023.107920_b14) 2009; 47 Zhang (10.1016/j.compag.2023.107920_b140) 2022; 370 Bock (10.1016/j.compag.2023.107920_b12) 2010; 29 Zhang (10.1016/j.compag.2023.107920_b142) 2020; 11 Wu (10.1016/j.compag.2023.107920_b111) 2021; 9 Li (10.1016/j.compag.2023.107920_b53) 2021; 11 Paoletti (10.1016/j.compag.2023.107920_b81) 2019; 158 Rangarajan (10.1016/j.compag.2023.107920_b87) 2022; 208 Park (10.1016/j.compag.2023.107920_b82) 2018; 148 Bock (10.1016/j.compag.2023.107920_b10) 2020; 2 Su (10.1016/j.compag.2023.107920_b96) 2020; 3 Wang (10.1016/j.compag.2023.107920_b102) 2022; 14 Zhou (10.1016/j.compag.2023.107920_b152) 2022; 266 Wu (10.1016/j.compag.2023.107920_b112) 2022; 196 Cui (10.1016/j.compag.2023.107920_b20) 2022; 202 Gao (10.1016/j.compag.2023.107920_b30) 2021; 21 Zhang (10.1016/j.compag.2023.107920_b139) 2022; 199 Raghavendra (10.1016/j.compag.2023.107920_b86) 2022; 2022 Diao (10.1016/j.compag.2023.107920_b22) 2022; 201 Chen (10.1016/j.compag.2023.107920_b18) 2022; 12 Liu (10.1016/j.compag.2023.107920_b60) 2022; 265 Mishra (10.1016/j.compag.2023.107920_b68) 2020; 178 Li (10.1016/j.compag.2023.107920_b55) 2022; 193 Sarić (10.1016/j.compag.2023.107920_b91) 2022; 27 Feng (10.1016/j.compag.2023.107920_b26) 2020; 101 Gao (10.1016/j.compag.2023.107920_b32) 2019; 8 Zhu (10.1016/j.compag.2023.107920_b156) 2020; 25 Golhani (10.1016/j.compag.2023.107920_b34) 2018; 5 Ni (10.1016/j.compag.2023.107920_b74) 2020; 8 Wu (10.1016/j.compag.2023.107920_b114) 2019; 9 Dong (10.1016/j.compag.2023.107920_b23) 2022; 198 Thomas (10.1016/j.compag.2023.107920_b100) 2018; 125 Yang (10.1016/j.compag.2023.107920_b122) 2020; 10 Gui (10.1016/j.compag.2023.107920_b36) 2021; 8 Xu (10.1016/j.compag.2023.107920_b119) 2022; 120 LeCun (10.1016/j.compag.2023.107920_b52) 2015; 521 Brugger (10.1016/j.compag.2023.107920_b13) 2021; 70 Kabir (10.1016/j.compag.2023.107920_b49) 2022; 27 Shorten (10.1016/j.compag.2023.107920_b94) 2019; 6 Zhang (10.1016/j.compag.2023.107920_b138) 2020; 200 He (10.1016/j.compag.2023.107920_b41) 2021; 15 Yu (10.1016/j.compag.2023.107920_b129) 2021; 212 Chen (10.1016/j.compag.2023.107920_b15) 2022; 197 Jin (10.1016/j.compag.2023.107920_b46) 2022; 122 Agarwal (10.1016/j.compag.2023.107920_b2) 2020; 173 Zhang (10.1016/j.compag.2023.107920_b137) 2020; 229 Barbedo (10.1016/j.compag.2023.107920_b5) 2019; 162 Liu (10.1016/j.compag.2023.107920_b61) 2022; 198 Makantasis (10.1016/j.compag.2023.107920_b65) 2015 Karoui (10.1016/j.compag.2023.107920_b50) 2011; 4 Pang (10.1016/j.compag.2023.107920_b79) 2020; 8 Hao (10.1016/j.compag.2023.107920_b40) 2022; 125 Xiao (10.1016/j.compag.2023.107920_b117) 2022; 16 Sun (10.1016/j.compag.2023.107920_b98) 2021; 41 Barbedo (10.1016/j.compag.2023.107920_b8) 2015; 131 Zheng (10.1016/j.compag.2023.107920_b148) 2022; 270 Gao (10.1016/j.compag.2023.107920_b31) 2020; 4 Zhang (10.1016/j.compag.2023.107920_b144) 2020; 111 Nalepa (10.1016/j.compag.2023.107920_b72) 2020; 17 Zhu (10.1016/j.compag.2023.107920_b155) 2022; 183 Chen (10.1016/j.compag.2023.107920_b16) 2021; 8 Zhang (10.1016/j.compag.2023.107920_b132) 2022; 395 Seo (10.1016/j.compag.2023.107920_b92) 2021; 21 Mansuri (10.1016/j.compag.2023.107920_b66) 2022; 139 Feng (10.1016/j.compag.2023.107920_b25) 2022; 15 Jin (10.1016/j.compag.2023.107920_b45) 2018; 10 Steinbrener (10.1016/j.compag.2023.107920_b95) 2019; 162 Gomes (10.1016/j.compag.2023.107920_b35) 2021; 21 Mesa (10.1016/j.compag.2023.107920_b67) 2021; 11 Wieme (10.1016/j.compag.2023.107920_b110) 2022; 222 Zhang (10.1016/j.compag.2023.107920_b133) 2020; 175 Fu (10.1016/j.compag.2023.107920_b28) 2022; 45 Zhu (10.1016/j.compag.2023.107920_b158) 2019; 19 Zhang (10.1016/j.compag.2023.107920_b135) 2021; 14 Lu (10.1016/j.compag.2023.107920_b63) 2020; 12 Yang (10.1016/j.compag.2023.107920_b123) 2020; 20 Pang (10.1016/j.compag.2023.107920_b78) 2022; 45 Su (10.1016/j.compag.2023.107920_b97) 2021; 12 Onmankhong (10.1016/j.compag.2023.107920_b76) 2022; 123 Ang (10.1016/j.compag.2023.107920_b3) 2021; 9 Pang (10.1016/j.compag.2023.107920_b80) 2021; 190 Ma (10.1016/j.compag.2023.107920_b64) 2020; 177 Nguyen (10.1016/j.compag.2023.107920_b73) 2021; 21 Abbas (10.1016/j.compag.2023.107920_b1) 2021; 177 Zhu (10.1016/j.compag.2023.107920_b157) 2019; 24 Wu (10.1016/j.compag.2023.107920_b113) 2018; 23 Zhou (10.1016/j.compag.2023.107920_b150) 2020; 41 Barbedo (10.1016/j.compag.2023.107920_b6) 2022; 47 Xiang (10.1016/j.compag.2023.107920_b115) 2022; 13 Yuan (10.1016/j.compag.2023.107920_b131) 2022; 197 Han (10.1016/j.compag.2023.107920_b39) 2021; 180 Zhang (10.1016/j.compag.2023.107920_b134) 2021; 15 Barbedo (10.1016/j.compag.2023.107920_b7) 2022; 7 Barbedo (10.1016/j.compag.2023.107920_b9) 2017; 155 Rehman (10.1016/j.compag.2023.107920_b89) 2020; 177 Feng (10.1016/j.compag.2023.107920_b27) 2019; 7 Yang (10.1016/j.compag.2023.107920_b125) 2021; 21 Weng (10.1016/j.compag.2023.107920_b108) 2021; 190 Zhu (10.1016/j.compag.2023.107920_b154) 2023; 143 Raviv (10.1016/j.compag.2023.107920_b88) 2022; 26 Nalepa (10.1016/j.compag.2023.107920_b71) 2019; 16 Nie (10.1016/j.compag.2023.107920_b75) 2019; 296 Qiu (10.1016/j.compag.2023.107920_b85) 2018; 8 Chen (10.1016/j.compag.2023.107920_b17) 2021; 183 Zhao (10.1016/j.compag.2023.107920_b145) 2020; 12 He (10.1016/j.compag.2023.107920_b42) 2021; 116 Fu (10.1016/j.compag.2023.107920_b29) 2022; 281 Khan (10.1016/j.compag.2023.107920_b51) 2022; 69 Zhao (10.1016/j.compag.2023.107920_b147) 2022; 125 Yang (10.1016/j.compag.2023.107920_b124) 2022; 25 Wendel (10.1016/j.compag.2023.107920_b107) 2018; 155 Jie (10.1016/j.compag.2023.107920_b44) 2020; 14 Wang (10.1016/j.compag.2023.107920_b105) 2019; 9 Weng (10.1016/j.compag.2023.107920_b109) 2020; 234 Xin (10.1016/j.compag.2023.107920_b118) 2020; 200 Qi (10.1016/j.compag.2023.107920_b84) 2021 Yan (10.1016/j.compag.2023.107920_b120) 2021; 70 Zhou (10.1016/j.compag.2023.107920_b149) 2021; 101 Lowe (10.1016/j.compag.2023.107920_b62) 2017; 13 Yang (10.1016/j.compag.2023.107920_b126) 2019; 7 Wang (10.1016/j.compag.2023.107920_b103) 2018; 18 Han (10.1016/j.compag.2023.107920_b38) 2019; 164 Liu (10.1016/j.compag.2023.107920_b58) 2020; 132 Yu (10.1016/j.compag.2023.107920_b130) 2018; 172 Li (10.1016/j.compag.2023.107920_b56) 2021; 44 Polder (10.1016/j.compag.2023.107920_b83) 2019; 10 Zhang (10.1016/j.compag.2023.107920_b141) 2020; 319 Jin (10.1016/j.compag.2023.107920_b47) 2022; 7 Sabzi (10.1016/j.compag.2023.107920_b90) 2021; 217 Xiao (10.1016/j.compag.2023.107920_b116) 2020; 20 Fazari (10.1016/j.compag.2023.107920_b24) 2021; 187 Yipeng (10.1016/j.compag.2023.107920_b128) 2022; 135 Pandey (10.1016/j.compag.2023.107920_b77) 2021; 13 |
References_xml | – volume: 222 start-page: 156 year: 2022 end-page: 176 ident: b110 article-title: Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review publication-title: Biosyst. Eng. – volume: 200 year: 2020 ident: b118 article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves publication-title: Chemometr. Intell. Lab. Syst. – volume: 14 start-page: 389 year: 2021 end-page: 400 ident: b135 article-title: Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method publication-title: Food Analyt. Methods – volume: 21 year: 2021 ident: b35 article-title: Application of hyperspectral imaging and deep learning for robust prediction of sugar and pH levels in wine grape berries publication-title: Sensors – volume: 191 year: 2021 ident: b59 article-title: Learning an optical filter for green pepper automatic picking in agriculture publication-title: Comput. Electron. Agric. – volume: 270 year: 2022 ident: b148 article-title: Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. – volume: 193 year: 2022 ident: b55 article-title: Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models publication-title: Comput. Electron. Agric. – volume: 177 start-page: 204 year: 2021 end-page: 216 ident: b1 article-title: Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 year: 2022 ident: b101 article-title: Hyperspectral sensing of plant diseases: Principle and methods publication-title: Agronomy – volume: 4 start-page: 31 year: 2020 end-page: 38 ident: b31 article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning publication-title: Artif. Intell. Agricult. – volume: 3 start-page: 767 year: 2020 end-page: 792 ident: b96 article-title: Advanced machine learning in point spectroscopy, RGB- and hyperspectral-imaging for automatic discriminations of crops and weeds: A review publication-title: Smart Cities – volume: 120 year: 2022 ident: b119 article-title: Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging publication-title: Infrared Phys. Technol. – volume: 21 year: 2021 ident: b125 article-title: Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery publication-title: Sensors – volume: 175 year: 2020 ident: b133 article-title: Integrating spectral and image data to detect Fusarium head blight of wheat publication-title: Comput. Electron. Agric. – volume: 125 year: 2022 ident: b143 article-title: Moisture detection of single corn seed based on hyperspectral imaging and deep learning publication-title: Infrared Phys. Technol. – volume: 183 year: 2022 ident: b155 article-title: Pixel-level rapid detection of aflatoxin B1 based on 1D-modified temporal convolutional network and hyperspectral imaging publication-title: Microchem. J. – volume: 25 year: 2020 ident: b156 article-title: A rapid and highly efficient method for the identification of Soybean seed varieties: Hyperspectral images combined with transfer learning publication-title: Molecules – volume: 41 year: 2021 ident: b98 article-title: Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology publication-title: J. Food Saf. – volume: 19 year: 2019 ident: b158 article-title: Identification of Soybean varieties using hyperspectral imaging coupled with convolutional neural network publication-title: Sensors – volume: 8 year: 2021 ident: b16 article-title: Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods publication-title: Front. Bioeng. Biotechnol. – volume: 8 start-page: 380 year: 2021 end-page: 385 ident: b36 article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology publication-title: Inform. Process. Agricult. – volume: 10 year: 2019 ident: b83 article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images publication-title: Front. Plant Sci. – volume: 8 year: 2022 ident: b121 article-title: Physiological disorder diagnosis of plant leaves based on full-spectrum hyperspectral images with convolutional neural network publication-title: Horticulturae – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b52 article-title: Deep learning publication-title: Nature – volume: 70 start-page: 1 year: 2021 end-page: 15 ident: b120 article-title: Nondestructive phenolic compounds measurement and origin discrimination of peated Barley malt using near-infrared hyperspectral imagery and machine learning publication-title: IEEE Trans. Instrum. Meas. – volume: 7 start-page: 64494 year: 2019 end-page: 64505 ident: b27 article-title: Detection of subtle bruises on winter Jujube using hyperspectral imaging with pixel-wise deep learning method publication-title: IEEE Access – volume: 6 start-page: 60 year: 2019 ident: b94 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 23 year: 2018 ident: b113 article-title: Discrimination of chrysanthemum varieties using hyperspectral imaging combined with a deep convolutional neural network publication-title: Molecules – volume: 47 start-page: 14 year: 2022 end-page: 24 ident: b11 article-title: A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues publication-title: Trop. Plant Pathol. – volume: 125 start-page: 5 year: 2018 end-page: 20 ident: b100 article-title: Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective publication-title: J. Plant Dis. Protect. – volume: 125 year: 2022 ident: b40 article-title: Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms publication-title: Infrared Phys. Technol. – volume: 4 start-page: 364 year: 2011 end-page: 386 ident: b50 article-title: Fluorescence spectroscopy measurement for quality assessment of food systems - a review publication-title: Food Bioprocess Technol. – volume: 13 year: 2021 ident: b57 article-title: Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques publication-title: Remote Sens. – volume: 164 year: 2019 ident: b38 article-title: Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging publication-title: Comput. Electron. Agric. – volume: 143 year: 2023 ident: b154 article-title: Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks publication-title: Food Control – volume: 10 start-page: 44149 year: 2020 end-page: 44158 ident: b122 article-title: Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning publication-title: RSC Adv. – volume: 13 year: 2022 ident: b115 article-title: Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation publication-title: Front. Plant Sci. – volume: 200 start-page: 188 year: 2020 end-page: 199 ident: b138 article-title: Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels publication-title: Biosyst. Eng. – volume: 208 year: 2022 ident: b87 article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning publication-title: Expert Syst. Appl. – volume: 29 start-page: 59 year: 2010 end-page: 107 ident: b12 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. – volume: 70 start-page: 1572 year: 2021 end-page: 1582 ident: b13 article-title: Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction publication-title: Plant Pathol. – volume: 8 year: 2019 ident: b32 article-title: Application of near-infrared hyperspectral imaging with machine learning methods to identify geographical origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits publication-title: Foods – volume: 25 start-page: 170 year: 2022 end-page: 186 ident: b124 article-title: Detection of the moldy status of the stored maize kernels using hyperspectral imaging and deep learning algorithms publication-title: Int. J. Food Prop. – volume: 8 start-page: 93028 year: 2020 end-page: 93038 ident: b74 article-title: Online sorting of the film on cotton based on deep learning and hyperspectral imaging publication-title: IEEE Access – volume: 319 year: 2020 ident: b141 article-title: Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging publication-title: Food Chem. – volume: 9 year: 2019 ident: b105 article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN) publication-title: Sci. Rep. – volume: 404 year: 2023 ident: b106 article-title: Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds publication-title: Food Chem. – volume: 12 year: 2020 ident: b145 article-title: Deep learning in hyperspectral image reconstruction from single RGB images—A case study on tomato quality parameters publication-title: Remote Sens. – volume: 148 start-page: 179 year: 2018 end-page: 187 ident: b82 article-title: Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network publication-title: Comput. Electron. Agric. – volume: 26 start-page: 462 year: 2022 end-page: 483 ident: b88 article-title: How variability shapes learning and generalization publication-title: Trends in Cognitive Sciences – volume: 11 year: 2021 ident: b53 article-title: Identification of geographical origin of Chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm publication-title: Agriculture – volume: 7 year: 2018 ident: b54 article-title: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review publication-title: Plants – volume: 172 start-page: 188 year: 2018 end-page: 193 ident: b130 article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf publication-title: Chemometr. Intell. Lab. Syst. – volume: 20 year: 2020 ident: b123 article-title: Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery publication-title: Sensors – volume: 69 year: 2022 ident: b51 article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications publication-title: Ecol. Inform. – volume: 45 year: 2022 ident: b78 article-title: Detection of early bruises on apples using hyperspectral imaging combining with YOLOv3 deep learning algorithm publication-title: J. Food Process Eng. – volume: 197 year: 2022 ident: b15 article-title: Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging publication-title: Comput. Electron. Agric. – volume: 197 year: 2022 ident: b131 article-title: Moldy peanuts identification based on hyperspectral images and point-centered convolutional neural network combined with embedded feature selection publication-title: Comput. Electron. Agric. – volume: 177 year: 2020 ident: b64 article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach publication-title: Comput. Electron. Agric. – volume: 155 start-page: 24 year: 2017 end-page: 32 ident: b9 article-title: Deoxynivalenol screening in wheat kernels using hyperspectral imaging publication-title: Biosyst. Eng. – volume: 21 year: 2021 ident: b92 article-title: Non-destructive detection pilot study of vegetable organic residues using VNIR hyperspectral imaging and deep learning techniques publication-title: Sensors – volume: 44 year: 2021 ident: b56 article-title: Identification of Soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network publication-title: J. Food Process Eng. – volume: 13 year: 2021 ident: b77 article-title: Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease incidence in loblolly pine seedlings publication-title: Remote Sens. – volume: 219 start-page: 165 year: 2022 end-page: 176 ident: b153 article-title: Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning publication-title: Biosyst. Eng. – volume: 2 year: 2020 ident: b10 article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy publication-title: Phytopathol. Res. – volume: 21 year: 2021 ident: b30 article-title: HyperSeed: An end-to-end method to process hyperspectral images of seeds publication-title: Sensors – volume: 172 start-page: 84 year: 2018 end-page: 91 ident: b4 article-title: Factors influencing the use of deep learning for plant disease recognition publication-title: Biosyst. Eng. – volume: 6 start-page: 27 year: 2019 ident: b48 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data – volume: 135 year: 2022 ident: b128 article-title: Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network publication-title: Food Control – volume: 15 start-page: 484 year: 2021 end-page: 494 ident: b134 article-title: Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network publication-title: J. Food Meas. Charact. – volume: 47 start-page: 85 year: 2022 end-page: 94 ident: b6 article-title: Deep learning applied to plant pathology: The problem of data representativeness publication-title: Trop. Plant Pathol. – volume: 190 year: 2021 ident: b108 article-title: Reflectance images of effective wavelengths from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention convolution neural network publication-title: Comput. Electron. Agric. – volume: 139 year: 2022 ident: b66 article-title: Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling publication-title: Food Control – volume: 202 year: 2022 ident: b20 article-title: Hyperspectral imaging coupled with dual-channel convolutional neural network for early detection of apple Valsa canker publication-title: Comput. Electron. Agric. – volume: 321 year: 2020 ident: b151 article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce publication-title: Food Chem. – volume: 41 start-page: 2263 year: 2020 end-page: 2276 ident: b150 article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images publication-title: Int. J. Remote Sens. – volume: 5 start-page: 354 year: 2018 end-page: 371 ident: b34 article-title: A review of neural networks in plant disease detection using hyperspectral data publication-title: Inform. Process. Agricult. – volume: 199 year: 2022 ident: b139 article-title: Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification publication-title: Comput. Electron. Agric. – volume: 9 year: 2021 ident: b111 article-title: Rapid and accurate varieties classification of different crop seeds under sample-limited condition based on hyperspectral imaging and deep transfer learning publication-title: Front. Bioeng. Biotechnol. – volume: 162 start-page: 482 year: 2019 end-page: 492 ident: b5 article-title: Detection of nutrition deficiencies in plants using proximal images and machine learning: A review publication-title: Comput. Electron. Agric. – volume: 12 year: 2022 ident: b21 article-title: Tea category identification using wavelet signal reconstruction of hyperspectral imagery and machine learning publication-title: Agriculture – volume: 13 start-page: 80 year: 2017 ident: b62 article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress publication-title: Plant Methods – volume: 9 start-page: 12635 year: 2019 end-page: 12644 ident: b114 article-title: Variety identification of oat seeds using hyperspectral imaging: Investigating the representation ability of deep convolutional neural network publication-title: RSC Adv. – volume: 180 year: 2021 ident: b39 article-title: Quality estimation of nuts using deep learning classification of hyperspectral imagery publication-title: Comput. Electron. Agric. – volume: 14 start-page: 167 year: 2021 end-page: 174 ident: b146 article-title: Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network publication-title: Int. J. Agricult. Biol. Eng. – volume: 12 year: 2021 ident: b97 article-title: Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches publication-title: Front. Plant Sci. – volume: 101 start-page: 1448 year: 2020 end-page: 1461 ident: b26 article-title: Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping publication-title: Plant J. – volume: 122 year: 2022 ident: b46 article-title: Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning publication-title: Infrared Phys. Technol. – volume: 81 start-page: 3005 year: 2022 end-page: 3038 ident: b93 article-title: Hyperspectral imagery applications for precision agriculture - a systemic survey publication-title: Multimedia Tools Appl. – volume: 198 year: 2022 ident: b61 article-title: Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging publication-title: Comput. Electron. Agric. – volume: 16 start-page: 1264 year: 2019 end-page: 1268 ident: b71 article-title: Validating hyperspectral image segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 7 year: 2022 ident: b7 article-title: A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management publication-title: Fishes – volume: 47 start-page: 3180 year: 2009 end-page: 3191 ident: b14 article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 year: 2018 ident: b85 article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network publication-title: Appl. Sci. – volume: 8 start-page: 123026 year: 2020 end-page: 123036 ident: b79 article-title: Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques publication-title: IEEE Access – volume: 132 year: 2020 ident: b58 article-title: Using convolution neural network and hyperspectral image to identify moldy peanut kernels publication-title: LWT – volume: 395 year: 2022 ident: b132 article-title: Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network publication-title: Food Chem. – volume: 131 start-page: 65 year: 2015 end-page: 76 ident: b8 article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging publication-title: Biosyst. Eng. – volume: 7 start-page: 118239 year: 2019 end-page: 118248 ident: b126 article-title: Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network publication-title: IEEE Access – volume: 101 start-page: 4532 year: 2021 end-page: 4542 ident: b149 article-title: Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting publication-title: J. Sci. Food Agric. – volume: 2022 year: 2022 ident: b86 article-title: Deep learning based dual channel Banana grading system using convolution neural network publication-title: J. Food Qual. – volume: 21 year: 2021 ident: b73 article-title: Early detection of plant viral disease using hyperspectral imaging and deep learning publication-title: Sensors – volume: 266 year: 2022 ident: b152 article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. – volume: 18 year: 2018 ident: b103 article-title: Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data publication-title: Sensors – volume: 17 start-page: 292 year: 2020 end-page: 296 ident: b72 article-title: Training- and test-time data augmentation for hyperspectral image segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 14 year: 2022 ident: b102 article-title: A review of deep learning in multiscale agricultural sensing publication-title: Remote Sens. – volume: 198 year: 2022 ident: b23 article-title: Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning publication-title: Comput. Electron. Agric. – volume: 187 year: 2021 ident: b24 article-title: Application of deep convolutional neural networks for the detection of anthracnose in Olives using VIS/NIR hyperspectral images publication-title: Comput. Electron. Agric. – volume: 24 year: 2019 ident: b157 article-title: Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties publication-title: Molecules – volume: 54 start-page: 5205 year: 2021 end-page: 5253 ident: b104 article-title: A review of deep learning used in the hyperspectral image analysis for agriculture publication-title: Artif. Intell. Rev. – volume: 201 year: 2022 ident: b22 article-title: Corn seedling recognition algorithm based on hyperspectral image and lightweight-3D-CNN publication-title: Comput. Electron. Agric. – volume: 3 start-page: 2995 year: 2018 end-page: 3002 ident: b37 article-title: Fruit quantity and ripeness estimation using a robotic vision system publication-title: IEEE Robot. Autom. Lett. – volume: 173 year: 2020 ident: b2 article-title: Identification and diagnosis of whole body and fragments of Trogoderma granarium and Trogoderma variabile using visible near infrared hyperspectral imaging technique coupled with deep learning publication-title: Comput. Electron. Agric. – volume: 234 year: 2020 ident: b109 article-title: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. – volume: 1 start-page: 1 year: 2019 end-page: 8 ident: b43 article-title: Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues publication-title: Artif. Intell. Agricult. – volume: 18 start-page: 49 year: 2022 ident: b136 article-title: Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning publication-title: Plant Methods – volume: 11 year: 2022 ident: b127 article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning publication-title: Foods – volume: 27 start-page: 301 year: 2022 end-page: 315 ident: b91 article-title: Applications of hyperspectral imaging in plant phenotyping publication-title: Trends Plant Sci. – year: 2021 ident: b84 article-title: In-field early disease recognition of potato late blight based on deep learning and proximal hyperspectral imaging – volume: 14 start-page: 280 year: 2020 end-page: 289 ident: b44 article-title: Research on citrus grandis granulation determination based on hyperspectral imaging through deep learning publication-title: Food Analyt. Methods – volume: 11 year: 2020 ident: b142 article-title: Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network publication-title: Front. Plant Sci. – volume: 177 year: 2020 ident: b89 article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping publication-title: Comput. Electron. Agric. – volume: 16 start-page: 873 year: 2022 end-page: 880 ident: b117 article-title: Pest identification via hyperspectral image and deep learning publication-title: Signal Image Video Process. – volume: 296 year: 2019 ident: b75 article-title: Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning publication-title: Sensors Actuators B – volume: 212 start-page: 46 year: 2021 end-page: 61 ident: b129 article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification publication-title: Biosyst. Eng. – volume: 9 start-page: 36699 year: 2021 end-page: 36718 ident: b3 article-title: Big data and machine learning with hyperspectral information in agriculture publication-title: IEEE Access – volume: 265 year: 2022 ident: b60 article-title: Hyperspectral imaging for green pepper segmentation using a complex-valued neural network publication-title: Optik – volume: 12 year: 2020 ident: b63 article-title: Recent advances of hyperspectral imaging technology and applications in agriculture publication-title: Remote Sens. – volume: 155 start-page: 298 year: 2018 end-page: 313 ident: b107 article-title: Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform publication-title: Comput. Electron. Agric. – volume: 15 start-page: 98 year: 2019 ident: b70 article-title: Plant disease identification using explainable 3D deep learning on hyperspectral images publication-title: Plant Methods – volume: 158 start-page: 279 year: 2019 end-page: 317 ident: b81 article-title: Deep learning classifiers for hyperspectral imaging: A review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 2774 year: 2022 ident: b18 article-title: Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images publication-title: Sci. Rep. – volume: 421 year: 2022 ident: b19 article-title: Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars publication-title: J. Hard Mater. – volume: 20 year: 2020 ident: b116 article-title: Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging publication-title: Sensors – volume: 183 year: 2021 ident: b17 article-title: Automated in-field leaf-level hyperspectral imaging of corn plants using a Cartesian robotic platform publication-title: Comput. Electron. Agric. – volume: 21 year: 2021 ident: b33 article-title: Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation publication-title: Sensors – volume: 123 year: 2022 ident: b76 article-title: Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples publication-title: Infrared Phys. Technol. – volume: 42 year: 2019 ident: b99 article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology publication-title: J. Food Process Eng. – volume: 217 year: 2021 ident: b90 article-title: Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions publication-title: Chemometr. Intell. Lab. Syst. – volume: 229 year: 2020 ident: b137 article-title: Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. – volume: 45 year: 2022 ident: b28 article-title: Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology publication-title: J. Food Process Eng. – volume: 178 year: 2020 ident: b68 article-title: Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches publication-title: Comput. Electron. Agric. – volume: 162 start-page: 364 year: 2019 end-page: 372 ident: b95 article-title: Hyperspectral fruit and vegetable classification using convolutional neural networks publication-title: Comput. Electron. Agric. – start-page: 4959 year: 2015 end-page: 4962 ident: b65 article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium – volume: 281 year: 2022 ident: b29 article-title: Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. – volume: 186 year: 2021 ident: b69 article-title: Complementary chemometrics and deep learning for semantic segmentation of tall and wide visible and near-infrared spectral images of plants publication-title: Comput. Electron. Agric. – volume: 196 year: 2022 ident: b112 article-title: Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition publication-title: Comput. Electron. Agric. – volume: 10 year: 2018 ident: b45 article-title: Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field publication-title: Remote Sens. – volume: 125 year: 2022 ident: b147 article-title: Hybrid convolutional network based on hyperspectral imaging for wheat seed varieties classification publication-title: Infrared Phys. Technol. – volume: 15 start-page: 4497 year: 2021 end-page: 4507 ident: b41 article-title: Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network publication-title: Food Measure – volume: 15 start-page: 204 year: 2022 end-page: 210 ident: b25 article-title: Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level publication-title: Int. J. Agricult. Biol. Eng. – volume: 190 year: 2021 ident: b80 article-title: Feasibility study on identifying seed viability of Sophora Japonica with optimized deep neural network and hyperspectral imaging publication-title: Comput. Electron. Agric. – volume: 116 year: 2021 ident: b42 article-title: Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection publication-title: Infrared Phys. Technol. – volume: 7 start-page: 4735 year: 2022 end-page: 4749 ident: b47 article-title: Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning publication-title: ACS Omega – volume: 11 year: 2021 ident: b67 article-title: Multi-input deep learning model with RGB and hyperspectral imaging for Banana grading publication-title: Agriculture – volume: 370 year: 2022 ident: b140 article-title: Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel publication-title: Food Chem. – volume: 27 year: 2022 ident: b49 article-title: Deep learning combined with hyperspectral imaging technology for variety discrimination of Fritillaria thunbergii publication-title: Molecules – volume: 111 year: 2020 ident: b144 article-title: Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning publication-title: Infrared Phys. Technol. – volume: 217 year: 2021 ident: 10.1016/j.compag.2023.107920_b90 article-title: Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2021.104404 – volume: 7 start-page: 118239 year: 2019 ident: 10.1016/j.compag.2023.107920_b126 article-title: Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936892 – volume: 135 year: 2022 ident: 10.1016/j.compag.2023.107920_b128 article-title: Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network publication-title: Food Control doi: 10.1016/j.foodcont.2022.108819 – volume: 172 start-page: 84 year: 2018 ident: 10.1016/j.compag.2023.107920_b4 article-title: Factors influencing the use of deep learning for plant disease recognition publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2018.05.013 – volume: 45 issue: 2 year: 2022 ident: 10.1016/j.compag.2023.107920_b78 article-title: Detection of early bruises on apples using hyperspectral imaging combining with YOLOv3 deep learning algorithm publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13952 – volume: 101 start-page: 4532 issue: 11 year: 2021 ident: 10.1016/j.compag.2023.107920_b149 article-title: Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.11095 – volume: 15 start-page: 204 issue: 2 year: 2022 ident: 10.1016/j.compag.2023.107920_b25 article-title: Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level publication-title: Int. J. Agricult. Biol. Eng. doi: 10.25165/j.ijabe.20221502.6881 – volume: 8 start-page: 123026 year: 2020 ident: 10.1016/j.compag.2023.107920_b79 article-title: Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006495 – volume: 270 year: 2022 ident: 10.1016/j.compag.2023.107920_b148 article-title: Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.120813 – volume: 125 start-page: 5 year: 2018 ident: 10.1016/j.compag.2023.107920_b100 article-title: Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective publication-title: J. Plant Dis. Protect. doi: 10.1007/s41348-017-0124-6 – volume: 10 year: 2019 ident: 10.1016/j.compag.2023.107920_b83 article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00209 – volume: 8 issue: 9 year: 2022 ident: 10.1016/j.compag.2023.107920_b121 article-title: Physiological disorder diagnosis of plant leaves based on full-spectrum hyperspectral images with convolutional neural network publication-title: Horticulturae doi: 10.3390/horticulturae8090854 – volume: 9 start-page: 36699 year: 2021 ident: 10.1016/j.compag.2023.107920_b3 article-title: Big data and machine learning with hyperspectral information in agriculture publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3051196 – volume: 12 year: 2021 ident: 10.1016/j.compag.2023.107920_b97 article-title: Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.736334 – volume: 219 start-page: 165 year: 2022 ident: 10.1016/j.compag.2023.107920_b153 article-title: Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2022.05.001 – volume: 265 year: 2022 ident: 10.1016/j.compag.2023.107920_b60 article-title: Hyperspectral imaging for green pepper segmentation using a complex-valued neural network publication-title: Optik doi: 10.1016/j.ijleo.2022.169527 – volume: 20 issue: 18 year: 2020 ident: 10.1016/j.compag.2023.107920_b123 article-title: Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery publication-title: Sensors doi: 10.3390/s20185021 – volume: 229 year: 2020 ident: 10.1016/j.compag.2023.107920_b137 article-title: Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2019.117973 – volume: 158 start-page: 279 year: 2019 ident: 10.1016/j.compag.2023.107920_b81 article-title: Deep learning classifiers for hyperspectral imaging: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.006 – volume: 222 start-page: 156 year: 2022 ident: 10.1016/j.compag.2023.107920_b110 article-title: Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2022.07.013 – volume: 10 start-page: 44149 year: 2020 ident: 10.1016/j.compag.2023.107920_b122 article-title: Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning publication-title: RSC Adv. doi: 10.1039/D0RA06938H – volume: 8 year: 2021 ident: 10.1016/j.compag.2023.107920_b16 article-title: Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.616943 – volume: 197 year: 2022 ident: 10.1016/j.compag.2023.107920_b131 article-title: Moldy peanuts identification based on hyperspectral images and point-centered convolutional neural network combined with embedded feature selection publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106963 – volume: 7 start-page: 64494 year: 2019 ident: 10.1016/j.compag.2023.107920_b27 article-title: Detection of subtle bruises on winter Jujube using hyperspectral imaging with pixel-wise deep learning method publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917267 – volume: 200 year: 2020 ident: 10.1016/j.compag.2023.107920_b118 article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.103996 – volume: 11 issue: 11 year: 2022 ident: 10.1016/j.compag.2023.107920_b127 article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning publication-title: Foods doi: 10.3390/foods11111609 – volume: 14 start-page: 389 year: 2021 ident: 10.1016/j.compag.2023.107920_b135 article-title: Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method publication-title: Food Analyt. Methods doi: 10.1007/s12161-020-01871-8 – volume: 202 year: 2022 ident: 10.1016/j.compag.2023.107920_b20 article-title: Hyperspectral imaging coupled with dual-channel convolutional neural network for early detection of apple Valsa canker publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107411 – volume: 6 start-page: 60 year: 2019 ident: 10.1016/j.compag.2023.107920_b94 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 54 start-page: 5205 year: 2021 ident: 10.1016/j.compag.2023.107920_b104 article-title: A review of deep learning used in the hyperspectral image analysis for agriculture publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10018-y – volume: 13 year: 2022 ident: 10.1016/j.compag.2023.107920_b115 article-title: Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation publication-title: Front. Plant Sci. doi: 10.3389/fpls.2022.860656 – volume: 198 year: 2022 ident: 10.1016/j.compag.2023.107920_b61 article-title: Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107007 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compag.2023.107920_b120 article-title: Nondestructive phenolic compounds measurement and origin discrimination of peated Barley malt using near-infrared hyperspectral imagery and machine learning publication-title: IEEE Trans. Instrum. Meas. – volume: 201 year: 2022 ident: 10.1016/j.compag.2023.107920_b22 article-title: Corn seedling recognition algorithm based on hyperspectral image and lightweight-3D-CNN publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107343 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.compag.2023.107920_b52 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 132 year: 2020 ident: 10.1016/j.compag.2023.107920_b58 article-title: Using convolution neural network and hyperspectral image to identify moldy peanut kernels publication-title: LWT doi: 10.1016/j.lwt.2020.109815 – volume: 27 start-page: 301 issue: 3 year: 2022 ident: 10.1016/j.compag.2023.107920_b91 article-title: Applications of hyperspectral imaging in plant phenotyping publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.12.003 – volume: 21 issue: 9 year: 2021 ident: 10.1016/j.compag.2023.107920_b92 article-title: Non-destructive detection pilot study of vegetable organic residues using VNIR hyperspectral imaging and deep learning techniques publication-title: Sensors doi: 10.3390/s21092899 – volume: 18 issue: 4 year: 2018 ident: 10.1016/j.compag.2023.107920_b103 article-title: Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data publication-title: Sensors doi: 10.3390/s18041126 – volume: 186 year: 2021 ident: 10.1016/j.compag.2023.107920_b69 article-title: Complementary chemometrics and deep learning for semantic segmentation of tall and wide visible and near-infrared spectral images of plants publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106226 – volume: 21 issue: 2 year: 2021 ident: 10.1016/j.compag.2023.107920_b125 article-title: Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery publication-title: Sensors doi: 10.3390/s21020613 – volume: 116 year: 2021 ident: 10.1016/j.compag.2023.107920_b42 article-title: Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.103802 – volume: 183 year: 2022 ident: 10.1016/j.compag.2023.107920_b155 article-title: Pixel-level rapid detection of aflatoxin B1 based on 1D-modified temporal convolutional network and hyperspectral imaging publication-title: Microchem. J. doi: 10.1016/j.microc.2022.108020 – volume: 14 issue: 3 year: 2022 ident: 10.1016/j.compag.2023.107920_b102 article-title: A review of deep learning in multiscale agricultural sensing publication-title: Remote Sens. – volume: 183 year: 2021 ident: 10.1016/j.compag.2023.107920_b17 article-title: Automated in-field leaf-level hyperspectral imaging of corn plants using a Cartesian robotic platform publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.105996 – volume: 16 start-page: 873 year: 2022 ident: 10.1016/j.compag.2023.107920_b117 article-title: Pest identification via hyperspectral image and deep learning publication-title: Signal Image Video Process. doi: 10.1007/s11760-021-02029-7 – volume: 139 year: 2022 ident: 10.1016/j.compag.2023.107920_b66 article-title: Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling publication-title: Food Control doi: 10.1016/j.foodcont.2022.109077 – volume: 9 year: 2021 ident: 10.1016/j.compag.2023.107920_b111 article-title: Rapid and accurate varieties classification of different crop seeds under sample-limited condition based on hyperspectral imaging and deep transfer learning publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.696292 – volume: 177 start-page: 204 year: 2021 ident: 10.1016/j.compag.2023.107920_b1 article-title: Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.003 – volume: 47 start-page: 3180 issue: 9 year: 2009 ident: 10.1016/j.compag.2023.107920_b14 article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2019636 – volume: 7 issue: 6 year: 2022 ident: 10.1016/j.compag.2023.107920_b7 article-title: A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management publication-title: Fishes doi: 10.3390/fishes7060335 – volume: 187 year: 2021 ident: 10.1016/j.compag.2023.107920_b24 article-title: Application of deep convolutional neural networks for the detection of anthracnose in Olives using VIS/NIR hyperspectral images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106252 – volume: 25 start-page: 170 issue: 1 year: 2022 ident: 10.1016/j.compag.2023.107920_b124 article-title: Detection of the moldy status of the stored maize kernels using hyperspectral imaging and deep learning algorithms publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2022.2027963 – volume: 125 year: 2022 ident: 10.1016/j.compag.2023.107920_b147 article-title: Hybrid convolutional network based on hyperspectral imaging for wheat seed varieties classification publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104270 – volume: 69 year: 2022 ident: 10.1016/j.compag.2023.107920_b51 article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101678 – volume: 143 year: 2023 ident: 10.1016/j.compag.2023.107920_b154 article-title: Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks publication-title: Food Control doi: 10.1016/j.foodcont.2022.109291 – volume: 296 year: 2019 ident: 10.1016/j.compag.2023.107920_b75 article-title: Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning publication-title: Sensors Actuators B doi: 10.1016/j.snb.2019.126630 – volume: 8 start-page: 93028 year: 2020 ident: 10.1016/j.compag.2023.107920_b74 article-title: Online sorting of the film on cotton based on deep learning and hyperspectral imaging publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994913 – volume: 162 start-page: 364 year: 2019 ident: 10.1016/j.compag.2023.107920_b95 article-title: Hyperspectral fruit and vegetable classification using convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.019 – volume: 177 year: 2020 ident: 10.1016/j.compag.2023.107920_b89 article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105713 – volume: 178 year: 2020 ident: 10.1016/j.compag.2023.107920_b68 article-title: Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105780 – volume: 197 year: 2022 ident: 10.1016/j.compag.2023.107920_b15 article-title: Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106970 – volume: 164 year: 2019 ident: 10.1016/j.compag.2023.107920_b38 article-title: Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104888 – volume: 29 start-page: 59 issue: 2 year: 2010 ident: 10.1016/j.compag.2023.107920_b12 article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352681003617285 – volume: 44 issue: 8 year: 2021 ident: 10.1016/j.compag.2023.107920_b56 article-title: Identification of Soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13767 – volume: 208 year: 2022 ident: 10.1016/j.compag.2023.107920_b87 article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning publication-title: Expert Syst. Appl. – volume: 180 year: 2021 ident: 10.1016/j.compag.2023.107920_b39 article-title: Quality estimation of nuts using deep learning classification of hyperspectral imagery publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105868 – volume: 41 start-page: 2263 issue: 6 year: 2020 ident: 10.1016/j.compag.2023.107920_b150 article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2019.1685721 – volume: 7 issue: 1 year: 2018 ident: 10.1016/j.compag.2023.107920_b54 article-title: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review publication-title: Plants doi: 10.3390/plants7010003 – volume: 123 year: 2022 ident: 10.1016/j.compag.2023.107920_b76 article-title: Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104100 – volume: 125 year: 2022 ident: 10.1016/j.compag.2023.107920_b40 article-title: Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104286 – volume: 199 year: 2022 ident: 10.1016/j.compag.2023.107920_b139 article-title: Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107153 – volume: 13 issue: 18 year: 2021 ident: 10.1016/j.compag.2023.107920_b77 article-title: Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease incidence in loblolly pine seedlings publication-title: Remote Sens. doi: 10.3390/rs13183595 – volume: 11 year: 2020 ident: 10.1016/j.compag.2023.107920_b142 article-title: Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network publication-title: Front. Plant Sci. – volume: 47 start-page: 85 year: 2022 ident: 10.1016/j.compag.2023.107920_b6 article-title: Deep learning applied to plant pathology: The problem of data representativeness publication-title: Trop. Plant Pathol. doi: 10.1007/s40858-021-00459-9 – volume: 42 issue: 8 year: 2019 ident: 10.1016/j.compag.2023.107920_b99 article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology publication-title: J. Food Process Eng. doi: 10.1111/jfpe.13293 – volume: 404 year: 2023 ident: 10.1016/j.compag.2023.107920_b106 article-title: Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134503 – volume: 148 start-page: 179 year: 2018 ident: 10.1016/j.compag.2023.107920_b82 article-title: Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.02.025 – volume: 47 start-page: 14 year: 2022 ident: 10.1016/j.compag.2023.107920_b11 article-title: A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues publication-title: Trop. Plant Pathol. doi: 10.1007/s40858-021-00454-0 – volume: 193 year: 2022 ident: 10.1016/j.compag.2023.107920_b55 article-title: Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106655 – volume: 370 year: 2022 ident: 10.1016/j.compag.2023.107920_b140 article-title: Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.131047 – volume: 3 start-page: 2995 issue: 4 year: 2018 ident: 10.1016/j.compag.2023.107920_b37 article-title: Fruit quantity and ripeness estimation using a robotic vision system publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2018.2849514 – volume: 12 issue: 16 year: 2020 ident: 10.1016/j.compag.2023.107920_b63 article-title: Recent advances of hyperspectral imaging technology and applications in agriculture publication-title: Remote Sens. doi: 10.3390/rs12162659 – volume: 13 start-page: 80 year: 2017 ident: 10.1016/j.compag.2023.107920_b62 article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress publication-title: Plant Methods doi: 10.1186/s13007-017-0233-z – volume: 14 start-page: 280 year: 2020 ident: 10.1016/j.compag.2023.107920_b44 article-title: Research on citrus grandis granulation determination based on hyperspectral imaging through deep learning publication-title: Food Analyt. Methods doi: 10.1007/s12161-020-01873-6 – volume: 198 year: 2022 ident: 10.1016/j.compag.2023.107920_b23 article-title: Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107027 – volume: 13 issue: 22 year: 2021 ident: 10.1016/j.compag.2023.107920_b57 article-title: Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques publication-title: Remote Sens. doi: 10.3390/rs13224587 – volume: 17 start-page: 292 issue: 2 year: 2020 ident: 10.1016/j.compag.2023.107920_b72 article-title: Training- and test-time data augmentation for hyperspectral image segmentation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2921011 – volume: 4 start-page: 364 year: 2011 ident: 10.1016/j.compag.2023.107920_b50 article-title: Fluorescence spectroscopy measurement for quality assessment of food systems - a review publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0370-0 – volume: 3 start-page: 767 issue: 3 year: 2020 ident: 10.1016/j.compag.2023.107920_b96 article-title: Advanced machine learning in point spectroscopy, RGB- and hyperspectral-imaging for automatic discriminations of crops and weeds: A review publication-title: Smart Cities doi: 10.3390/smartcities3030039 – volume: 155 start-page: 298 year: 2018 ident: 10.1016/j.compag.2023.107920_b107 article-title: Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.10.021 – volume: 319 year: 2020 ident: 10.1016/j.compag.2023.107920_b141 article-title: Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126536 – volume: 321 year: 2020 ident: 10.1016/j.compag.2023.107920_b151 article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.126503 – volume: 191 year: 2021 ident: 10.1016/j.compag.2023.107920_b59 article-title: Learning an optical filter for green pepper automatic picking in agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106521 – volume: 25 issue: 1 year: 2020 ident: 10.1016/j.compag.2023.107920_b156 article-title: A rapid and highly efficient method for the identification of Soybean seed varieties: Hyperspectral images combined with transfer learning publication-title: Molecules doi: 10.3390/molecules25010152 – volume: 11 issue: 8 year: 2021 ident: 10.1016/j.compag.2023.107920_b67 article-title: Multi-input deep learning model with RGB and hyperspectral imaging for Banana grading publication-title: Agriculture doi: 10.3390/agriculture11080687 – volume: 266 year: 2022 ident: 10.1016/j.compag.2023.107920_b152 article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.120460 – volume: 190 year: 2021 ident: 10.1016/j.compag.2023.107920_b108 article-title: Reflectance images of effective wavelengths from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention convolution neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106483 – volume: 21 issue: 3 year: 2021 ident: 10.1016/j.compag.2023.107920_b73 article-title: Early detection of plant viral disease using hyperspectral imaging and deep learning publication-title: Sensors doi: 10.3390/s21030742 – volume: 12 start-page: 2774 year: 2022 ident: 10.1016/j.compag.2023.107920_b18 article-title: Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images publication-title: Sci. Rep. doi: 10.1038/s41598-022-06679-6 – volume: 15 start-page: 98 year: 2019 ident: 10.1016/j.compag.2023.107920_b70 article-title: Plant disease identification using explainable 3D deep learning on hyperspectral images publication-title: Plant Methods doi: 10.1186/s13007-019-0479-8 – volume: 421 year: 2022 ident: 10.1016/j.compag.2023.107920_b19 article-title: Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars publication-title: J. Hard Mater. doi: 10.1016/j.jhazmat.2021.126706 – volume: 12 issue: 19 year: 2020 ident: 10.1016/j.compag.2023.107920_b145 article-title: Deep learning in hyperspectral image reconstruction from single RGB images—A case study on tomato quality parameters publication-title: Remote Sens. doi: 10.3390/rs12193258 – volume: 45 issue: 9 year: 2022 ident: 10.1016/j.compag.2023.107920_b28 article-title: Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology publication-title: J. Food Process Eng. doi: 10.1111/jfpe.14120 – volume: 175 year: 2020 ident: 10.1016/j.compag.2023.107920_b133 article-title: Integrating spectral and image data to detect Fusarium head blight of wheat publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105588 – volume: 18 start-page: 49 year: 2022 ident: 10.1016/j.compag.2023.107920_b136 article-title: Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning publication-title: Plant Methods doi: 10.1186/s13007-022-00882-2 – volume: 111 year: 2020 ident: 10.1016/j.compag.2023.107920_b144 article-title: Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2020.103550 – volume: 27 issue: 18 year: 2022 ident: 10.1016/j.compag.2023.107920_b49 article-title: Deep learning combined with hyperspectral imaging technology for variety discrimination of Fritillaria thunbergii publication-title: Molecules doi: 10.3390/molecules27186042 – volume: 9 year: 2019 ident: 10.1016/j.compag.2023.107920_b105 article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN) publication-title: Sci. Rep. – volume: 19 issue: 19 year: 2019 ident: 10.1016/j.compag.2023.107920_b158 article-title: Identification of Soybean varieties using hyperspectral imaging coupled with convolutional neural network publication-title: Sensors doi: 10.3390/s19194065 – volume: 14 start-page: 167 issue: 2 year: 2021 ident: 10.1016/j.compag.2023.107920_b146 article-title: Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network publication-title: Int. J. Agricult. Biol. Eng. doi: 10.25165/j.ijabe.20211402.6023 – volume: 23 issue: 11 year: 2018 ident: 10.1016/j.compag.2023.107920_b113 article-title: Discrimination of chrysanthemum varieties using hyperspectral imaging combined with a deep convolutional neural network publication-title: Molecules doi: 10.3390/molecules23112831 – volume: 125 year: 2022 ident: 10.1016/j.compag.2023.107920_b143 article-title: Moisture detection of single corn seed based on hyperspectral imaging and deep learning publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104279 – volume: 2 issue: 9 year: 2020 ident: 10.1016/j.compag.2023.107920_b10 article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy publication-title: Phytopathol. Res. – volume: 1 start-page: 1 year: 2019 ident: 10.1016/j.compag.2023.107920_b43 article-title: Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues publication-title: Artif. Intell. Agricult. – volume: 6 start-page: 27 year: 2019 ident: 10.1016/j.compag.2023.107920_b48 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data doi: 10.1186/s40537-019-0192-5 – volume: 120 year: 2022 ident: 10.1016/j.compag.2023.107920_b119 article-title: Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2021.104003 – volume: 190 year: 2021 ident: 10.1016/j.compag.2023.107920_b80 article-title: Feasibility study on identifying seed viability of Sophora Japonica with optimized deep neural network and hyperspectral imaging publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106426 – volume: 15 start-page: 4497 year: 2021 ident: 10.1016/j.compag.2023.107920_b41 article-title: Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network publication-title: Food Measure doi: 10.1007/s11694-021-01012-7 – volume: 177 year: 2020 ident: 10.1016/j.compag.2023.107920_b64 article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105683 – volume: 8 issue: 12 year: 2019 ident: 10.1016/j.compag.2023.107920_b32 article-title: Application of near-infrared hyperspectral imaging with machine learning methods to identify geographical origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits publication-title: Foods doi: 10.3390/foods8120620 – volume: 8 issue: 2 year: 2018 ident: 10.1016/j.compag.2023.107920_b85 article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app8020212 – volume: 8 start-page: 380 issue: 3 year: 2021 ident: 10.1016/j.compag.2023.107920_b36 article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology publication-title: Inform. Process. Agricult. doi: 10.1016/j.inpa.2020.10.006 – volume: 5 start-page: 354 issue: 3 year: 2018 ident: 10.1016/j.compag.2023.107920_b34 article-title: A review of neural networks in plant disease detection using hyperspectral data publication-title: Inform. Process. Agricult. doi: 10.1016/j.inpa.2018.05.002 – volume: 131 start-page: 65 year: 2015 ident: 10.1016/j.compag.2023.107920_b8 article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2015.01.003 – volume: 24 issue: 18 year: 2019 ident: 10.1016/j.compag.2023.107920_b157 article-title: Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties publication-title: Molecules doi: 10.3390/molecules24183268 – volume: 4 start-page: 31 year: 2020 ident: 10.1016/j.compag.2023.107920_b31 article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning publication-title: Artif. Intell. Agricult. – volume: 162 start-page: 482 year: 2019 ident: 10.1016/j.compag.2023.107920_b5 article-title: Detection of nutrition deficiencies in plants using proximal images and machine learning: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.035 – volume: 15 start-page: 484 year: 2021 ident: 10.1016/j.compag.2023.107920_b134 article-title: Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network publication-title: J. Food Meas. Charact. doi: 10.1007/s11694-020-00646-3 – volume: 11 issue: 12 year: 2021 ident: 10.1016/j.compag.2023.107920_b53 article-title: Identification of geographical origin of Chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm publication-title: Agriculture doi: 10.3390/agriculture11121274 – volume: 7 start-page: 4735 issue: 6 year: 2022 ident: 10.1016/j.compag.2023.107920_b47 article-title: Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning publication-title: ACS Omega doi: 10.1021/acsomega.1c04102 – volume: 81 start-page: 3005 year: 2022 ident: 10.1016/j.compag.2023.107920_b93 article-title: Hyperspectral imagery applications for precision agriculture - a systemic survey publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-11729-8 – volume: 41 issue: 1 year: 2021 ident: 10.1016/j.compag.2023.107920_b98 article-title: Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology publication-title: J. Food Saf. doi: 10.1111/jfs.12866 – volume: 234 year: 2020 ident: 10.1016/j.compag.2023.107920_b109 article-title: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2020.118237 – volume: 101 start-page: 1448 issue: 6 year: 2020 ident: 10.1016/j.compag.2023.107920_b26 article-title: Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping publication-title: Plant J. doi: 10.1111/tpj.14597 – volume: 200 start-page: 188 year: 2020 ident: 10.1016/j.compag.2023.107920_b138 article-title: Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.10.004 – volume: 281 year: 2022 ident: 10.1016/j.compag.2023.107920_b29 article-title: Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2022.121641 – volume: 21 issue: 4 year: 2021 ident: 10.1016/j.compag.2023.107920_b33 article-title: Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation publication-title: Sensors doi: 10.3390/s21041288 – volume: 26 start-page: 462 issue: 6 year: 2022 ident: 10.1016/j.compag.2023.107920_b88 article-title: How variability shapes learning and generalization publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2022.03.007 – volume: 10 issue: 3 year: 2018 ident: 10.1016/j.compag.2023.107920_b45 article-title: Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field publication-title: Remote Sens. doi: 10.3390/rs10030395 – volume: 9 start-page: 12635 year: 2019 ident: 10.1016/j.compag.2023.107920_b114 article-title: Variety identification of oat seeds using hyperspectral imaging: Investigating the representation ability of deep convolutional neural network publication-title: RSC Adv. doi: 10.1039/C8RA10335F – volume: 212 start-page: 46 year: 2021 ident: 10.1016/j.compag.2023.107920_b129 article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2021.09.010 – volume: 395 year: 2022 ident: 10.1016/j.compag.2023.107920_b132 article-title: Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.133563 – volume: 155 start-page: 24 year: 2017 ident: 10.1016/j.compag.2023.107920_b9 article-title: Deoxynivalenol screening in wheat kernels using hyperspectral imaging publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.12.004 – volume: 21 issue: 10 year: 2021 ident: 10.1016/j.compag.2023.107920_b35 article-title: Application of hyperspectral imaging and deep learning for robust prediction of sugar and pH levels in wine grape berries publication-title: Sensors doi: 10.3390/s21103459 – start-page: 4959 year: 2015 ident: 10.1016/j.compag.2023.107920_b65 article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks – volume: 16 start-page: 1264 issue: 8 year: 2019 ident: 10.1016/j.compag.2023.107920_b71 article-title: Validating hyperspectral image segmentation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2895697 – year: 2021 ident: 10.1016/j.compag.2023.107920_b84 – volume: 12 issue: 8 year: 2022 ident: 10.1016/j.compag.2023.107920_b21 article-title: Tea category identification using wavelet signal reconstruction of hyperspectral imagery and machine learning publication-title: Agriculture doi: 10.3390/agriculture12081085 – volume: 21 issue: 24 year: 2021 ident: 10.1016/j.compag.2023.107920_b30 article-title: HyperSeed: An end-to-end method to process hyperspectral images of seeds publication-title: Sensors doi: 10.3390/s21248184 – volume: 12 issue: 6 year: 2022 ident: 10.1016/j.compag.2023.107920_b101 article-title: Hyperspectral sensing of plant diseases: Principle and methods publication-title: Agronomy doi: 10.3390/agronomy12061451 – volume: 196 year: 2022 ident: 10.1016/j.compag.2023.107920_b112 article-title: Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106850 – volume: 70 start-page: 1572 issue: 7 year: 2021 ident: 10.1016/j.compag.2023.107920_b13 article-title: Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction publication-title: Plant Pathol. doi: 10.1111/ppa.13411 – volume: 172 start-page: 188 year: 2018 ident: 10.1016/j.compag.2023.107920_b130 article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.12.010 – volume: 122 year: 2022 ident: 10.1016/j.compag.2023.107920_b46 article-title: Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2022.104097 – volume: 173 year: 2020 ident: 10.1016/j.compag.2023.107920_b2 article-title: Identification and diagnosis of whole body and fragments of Trogoderma granarium and Trogoderma variabile using visible near infrared hyperspectral imaging technique coupled with deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105438 – volume: 20 issue: 17 year: 2020 ident: 10.1016/j.compag.2023.107920_b116 article-title: Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging publication-title: Sensors doi: 10.3390/s20174940 – volume: 2022 year: 2022 ident: 10.1016/j.compag.2023.107920_b86 article-title: Deep learning based dual channel Banana grading system using convolution neural network publication-title: J. Food Qual. |
SSID | ssj0016987 |
Score | 2.5960338 |
SecondaryResourceType | review_article |
Snippet | Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107920 |
SubjectTerms | Convolutional neural network Electromagnetic spectrum Machine learning |
Title | A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture |
URI | https://dx.doi.org/10.1016/j.compag.2023.107920 |
Volume | 210 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RRveWANberEj7FCoAKiC1RiixzHLkGQVqWs_HbOsVNAQiChTLZ8cvTFukf83R3AaW5obITCIMf0eZRo18i9p7Wj_dE01rJX1ElityM2HCfXD-lDC86bXBhHqwy63-v0WluHmW5Aszsry-4dOisiZhI9lLroCl2BTh-tvWhDZ3B1MxwtLxOYFD5rmmHAhAJNBl1N86qp3pMz10Ucp7h0jb9_slBfrM7lBqwHd5EM_BttQstUW7A2mMxDyQyzDeWA-PwTMq0IunME98Jwt0acTC0pjJmR0BxiQpY1W1-J-wVLHI2lfMEtHjEg9XmXcxzh1ASXlBVRn3vtwPjy4v58GIUGCpHGSGARFdzg45yEwjAupbIpZRrB6kmRSC1zqTBAFcZYzTljgsaKCclUklMtU27pLrSraWX2gBToCXJlFO9bmlglpc1TXXBlLWPusnAfaANapkN1cdfk4jlraGRPmYc6c1BnHup9iJZSM19d44_1vPke2bdTkqEB-FXy4N-Sh7DqRp6iewTtxfzNHKMjsshPYOXsPT4Jx-0D8cbeJA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGxKf4xgNraIsTOx4jBCq0dAEktshx7BAEaVXK_-ccOwUkBBLKFMcnRxfLfhe_uwdwmmna17HEIEef8yBUVsi9p5Sl_dGor0Qvr5PEbsds8BDePEaPLbhocmEsrdKv_W5Nr1dr39L13uxOy7J7h2Al7jOBCKUuukKXoBNaUes2dJLr4WC8OExgInZZ0wwDJjRoMuhqmldN9S7OrIo4NnFhhb9_2qG-7DpX67Dm4SJJ3BttQEtXm7CaFDNfMkNvQZkQl39CJhVBOEdwLAx3a4-TiSG51lPixSEKsqjZ-kbsL1hiaSzlKw7xhAGpy7uc4R02FdilrIj8HGsbHq4u7y8GgRdQCBRGAvMg5xovCxJyzbgQ0kSUKXRWT8ShUCITEgPUWGujOGcspn3JYsFkmFElIm7oDrSrSaV3geSIBLnUkp8bGhophMkilXNpDGP2sHAPaOO0VPnq4lbk4iVtaGTPqXN1al2dOlfvQbCwmrrqGn_05833SL_NkhQ3gF8t9_9teQLLg_vbUTq6Hg8PYMU-cXTdQ2jPZ-_6CEHJPDv2k-4DMObgCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+the+combination+of+deep+learning+techniques+with+proximal+hyperspectral+images+in+agriculture&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Barbedo%2C+Jayme+Garcia+Arnal&rft.date=2023-07-01&rft.issn=0168-1699&rft.volume=210&rft.spage=107920&rft_id=info:doi/10.1016%2Fj.compag.2023.107920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2023_107920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |