A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture

Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the pr...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 210; p. 107920
Main Author Barbedo, Jayme Garcia Arnal
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text
ISSN0168-1699
DOI10.1016/j.compag.2023.107920

Cover

Abstract Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the preferred choice in the last decade due to its ability to implicitly extract features from images. The combination of hyperspectral images with deep learning has been extensively explored in the context of remote sensing (data collected by drones and satellites), which has generated an extensive literature that has been thoroughly analyzed in a series of reviews and surveys. The application of deep learning to proximal hyperspectral images is more recent, but there are already many articles dedicated to this objective, especially in the areas of agriculture and food science. Although significant progress has been made in just a few years, there are still many aspects that are not well understood and many problems that have not yet been overcome. This review aims at characterizing the current state of the art of deep learning applied to hyperspectral images captured at close range, focusing on the main challenges and research gaps that still need to be properly addressed. Some possible solutions and potential directions for future research are suggested, as an effort to bring the techniques developed in the academy closer to meeting the requirements found in practice. Only applications related to vegetable production and products were considered in this review, because applications related to animal farming and products of animal origin have their own particularities and the literature on the subject is not as extensive. •The use of hyperspectral images and deep learning in agriculture is analyzed.•More than 120 peer-reviewed articles were considered.•The main challenges and research gaps are identified and discussed.•Possible solutions and directions for future research are proposed.
AbstractList Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a given scene. There are several techniques that can be used to extract information from hyperspectral images, with deep learning becoming the preferred choice in the last decade due to its ability to implicitly extract features from images. The combination of hyperspectral images with deep learning has been extensively explored in the context of remote sensing (data collected by drones and satellites), which has generated an extensive literature that has been thoroughly analyzed in a series of reviews and surveys. The application of deep learning to proximal hyperspectral images is more recent, but there are already many articles dedicated to this objective, especially in the areas of agriculture and food science. Although significant progress has been made in just a few years, there are still many aspects that are not well understood and many problems that have not yet been overcome. This review aims at characterizing the current state of the art of deep learning applied to hyperspectral images captured at close range, focusing on the main challenges and research gaps that still need to be properly addressed. Some possible solutions and potential directions for future research are suggested, as an effort to bring the techniques developed in the academy closer to meeting the requirements found in practice. Only applications related to vegetable production and products were considered in this review, because applications related to animal farming and products of animal origin have their own particularities and the literature on the subject is not as extensive. •The use of hyperspectral images and deep learning in agriculture is analyzed.•More than 120 peer-reviewed articles were considered.•The main challenges and research gaps are identified and discussed.•Possible solutions and directions for future research are proposed.
ArticleNumber 107920
Author Barbedo, Jayme Garcia Arnal
Author_xml – sequence: 1
  givenname: Jayme Garcia Arnal
  orcidid: 0000-0002-1156-8270
  surname: Barbedo
  fullname: Barbedo, Jayme Garcia Arnal
  email: jayme.barbedo@embrapa.br
  organization: Embrapa Digital Agriculture, Campinas, SP, Brazil
BookMark eNqFkE1OwzAQhb0oEi1wAxa-QIpTp3bMAqmq-JMqsYG15TqTxFXqBNul9PZMKSsWIC9Gb8ZvNO-bkJHvPRBynbNpznJxs5nafjuYZjpjM44tqWZsRMY4KrNcKHVOJjFuGGpVyjFxCxrgw8Ge9p6mFii6186b5FD3Na0ABtqBCd75hiawrXfvO4h071JLh9B_uq3paHsYIMQBbAqosNXgF-epaYKzuy7tAlySs9p0Ea5-6gV5e7h_XT5lq5fH5-VilVnORMoqCfiYLHgFQipl6jkXlnHGVFkoq9bK8JKXALWVUoiS50aUSphiza2ay5pfkNvTXhv6GAPU2rr0nQdvc53OmT6C0ht9AqWPoPQJFJqLX-YhYJpw-M92d7IBBkOaQUfrwFuoXEAmuurd3wu-APAQio4
CitedBy_id crossref_primary_10_1016_j_jfca_2024_106899
crossref_primary_10_3390_agronomy15030625
crossref_primary_10_1016_j_cropro_2024_106992
crossref_primary_10_1016_j_jfca_2025_107424
crossref_primary_10_3390_agriengineering6040225
crossref_primary_10_1016_j_atech_2025_100851
crossref_primary_10_1109_JSTARS_2024_3355071
crossref_primary_10_1016_j_microc_2025_112913
crossref_primary_10_1109_TGRS_2025_3541879
crossref_primary_10_1016_j_plaphe_2025_100021
crossref_primary_10_1016_j_foodchem_2024_141393
crossref_primary_10_1016_j_saa_2024_125676
crossref_primary_10_3390_su17051804
crossref_primary_10_1016_j_jafr_2024_101388
crossref_primary_10_55267_iadt_07_15214
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_1038_s41598_024_82586_2
crossref_primary_10_1016_j_microc_2024_110034
crossref_primary_10_1016_j_ins_2024_120452
crossref_primary_10_1111_1750_3841_17512
crossref_primary_10_1007_s10661_025_13728_w
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_compag_2025_109940
crossref_primary_10_1016_j_saa_2024_124812
crossref_primary_10_3390_s24248217
crossref_primary_10_1016_j_compag_2024_109847
crossref_primary_10_1016_j_compag_2024_109008
crossref_primary_10_1016_j_compag_2024_109449
crossref_primary_10_1016_j_trac_2024_117981
crossref_primary_10_1016_j_infrared_2024_105532
crossref_primary_10_1016_j_compag_2024_109838
crossref_primary_10_1016_j_jfca_2025_107403
crossref_primary_10_1016_j_compag_2023_108382
crossref_primary_10_1016_j_microc_2024_111499
crossref_primary_10_1109_TAFE_2024_3445119
crossref_primary_10_3389_fpls_2023_1322391
crossref_primary_10_3390_su16146064
crossref_primary_10_1016_j_compag_2024_109037
crossref_primary_10_1016_j_saa_2024_124166
crossref_primary_10_1016_j_infrared_2024_105128
crossref_primary_10_1016_j_jag_2023_103415
crossref_primary_10_1016_j_infrared_2024_105208
crossref_primary_10_1016_j_saa_2024_125451
crossref_primary_10_1016_j_compag_2025_110150
crossref_primary_10_1016_j_compag_2025_110152
crossref_primary_10_1109_JSTARS_2024_3414936
crossref_primary_10_3390_jlpea14020019
crossref_primary_10_1016_j_compag_2024_109346
crossref_primary_10_1038_s41598_023_42190_2
crossref_primary_10_5897_AJAR2024_16714
crossref_primary_10_1016_j_focha_2023_100491
Cites_doi 10.1016/j.chemolab.2021.104404
10.1109/ACCESS.2019.2936892
10.1016/j.foodcont.2022.108819
10.1016/j.biosystemseng.2018.05.013
10.1111/jfpe.13952
10.1002/jsfa.11095
10.25165/j.ijabe.20221502.6881
10.1109/ACCESS.2020.3006495
10.1016/j.saa.2021.120813
10.1007/s41348-017-0124-6
10.3389/fpls.2019.00209
10.3390/horticulturae8090854
10.1109/ACCESS.2021.3051196
10.3389/fpls.2021.736334
10.1016/j.biosystemseng.2022.05.001
10.1016/j.ijleo.2022.169527
10.3390/s20185021
10.1016/j.saa.2019.117973
10.1016/j.isprsjprs.2019.09.006
10.1016/j.biosystemseng.2022.07.013
10.1039/D0RA06938H
10.3389/fbioe.2020.616943
10.1016/j.compag.2022.106963
10.1109/ACCESS.2019.2917267
10.1016/j.chemolab.2020.103996
10.3390/foods11111609
10.1007/s12161-020-01871-8
10.1016/j.compag.2022.107411
10.1186/s40537-019-0197-0
10.1007/s10462-021-10018-y
10.3389/fpls.2022.860656
10.1016/j.compag.2022.107007
10.1016/j.compag.2022.107343
10.1038/nature14539
10.1016/j.lwt.2020.109815
10.1016/j.tplants.2021.12.003
10.3390/s21092899
10.3390/s18041126
10.1016/j.compag.2021.106226
10.3390/s21020613
10.1016/j.infrared.2021.103802
10.1016/j.microc.2022.108020
10.1016/j.compag.2021.105996
10.1007/s11760-021-02029-7
10.1016/j.foodcont.2022.109077
10.3389/fbioe.2021.696292
10.1016/j.isprsjprs.2021.05.003
10.1109/TGRS.2009.2019636
10.3390/fishes7060335
10.1016/j.compag.2021.106252
10.1080/10942912.2022.2027963
10.1016/j.infrared.2022.104270
10.1016/j.ecoinf.2022.101678
10.1016/j.foodcont.2022.109291
10.1016/j.snb.2019.126630
10.1109/ACCESS.2020.2994913
10.1016/j.compag.2019.04.019
10.1016/j.compag.2020.105713
10.1016/j.compag.2020.105780
10.1016/j.compag.2022.106970
10.1016/j.compag.2019.104888
10.1080/07352681003617285
10.1111/jfpe.13767
10.1016/j.compag.2020.105868
10.1080/01431161.2019.1685721
10.3390/plants7010003
10.1016/j.infrared.2022.104100
10.1016/j.infrared.2022.104286
10.1016/j.compag.2022.107153
10.3390/rs13183595
10.1007/s40858-021-00459-9
10.1111/jfpe.13293
10.1016/j.foodchem.2022.134503
10.1016/j.compag.2018.02.025
10.1007/s40858-021-00454-0
10.1016/j.compag.2021.106655
10.1016/j.foodchem.2021.131047
10.1109/LRA.2018.2849514
10.3390/rs12162659
10.1186/s13007-017-0233-z
10.1007/s12161-020-01873-6
10.1016/j.compag.2022.107027
10.3390/rs13224587
10.1109/LGRS.2019.2921011
10.1007/s11947-010-0370-0
10.3390/smartcities3030039
10.1016/j.compag.2018.10.021
10.1016/j.foodchem.2020.126536
10.1016/j.foodchem.2020.126503
10.1016/j.compag.2021.106521
10.3390/molecules25010152
10.3390/agriculture11080687
10.1016/j.saa.2021.120460
10.1016/j.compag.2021.106483
10.3390/s21030742
10.1038/s41598-022-06679-6
10.1186/s13007-019-0479-8
10.1016/j.jhazmat.2021.126706
10.3390/rs12193258
10.1111/jfpe.14120
10.1016/j.compag.2020.105588
10.1186/s13007-022-00882-2
10.1016/j.infrared.2020.103550
10.3390/molecules27186042
10.3390/s19194065
10.25165/j.ijabe.20211402.6023
10.3390/molecules23112831
10.1016/j.infrared.2022.104279
10.1186/s40537-019-0192-5
10.1016/j.infrared.2021.104003
10.1016/j.compag.2021.106426
10.1007/s11694-021-01012-7
10.1016/j.compag.2020.105683
10.3390/foods8120620
10.3390/app8020212
10.1016/j.inpa.2020.10.006
10.1016/j.inpa.2018.05.002
10.1016/j.biosystemseng.2015.01.003
10.3390/molecules24183268
10.1016/j.compag.2019.04.035
10.1007/s11694-020-00646-3
10.3390/agriculture11121274
10.1021/acsomega.1c04102
10.1007/s11042-021-11729-8
10.1111/jfs.12866
10.1016/j.saa.2020.118237
10.1111/tpj.14597
10.1016/j.biosystemseng.2020.10.004
10.1016/j.saa.2022.121641
10.3390/s21041288
10.1016/j.tics.2022.03.007
10.3390/rs10030395
10.1039/C8RA10335F
10.1016/j.biosystemseng.2021.09.010
10.1016/j.foodchem.2022.133563
10.1016/j.biosystemseng.2016.12.004
10.3390/s21103459
10.1109/LGRS.2019.2895697
10.3390/agriculture12081085
10.3390/s21248184
10.3390/agronomy12061451
10.1016/j.compag.2022.106850
10.1111/ppa.13411
10.1016/j.chemolab.2017.12.010
10.1016/j.infrared.2022.104097
10.1016/j.compag.2020.105438
10.3390/s20174940
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2023.107920
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2023_107920
S0168169923003083
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AEXOQ
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
ID FETCH-LOGICAL-c306t-d7e7e70743de6799af536c03009849c9b9a3838eefc7766831a6896a4b3c957f3
IEDL.DBID AIKHN
ISSN 0168-1699
IngestDate Thu Apr 24 23:08:36 EDT 2025
Tue Jul 01 01:58:30 EDT 2025
Tue Dec 03 03:45:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional neural network
Machine learning
Electromagnetic spectrum
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-d7e7e70743de6799af536c03009849c9b9a3838eefc7766831a6896a4b3c957f3
ORCID 0000-0002-1156-8270
ParticipantIDs crossref_citationtrail_10_1016_j_compag_2023_107920
crossref_primary_10_1016_j_compag_2023_107920
elsevier_sciencedirect_doi_10_1016_j_compag_2023_107920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Chiu, Zou (b15) 2022; 197
Sabzi, Pourdarbani, Rohban, García-Mateos, Arribas (b90) 2021; 217
Zhang, Dai, Cheng (b135) 2021; 14
Pang, Men, Yan, Xiao (b79) 2020; 8
Sethy, Pandey, Sahu, Behera (b93) 2022; 81
Su (b96) 2020; 3
Chen, Yan, Huang, Chien, Chu, Jang, Chen, Lin, Shih, Ou-Yang (b18) 2022; 12
Khan, Vibhute, Mali, Patil (b51) 2022; 69
Wan, Li, Li, Wang, Yang, Wang (b101) 2022; 12
Wu, Zhang, Na, Mi, Zhu, He, Zhang (b114) 2019; 9
Gomes, Mendes-Ferreira, Melo-Pinto (b35) 2021; 21
Rangarajan, Louise Whetton, Mouazen (b87) 2022; 208
Qi, Sandroni, Westergaard, Sundmark, Bagge, Alexandersson, Gao (b84) 2021
Lowe, Harrison, French (b62) 2017; 13
Zhu, Zhang, Chao, Xu, Song, Zhang, Huang (b156) 2020; 25
Brugger, Schramowski, Paulus, Steiner, Kersting, Mahlein (b13) 2021; 70
Cui, Yang, Liu, Li, Ning (b21) 2022; 12
He, Zhang, Zhou, He (b42) 2021; 116
Qiu, Chen, Zhao, Zhu, He, Zhang (b85) 2018; 8
Cui, Li, Wang, Fang, Yu, Zhao (b20) 2022; 202
Raghavendra, Ganguli, Selvan, Nayak, Chaudhury, Espina, Ofori (b86) 2022; 2022
Xiao, Yin, Geng, Wu, Zhang, Liu (b117) 2022; 16
Mansuri, Chakraborty, Mahanti, Pandiselvam (b66) 2022; 139
Nie, Zhang, Feng, Yu, He (b75) 2019; 296
Su, Zhang, Yan, Zhu, Zeng, Lu, Gao, Feng, He, Fan (b97) 2021; 12
Wieme, Mollazade, Malounas, Zude-Sasse, Zhao, Gowen, Argyropoulos, Fountas, Van Beek (b110) 2022; 222
Liu, Yu, Kurihara, Li, Niu, Zhan (b59) 2021; 191
Halstead, McCool, Denman, Perez, Fookes (b37) 2018; 3
Diao, Yan, He, Zhao, Guo (b22) 2022; 201
Li, Jiang, Jiang, Shi (b53) 2021; 11
Wu, Weng, Chen, Xiao, Zhang, He (b112) 2022; 196
Zhao, Pan, Li, Lan, Lu, Yang, Wen (b146) 2021; 14
Yang, Chen, He, Liu, Feng, Zhang (b122) 2020; 10
Han, Liu, Khoshelham, Bai (b39) 2021; 180
Barbedo, Tibola, Lima (b9) 2017; 155
Li, Zhang, Sun, Rao, Ji (b56) 2021; 44
Liu, Jiang, Qiao, Qi, Pan, Pan (b58) 2020; 132
Wang, Cao, Zhang, Li, Xu, Wu (b102) 2022; 14
Agarwal, Al-Shuwaili, Nugaliyadde, Wang, Wong, Ren (b2) 2020; 173
Jin, Qi, Jia, Tang, Gao, Li, Zhao (b46) 2022; 122
Xu, Sun, Yao, Cai, Shen, Tian, Zhou (b119) 2022; 120
Barbedo, Tibola, Fernandes (b8) 2015; 131
Garillos-Manliguez, Chiang (b33) 2021; 21
Nalepa, Myller, Kawulok (b72) 2020; 17
Ang, Seng (b3) 2021; 9
Zhang, Yang, Feng, Xu, Chen, He (b142) 2020; 11
Pandey, Payn, Lu, Heine, Walker, Acosta, Young (b77) 2021; 13
Dong, Hao, Luo, Zhang, Wang, Wu, Liu (b23) 2022; 198
Bock, Barbedo, Del Ponte, Bohnenkamp, Mahlein (b10) 2020; 2
Chen, Qiao, Feng, Xu, Lin, Cai (b16) 2021; 8
Feng, Zhan, Wang, Yang, Yu, Wang, Tang, Jiang, Peng, He (b26) 2020; 101
Fazari, Pellicer-Valero, Gómez-Sanchıs, Bernardi, Cubero, Benalia, Zimbalatti, Blasco (b24) 2021; 187
Sarić, Nguyen, Burge, Berkowitz, Trtílek, Whelan, Lewsey, Čustović (b91) 2022; 27
Liu, Zhou, Wu, Han, Li, Chen (b61) 2022; 198
Yang, Ma, Yao, Cao, Zhu (b125) 2021; 21
Johnson, Khoshgoftaar (b48) 2019; 6
Zhu, Zhou, Zhang, Bao, Wu, Chu, Yu, He, Feng (b158) 2019; 19
Yipeng, Wenbing, Kaixuan, Wentao, Ling, Shizhuang, Linsheng (b128) 2022; 135
Zhou, Sun, Tian, Lu, Hang, Chen (b150) 2020; 41
Han, Gao (b38) 2019; 164
Nguyen, Sagan, Maimaitiyiming, Maimaitijiang, Bhadra, Kwasniewski (b73) 2021; 21
Wu, Liu, Meng, Li, Zhang, He (b111) 2021; 9
Yan, Ren, Tschannerl, Zhao, Harrison, Jack (b120) 2021; 70
Abbas, Peng, Wong, Li, Wang, Ng, Kwok, Hui (b1) 2021; 177
Nalepa, Myller, Kawulok (b71) 2019; 16
Liu, Yu, Kurihara, Xu, Niu, Zhan (b60) 2022; 265
Xiang, Chen, Su, Zhang, Chen, Zhou, Yao, Xuan, Cheng (b115) 2022; 13
Ma, Tsuchikawa, Inagaki (b64) 2020; 177
Zhu, Abdalla, Tang, Cen (b153) 2022; 219
Sun, Cao, Zhou, Wu, Sun, Hu (b98) 2021; 41
Hao, Dong, Li, Wang, Cui, Zhang, Wu (b40) 2022; 125
Seo, Kim, Lim, Lee, Kim, Jang, Mo, Kim (b92) 2021; 21
Wendel, Underwood, Walsh (b107) 2018; 155
Gao, Shao, Xuan, Wang, Liu, Han (b31) 2020; 4
Zhang, Wu, Zhou, Cheng, Ye, He (b141) 2020; 319
He, He, Wang, Wang, Lyu (b41) 2021; 15
Li, Lecourt, Bishop (b54) 2018; 7
Barbedo (b7) 2022; 7
Rehman, Ma, Wang, Zhang, Jin (b89) 2020; 177
Zhang, Zhang, Wu, Liu, Yu, Chen (b143) 2022; 125
Gao, Chandran, Paul, Walia, Yu (b30) 2021; 21
Xin, Jun, Yan, Quansheng, Xiaohong, Yingying (b118) 2020; 200
Polder, Blok, de Villiers, van der Wolf, Kamp (b83) 2019; 10
Jin, Jie, Wang, Qi, Li (b45) 2018; 10
Nagasubramanian, Jones, Singh, Sarkar, Singh, Ganapathysubramanian (b70) 2019; 15
Feng, Li, Cui (b25) 2022; 15
Lu, Dao, Liu, He, Shang (b63) 2020; 12
Karoui, Blecker (b50) 2011; 4
Li, Ma, Li, Yu (b55) 2022; 193
Thomas, Kuska, Bohnenkamp, Brugger, Alisaac, Wahabzada, Behmann, Mahlein (b100) 2018; 125
Zhu, Li, Rao, Ji (b154) 2023; 143
Zhu, Zhou, Gao, Bao, He, Feng (b157) 2019; 24
Weng, Tang, Yuan, Guo, Yu, Huang, Xu (b109) 2020; 234
Bruzzone, Persello (b14) 2009; 47
Gao, Xu, Yan, Zhang, Lv, He (b32) 2019; 8
Jie, Wu, Wang, Li, Ye, Wei (b44) 2020; 14
Xiao, Bai, Gao, He (b116) 2020; 20
Zhu, Yang, Ding, Han (b155) 2022; 183
Ni, Li, Zhang, Sun, Huang, Zhao, Zhu, Wang (b74) 2020; 8
Zhou, Huang, Tian, Yang, Liang (b149) 2021; 101
Wang, Hu, Zhai (b103) 2018; 18
Barbedo (b5) 2019; 162
Yuan, Jiang, Gong, Nie, Sun (b131) 2022; 197
Yang, Gao, Yan, Qi, Zhu, Wang (b123) 2020; 20
Wang, Vinson, Holmes, Seibel, Bechar, Nof, Tao (b105) 2019; 9
Chen, Wang, Wang, Song, Li, Huang, Wang, Jin (b17) 2021; 183
Zhao, Kechasov, Rewald, Bodner, Verheul, Clarke, Clarke (b145) 2020; 12
Gui, Fei, Wu, Fu, Diakite (b36) 2021; 8
Jiang, He, Yang, Fu, Li, Song, He (b43) 2019; 1
Pang, Huang, Fan, Zhou, Wang, Tian (b78) 2022; 45
Jin, Zhang, Jia, Tang, Gao, Zhao, Qi (b47) 2022; 7
Zhang, Wang, Liu, An (b139) 2022; 199
Zheng, Bao, Weng, Tao, Zhang, Huang, Zhao (b148) 2022; 270
Zhang, Feng, Wu, Yang, Tao, Yang, He (b136) 2022; 18
Yang, Jiang, Jie, Li, Shi (b124) 2022; 25
Mishra, Sadeh, Bino, Polder, Boer, Rutledge, Herrmann (b69) 2021; 186
Onmankhong, Ma, Inagaki, Sirisomboon, Tsuchikawa (b76) 2022; 123
Wang, Liu, Liu, Zhu, Hou, Liu, Li (b104) 2021; 54
Zhang, An, Wei, Liu, Wu (b132) 2022; 395
Zhou, Sun, Tian, Yao, Xu (b152) 2022; 266
Bock, Pethybridge, Barbedo, Esker, Mahlein, Ponte (b11) 2022; 47
Raviv, Lupyan, Green (b88) 2022; 26
Steinbrener, Posch, Leitner (b95) 2019; 162
Barbedo (b6) 2022; 47
Pang, Wang, Yuan, Yan, Yang, Xiao (b80) 2021; 190
Paoletti, Haut, Plaza, Plaza (b81) 2019; 158
Shorten, Khoshgoftaar (b94) 2019; 6
Sun, Wu, Hang, Lu, Wu, Chen (b99) 2019; 42
Mishra, Lohumi, Ahmad Khan, Nordon (b68) 2020; 178
Fu, Sun, Wang, Xu, Yao, Cao, Tang (b28) 2022; 45
Golhani, Balasundram, Vadamalai, Pradhan (b34) 2018; 5
Zhang, Sun, Rao, Ji (b137) 2020; 229
Feng, Zhu, Zhou, Zhao, Bao, Zhang, He (b27) 2019; 7
Makantasis, Karantzalos, Doulamis, Doulamis (b65) 2015
Zhang, Sun, Rao, Ji (b138) 2020; 200
Kabir, Guindo, Chen, Liu, Luo, Kong (b49) 2022; 27
LeCun, Bengio, Hinton (b52) 2015; 521
Park, ki Hong, hwan Kim, Lee (b82) 2018; 148
Wang, Xiong, Zhang, Wang, Yuan, Lu, Nie, Nan, Yang, Huang, Yang (b106) 2023; 404
Chu, Zhang, Wang, Gouda, Wei, He, Liu (b19) 2022; 421
Zhang, Wang, Wei, An (b140) 2022; 370
Yu, Lu, Liu (b130) 2018; 172
Zhang, Dai, Cheng (b134) 2021; 15
Zhang, Zhao, Yan, Bai, Xiao, Gao, Li, Huang, Bao, He, Liu (b144) 2020; 111
Zhou, Sun, Tian, Lu, Hang, Chen (b151) 2020; 321
Wu, Zhang, Bai, Du, He (b113) 2018; 23
Zhao, Que, Sun, Zhu, Huang (b147) 2022; 125
Bock, Poole, Parker, Gottwald (b12) 2010; 29
Mesa, Chiang (b67) 2021; 11
Yang, Yang, Hao, Xie, Li (b126) 2019; 7
Zhang, Chen, Yin, Hu, Gu, Pan, Zhou, Chen (b133) 2020; 175
Barbedo (b4) 2018; 172
Yu, Fang, Zhangjin, Mi, Feng, He (b129) 2021; 212
Weng, Han, Chu, Zhu, Liu, Zhu, Zhang, Zheng, Huang (b108) 2021; 190
Ye, Yan, Zhang, Duan, Chen, Song, Zhang, Xu, Gao (b127) 2022; 11
Yang (b121) 2022; 8
Fu, Sun, Wang, Xu, Yao, Zhou (b29) 2022; 281
Liang, Ouyang, Dai (b57) 2021; 13
Liang (10.1016/j.compag.2023.107920_b57) 2021; 13
Sun (10.1016/j.compag.2023.107920_b99) 2019; 42
Wang (10.1016/j.compag.2023.107920_b104) 2021; 54
Zhu (10.1016/j.compag.2023.107920_b153) 2022; 219
Zhou (10.1016/j.compag.2023.107920_b151) 2020; 321
Liu (10.1016/j.compag.2023.107920_b59) 2021; 191
Wan (10.1016/j.compag.2023.107920_b101) 2022; 12
Cui (10.1016/j.compag.2023.107920_b21) 2022; 12
Mishra (10.1016/j.compag.2023.107920_b69) 2021; 186
Yang (10.1016/j.compag.2023.107920_b121) 2022; 8
Johnson (10.1016/j.compag.2023.107920_b48) 2019; 6
Ye (10.1016/j.compag.2023.107920_b127) 2022; 11
Jiang (10.1016/j.compag.2023.107920_b43) 2019; 1
Barbedo (10.1016/j.compag.2023.107920_b4) 2018; 172
Zhang (10.1016/j.compag.2023.107920_b136) 2022; 18
Zhao (10.1016/j.compag.2023.107920_b146) 2021; 14
Garillos-Manliguez (10.1016/j.compag.2023.107920_b33) 2021; 21
Halstead (10.1016/j.compag.2023.107920_b37) 2018; 3
Chu (10.1016/j.compag.2023.107920_b19) 2022; 421
Sethy (10.1016/j.compag.2023.107920_b93) 2022; 81
Wang (10.1016/j.compag.2023.107920_b106) 2023; 404
Zhang (10.1016/j.compag.2023.107920_b143) 2022; 125
Bock (10.1016/j.compag.2023.107920_b11) 2022; 47
Li (10.1016/j.compag.2023.107920_b54) 2018; 7
Nagasubramanian (10.1016/j.compag.2023.107920_b70) 2019; 15
Bruzzone (10.1016/j.compag.2023.107920_b14) 2009; 47
Zhang (10.1016/j.compag.2023.107920_b140) 2022; 370
Bock (10.1016/j.compag.2023.107920_b12) 2010; 29
Zhang (10.1016/j.compag.2023.107920_b142) 2020; 11
Wu (10.1016/j.compag.2023.107920_b111) 2021; 9
Li (10.1016/j.compag.2023.107920_b53) 2021; 11
Paoletti (10.1016/j.compag.2023.107920_b81) 2019; 158
Rangarajan (10.1016/j.compag.2023.107920_b87) 2022; 208
Park (10.1016/j.compag.2023.107920_b82) 2018; 148
Bock (10.1016/j.compag.2023.107920_b10) 2020; 2
Su (10.1016/j.compag.2023.107920_b96) 2020; 3
Wang (10.1016/j.compag.2023.107920_b102) 2022; 14
Zhou (10.1016/j.compag.2023.107920_b152) 2022; 266
Wu (10.1016/j.compag.2023.107920_b112) 2022; 196
Cui (10.1016/j.compag.2023.107920_b20) 2022; 202
Gao (10.1016/j.compag.2023.107920_b30) 2021; 21
Zhang (10.1016/j.compag.2023.107920_b139) 2022; 199
Raghavendra (10.1016/j.compag.2023.107920_b86) 2022; 2022
Diao (10.1016/j.compag.2023.107920_b22) 2022; 201
Chen (10.1016/j.compag.2023.107920_b18) 2022; 12
Liu (10.1016/j.compag.2023.107920_b60) 2022; 265
Mishra (10.1016/j.compag.2023.107920_b68) 2020; 178
Li (10.1016/j.compag.2023.107920_b55) 2022; 193
Sarić (10.1016/j.compag.2023.107920_b91) 2022; 27
Feng (10.1016/j.compag.2023.107920_b26) 2020; 101
Gao (10.1016/j.compag.2023.107920_b32) 2019; 8
Zhu (10.1016/j.compag.2023.107920_b156) 2020; 25
Golhani (10.1016/j.compag.2023.107920_b34) 2018; 5
Ni (10.1016/j.compag.2023.107920_b74) 2020; 8
Wu (10.1016/j.compag.2023.107920_b114) 2019; 9
Dong (10.1016/j.compag.2023.107920_b23) 2022; 198
Thomas (10.1016/j.compag.2023.107920_b100) 2018; 125
Yang (10.1016/j.compag.2023.107920_b122) 2020; 10
Gui (10.1016/j.compag.2023.107920_b36) 2021; 8
Xu (10.1016/j.compag.2023.107920_b119) 2022; 120
LeCun (10.1016/j.compag.2023.107920_b52) 2015; 521
Brugger (10.1016/j.compag.2023.107920_b13) 2021; 70
Kabir (10.1016/j.compag.2023.107920_b49) 2022; 27
Shorten (10.1016/j.compag.2023.107920_b94) 2019; 6
Zhang (10.1016/j.compag.2023.107920_b138) 2020; 200
He (10.1016/j.compag.2023.107920_b41) 2021; 15
Yu (10.1016/j.compag.2023.107920_b129) 2021; 212
Chen (10.1016/j.compag.2023.107920_b15) 2022; 197
Jin (10.1016/j.compag.2023.107920_b46) 2022; 122
Agarwal (10.1016/j.compag.2023.107920_b2) 2020; 173
Zhang (10.1016/j.compag.2023.107920_b137) 2020; 229
Barbedo (10.1016/j.compag.2023.107920_b5) 2019; 162
Liu (10.1016/j.compag.2023.107920_b61) 2022; 198
Makantasis (10.1016/j.compag.2023.107920_b65) 2015
Karoui (10.1016/j.compag.2023.107920_b50) 2011; 4
Pang (10.1016/j.compag.2023.107920_b79) 2020; 8
Hao (10.1016/j.compag.2023.107920_b40) 2022; 125
Xiao (10.1016/j.compag.2023.107920_b117) 2022; 16
Sun (10.1016/j.compag.2023.107920_b98) 2021; 41
Barbedo (10.1016/j.compag.2023.107920_b8) 2015; 131
Zheng (10.1016/j.compag.2023.107920_b148) 2022; 270
Gao (10.1016/j.compag.2023.107920_b31) 2020; 4
Zhang (10.1016/j.compag.2023.107920_b144) 2020; 111
Nalepa (10.1016/j.compag.2023.107920_b72) 2020; 17
Zhu (10.1016/j.compag.2023.107920_b155) 2022; 183
Chen (10.1016/j.compag.2023.107920_b16) 2021; 8
Zhang (10.1016/j.compag.2023.107920_b132) 2022; 395
Seo (10.1016/j.compag.2023.107920_b92) 2021; 21
Mansuri (10.1016/j.compag.2023.107920_b66) 2022; 139
Feng (10.1016/j.compag.2023.107920_b25) 2022; 15
Jin (10.1016/j.compag.2023.107920_b45) 2018; 10
Steinbrener (10.1016/j.compag.2023.107920_b95) 2019; 162
Gomes (10.1016/j.compag.2023.107920_b35) 2021; 21
Mesa (10.1016/j.compag.2023.107920_b67) 2021; 11
Wieme (10.1016/j.compag.2023.107920_b110) 2022; 222
Zhang (10.1016/j.compag.2023.107920_b133) 2020; 175
Fu (10.1016/j.compag.2023.107920_b28) 2022; 45
Zhu (10.1016/j.compag.2023.107920_b158) 2019; 19
Zhang (10.1016/j.compag.2023.107920_b135) 2021; 14
Lu (10.1016/j.compag.2023.107920_b63) 2020; 12
Yang (10.1016/j.compag.2023.107920_b123) 2020; 20
Pang (10.1016/j.compag.2023.107920_b78) 2022; 45
Su (10.1016/j.compag.2023.107920_b97) 2021; 12
Onmankhong (10.1016/j.compag.2023.107920_b76) 2022; 123
Ang (10.1016/j.compag.2023.107920_b3) 2021; 9
Pang (10.1016/j.compag.2023.107920_b80) 2021; 190
Ma (10.1016/j.compag.2023.107920_b64) 2020; 177
Nguyen (10.1016/j.compag.2023.107920_b73) 2021; 21
Abbas (10.1016/j.compag.2023.107920_b1) 2021; 177
Zhu (10.1016/j.compag.2023.107920_b157) 2019; 24
Wu (10.1016/j.compag.2023.107920_b113) 2018; 23
Zhou (10.1016/j.compag.2023.107920_b150) 2020; 41
Barbedo (10.1016/j.compag.2023.107920_b6) 2022; 47
Xiang (10.1016/j.compag.2023.107920_b115) 2022; 13
Yuan (10.1016/j.compag.2023.107920_b131) 2022; 197
Han (10.1016/j.compag.2023.107920_b39) 2021; 180
Zhang (10.1016/j.compag.2023.107920_b134) 2021; 15
Barbedo (10.1016/j.compag.2023.107920_b7) 2022; 7
Barbedo (10.1016/j.compag.2023.107920_b9) 2017; 155
Rehman (10.1016/j.compag.2023.107920_b89) 2020; 177
Feng (10.1016/j.compag.2023.107920_b27) 2019; 7
Yang (10.1016/j.compag.2023.107920_b125) 2021; 21
Weng (10.1016/j.compag.2023.107920_b108) 2021; 190
Zhu (10.1016/j.compag.2023.107920_b154) 2023; 143
Raviv (10.1016/j.compag.2023.107920_b88) 2022; 26
Nalepa (10.1016/j.compag.2023.107920_b71) 2019; 16
Nie (10.1016/j.compag.2023.107920_b75) 2019; 296
Qiu (10.1016/j.compag.2023.107920_b85) 2018; 8
Chen (10.1016/j.compag.2023.107920_b17) 2021; 183
Zhao (10.1016/j.compag.2023.107920_b145) 2020; 12
He (10.1016/j.compag.2023.107920_b42) 2021; 116
Fu (10.1016/j.compag.2023.107920_b29) 2022; 281
Khan (10.1016/j.compag.2023.107920_b51) 2022; 69
Zhao (10.1016/j.compag.2023.107920_b147) 2022; 125
Yang (10.1016/j.compag.2023.107920_b124) 2022; 25
Wendel (10.1016/j.compag.2023.107920_b107) 2018; 155
Jie (10.1016/j.compag.2023.107920_b44) 2020; 14
Wang (10.1016/j.compag.2023.107920_b105) 2019; 9
Weng (10.1016/j.compag.2023.107920_b109) 2020; 234
Xin (10.1016/j.compag.2023.107920_b118) 2020; 200
Qi (10.1016/j.compag.2023.107920_b84) 2021
Yan (10.1016/j.compag.2023.107920_b120) 2021; 70
Zhou (10.1016/j.compag.2023.107920_b149) 2021; 101
Lowe (10.1016/j.compag.2023.107920_b62) 2017; 13
Yang (10.1016/j.compag.2023.107920_b126) 2019; 7
Wang (10.1016/j.compag.2023.107920_b103) 2018; 18
Han (10.1016/j.compag.2023.107920_b38) 2019; 164
Liu (10.1016/j.compag.2023.107920_b58) 2020; 132
Yu (10.1016/j.compag.2023.107920_b130) 2018; 172
Li (10.1016/j.compag.2023.107920_b56) 2021; 44
Polder (10.1016/j.compag.2023.107920_b83) 2019; 10
Zhang (10.1016/j.compag.2023.107920_b141) 2020; 319
Jin (10.1016/j.compag.2023.107920_b47) 2022; 7
Sabzi (10.1016/j.compag.2023.107920_b90) 2021; 217
Xiao (10.1016/j.compag.2023.107920_b116) 2020; 20
Fazari (10.1016/j.compag.2023.107920_b24) 2021; 187
Yipeng (10.1016/j.compag.2023.107920_b128) 2022; 135
Pandey (10.1016/j.compag.2023.107920_b77) 2021; 13
References_xml – volume: 222
  start-page: 156
  year: 2022
  end-page: 176
  ident: b110
  article-title: Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review
  publication-title: Biosyst. Eng.
– volume: 200
  year: 2020
  ident: b118
  article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 14
  start-page: 389
  year: 2021
  end-page: 400
  ident: b135
  article-title: Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method
  publication-title: Food Analyt. Methods
– volume: 21
  year: 2021
  ident: b35
  article-title: Application of hyperspectral imaging and deep learning for robust prediction of sugar and pH levels in wine grape berries
  publication-title: Sensors
– volume: 191
  year: 2021
  ident: b59
  article-title: Learning an optical filter for green pepper automatic picking in agriculture
  publication-title: Comput. Electron. Agric.
– volume: 270
  year: 2022
  ident: b148
  article-title: Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
– volume: 193
  year: 2022
  ident: b55
  article-title: Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models
  publication-title: Comput. Electron. Agric.
– volume: 177
  start-page: 204
  year: 2021
  end-page: 216
  ident: b1
  article-title: Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  year: 2022
  ident: b101
  article-title: Hyperspectral sensing of plant diseases: Principle and methods
  publication-title: Agronomy
– volume: 4
  start-page: 31
  year: 2020
  end-page: 38
  ident: b31
  article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning
  publication-title: Artif. Intell. Agricult.
– volume: 3
  start-page: 767
  year: 2020
  end-page: 792
  ident: b96
  article-title: Advanced machine learning in point spectroscopy, RGB- and hyperspectral-imaging for automatic discriminations of crops and weeds: A review
  publication-title: Smart Cities
– volume: 120
  year: 2022
  ident: b119
  article-title: Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging
  publication-title: Infrared Phys. Technol.
– volume: 21
  year: 2021
  ident: b125
  article-title: Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery
  publication-title: Sensors
– volume: 175
  year: 2020
  ident: b133
  article-title: Integrating spectral and image data to detect Fusarium head blight of wheat
  publication-title: Comput. Electron. Agric.
– volume: 125
  year: 2022
  ident: b143
  article-title: Moisture detection of single corn seed based on hyperspectral imaging and deep learning
  publication-title: Infrared Phys. Technol.
– volume: 183
  year: 2022
  ident: b155
  article-title: Pixel-level rapid detection of aflatoxin B1 based on 1D-modified temporal convolutional network and hyperspectral imaging
  publication-title: Microchem. J.
– volume: 25
  year: 2020
  ident: b156
  article-title: A rapid and highly efficient method for the identification of Soybean seed varieties: Hyperspectral images combined with transfer learning
  publication-title: Molecules
– volume: 41
  year: 2021
  ident: b98
  article-title: Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology
  publication-title: J. Food Saf.
– volume: 19
  year: 2019
  ident: b158
  article-title: Identification of Soybean varieties using hyperspectral imaging coupled with convolutional neural network
  publication-title: Sensors
– volume: 8
  year: 2021
  ident: b16
  article-title: Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods
  publication-title: Front. Bioeng. Biotechnol.
– volume: 8
  start-page: 380
  year: 2021
  end-page: 385
  ident: b36
  article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology
  publication-title: Inform. Process. Agricult.
– volume: 10
  year: 2019
  ident: b83
  article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images
  publication-title: Front. Plant Sci.
– volume: 8
  year: 2022
  ident: b121
  article-title: Physiological disorder diagnosis of plant leaves based on full-spectrum hyperspectral images with convolutional neural network
  publication-title: Horticulturae
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b52
  article-title: Deep learning
  publication-title: Nature
– volume: 70
  start-page: 1
  year: 2021
  end-page: 15
  ident: b120
  article-title: Nondestructive phenolic compounds measurement and origin discrimination of peated Barley malt using near-infrared hyperspectral imagery and machine learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 7
  start-page: 64494
  year: 2019
  end-page: 64505
  ident: b27
  article-title: Detection of subtle bruises on winter Jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
– volume: 6
  start-page: 60
  year: 2019
  ident: b94
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 23
  year: 2018
  ident: b113
  article-title: Discrimination of chrysanthemum varieties using hyperspectral imaging combined with a deep convolutional neural network
  publication-title: Molecules
– volume: 47
  start-page: 14
  year: 2022
  end-page: 24
  ident: b11
  article-title: A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues
  publication-title: Trop. Plant Pathol.
– volume: 125
  start-page: 5
  year: 2018
  end-page: 20
  ident: b100
  article-title: Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective
  publication-title: J. Plant Dis. Protect.
– volume: 125
  year: 2022
  ident: b40
  article-title: Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms
  publication-title: Infrared Phys. Technol.
– volume: 4
  start-page: 364
  year: 2011
  end-page: 386
  ident: b50
  article-title: Fluorescence spectroscopy measurement for quality assessment of food systems - a review
  publication-title: Food Bioprocess Technol.
– volume: 13
  year: 2021
  ident: b57
  article-title: Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques
  publication-title: Remote Sens.
– volume: 164
  year: 2019
  ident: b38
  article-title: Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 143
  year: 2023
  ident: b154
  article-title: Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks
  publication-title: Food Control
– volume: 10
  start-page: 44149
  year: 2020
  end-page: 44158
  ident: b122
  article-title: Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning
  publication-title: RSC Adv.
– volume: 13
  year: 2022
  ident: b115
  article-title: Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation
  publication-title: Front. Plant Sci.
– volume: 200
  start-page: 188
  year: 2020
  end-page: 199
  ident: b138
  article-title: Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels
  publication-title: Biosyst. Eng.
– volume: 208
  year: 2022
  ident: b87
  article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 59
  year: 2010
  end-page: 107
  ident: b12
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
– volume: 70
  start-page: 1572
  year: 2021
  end-page: 1582
  ident: b13
  article-title: Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction
  publication-title: Plant Pathol.
– volume: 8
  year: 2019
  ident: b32
  article-title: Application of near-infrared hyperspectral imaging with machine learning methods to identify geographical origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits
  publication-title: Foods
– volume: 25
  start-page: 170
  year: 2022
  end-page: 186
  ident: b124
  article-title: Detection of the moldy status of the stored maize kernels using hyperspectral imaging and deep learning algorithms
  publication-title: Int. J. Food Prop.
– volume: 8
  start-page: 93028
  year: 2020
  end-page: 93038
  ident: b74
  article-title: Online sorting of the film on cotton based on deep learning and hyperspectral imaging
  publication-title: IEEE Access
– volume: 319
  year: 2020
  ident: b141
  article-title: Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging
  publication-title: Food Chem.
– volume: 9
  year: 2019
  ident: b105
  article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN)
  publication-title: Sci. Rep.
– volume: 404
  year: 2023
  ident: b106
  article-title: Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds
  publication-title: Food Chem.
– volume: 12
  year: 2020
  ident: b145
  article-title: Deep learning in hyperspectral image reconstruction from single RGB images—A case study on tomato quality parameters
  publication-title: Remote Sens.
– volume: 148
  start-page: 179
  year: 2018
  end-page: 187
  ident: b82
  article-title: Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network
  publication-title: Comput. Electron. Agric.
– volume: 26
  start-page: 462
  year: 2022
  end-page: 483
  ident: b88
  article-title: How variability shapes learning and generalization
  publication-title: Trends in Cognitive Sciences
– volume: 11
  year: 2021
  ident: b53
  article-title: Identification of geographical origin of Chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm
  publication-title: Agriculture
– volume: 7
  year: 2018
  ident: b54
  article-title: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review
  publication-title: Plants
– volume: 172
  start-page: 188
  year: 2018
  end-page: 193
  ident: b130
  article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 20
  year: 2020
  ident: b123
  article-title: Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery
  publication-title: Sensors
– volume: 69
  year: 2022
  ident: b51
  article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
  publication-title: Ecol. Inform.
– volume: 45
  year: 2022
  ident: b78
  article-title: Detection of early bruises on apples using hyperspectral imaging combining with YOLOv3 deep learning algorithm
  publication-title: J. Food Process Eng.
– volume: 197
  year: 2022
  ident: b15
  article-title: Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 197
  year: 2022
  ident: b131
  article-title: Moldy peanuts identification based on hyperspectral images and point-centered convolutional neural network combined with embedded feature selection
  publication-title: Comput. Electron. Agric.
– volume: 177
  year: 2020
  ident: b64
  article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach
  publication-title: Comput. Electron. Agric.
– volume: 155
  start-page: 24
  year: 2017
  end-page: 32
  ident: b9
  article-title: Deoxynivalenol screening in wheat kernels using hyperspectral imaging
  publication-title: Biosyst. Eng.
– volume: 21
  year: 2021
  ident: b92
  article-title: Non-destructive detection pilot study of vegetable organic residues using VNIR hyperspectral imaging and deep learning techniques
  publication-title: Sensors
– volume: 44
  year: 2021
  ident: b56
  article-title: Identification of Soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network
  publication-title: J. Food Process Eng.
– volume: 13
  year: 2021
  ident: b77
  article-title: Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease incidence in loblolly pine seedlings
  publication-title: Remote Sens.
– volume: 219
  start-page: 165
  year: 2022
  end-page: 176
  ident: b153
  article-title: Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning
  publication-title: Biosyst. Eng.
– volume: 2
  year: 2020
  ident: b10
  article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy
  publication-title: Phytopathol. Res.
– volume: 21
  year: 2021
  ident: b30
  article-title: HyperSeed: An end-to-end method to process hyperspectral images of seeds
  publication-title: Sensors
– volume: 172
  start-page: 84
  year: 2018
  end-page: 91
  ident: b4
  article-title: Factors influencing the use of deep learning for plant disease recognition
  publication-title: Biosyst. Eng.
– volume: 6
  start-page: 27
  year: 2019
  ident: b48
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– volume: 135
  year: 2022
  ident: b128
  article-title: Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network
  publication-title: Food Control
– volume: 15
  start-page: 484
  year: 2021
  end-page: 494
  ident: b134
  article-title: Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network
  publication-title: J. Food Meas. Charact.
– volume: 47
  start-page: 85
  year: 2022
  end-page: 94
  ident: b6
  article-title: Deep learning applied to plant pathology: The problem of data representativeness
  publication-title: Trop. Plant Pathol.
– volume: 190
  year: 2021
  ident: b108
  article-title: Reflectance images of effective wavelengths from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention convolution neural network
  publication-title: Comput. Electron. Agric.
– volume: 139
  year: 2022
  ident: b66
  article-title: Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling
  publication-title: Food Control
– volume: 202
  year: 2022
  ident: b20
  article-title: Hyperspectral imaging coupled with dual-channel convolutional neural network for early detection of apple Valsa canker
  publication-title: Comput. Electron. Agric.
– volume: 321
  year: 2020
  ident: b151
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
– volume: 41
  start-page: 2263
  year: 2020
  end-page: 2276
  ident: b150
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: Int. J. Remote Sens.
– volume: 5
  start-page: 354
  year: 2018
  end-page: 371
  ident: b34
  article-title: A review of neural networks in plant disease detection using hyperspectral data
  publication-title: Inform. Process. Agricult.
– volume: 199
  year: 2022
  ident: b139
  article-title: Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification
  publication-title: Comput. Electron. Agric.
– volume: 9
  year: 2021
  ident: b111
  article-title: Rapid and accurate varieties classification of different crop seeds under sample-limited condition based on hyperspectral imaging and deep transfer learning
  publication-title: Front. Bioeng. Biotechnol.
– volume: 162
  start-page: 482
  year: 2019
  end-page: 492
  ident: b5
  article-title: Detection of nutrition deficiencies in plants using proximal images and machine learning: A review
  publication-title: Comput. Electron. Agric.
– volume: 12
  year: 2022
  ident: b21
  article-title: Tea category identification using wavelet signal reconstruction of hyperspectral imagery and machine learning
  publication-title: Agriculture
– volume: 13
  start-page: 80
  year: 2017
  ident: b62
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
– volume: 9
  start-page: 12635
  year: 2019
  end-page: 12644
  ident: b114
  article-title: Variety identification of oat seeds using hyperspectral imaging: Investigating the representation ability of deep convolutional neural network
  publication-title: RSC Adv.
– volume: 180
  year: 2021
  ident: b39
  article-title: Quality estimation of nuts using deep learning classification of hyperspectral imagery
  publication-title: Comput. Electron. Agric.
– volume: 14
  start-page: 167
  year: 2021
  end-page: 174
  ident: b146
  article-title: Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network
  publication-title: Int. J. Agricult. Biol. Eng.
– volume: 12
  year: 2021
  ident: b97
  article-title: Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches
  publication-title: Front. Plant Sci.
– volume: 101
  start-page: 1448
  year: 2020
  end-page: 1461
  ident: b26
  article-title: Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping
  publication-title: Plant J.
– volume: 122
  year: 2022
  ident: b46
  article-title: Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning
  publication-title: Infrared Phys. Technol.
– volume: 81
  start-page: 3005
  year: 2022
  end-page: 3038
  ident: b93
  article-title: Hyperspectral imagery applications for precision agriculture - a systemic survey
  publication-title: Multimedia Tools Appl.
– volume: 198
  year: 2022
  ident: b61
  article-title: Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 16
  start-page: 1264
  year: 2019
  end-page: 1268
  ident: b71
  article-title: Validating hyperspectral image segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 7
  year: 2022
  ident: b7
  article-title: A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management
  publication-title: Fishes
– volume: 47
  start-page: 3180
  year: 2009
  end-page: 3191
  ident: b14
  article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  year: 2018
  ident: b85
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Appl. Sci.
– volume: 8
  start-page: 123026
  year: 2020
  end-page: 123036
  ident: b79
  article-title: Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques
  publication-title: IEEE Access
– volume: 132
  year: 2020
  ident: b58
  article-title: Using convolution neural network and hyperspectral image to identify moldy peanut kernels
  publication-title: LWT
– volume: 395
  year: 2022
  ident: b132
  article-title: Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network
  publication-title: Food Chem.
– volume: 131
  start-page: 65
  year: 2015
  end-page: 76
  ident: b8
  article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging
  publication-title: Biosyst. Eng.
– volume: 7
  start-page: 118239
  year: 2019
  end-page: 118248
  ident: b126
  article-title: Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network
  publication-title: IEEE Access
– volume: 101
  start-page: 4532
  year: 2021
  end-page: 4542
  ident: b149
  article-title: Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting
  publication-title: J. Sci. Food Agric.
– volume: 2022
  year: 2022
  ident: b86
  article-title: Deep learning based dual channel Banana grading system using convolution neural network
  publication-title: J. Food Qual.
– volume: 21
  year: 2021
  ident: b73
  article-title: Early detection of plant viral disease using hyperspectral imaging and deep learning
  publication-title: Sensors
– volume: 266
  year: 2022
  ident: b152
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
– volume: 18
  year: 2018
  ident: b103
  article-title: Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data
  publication-title: Sensors
– volume: 17
  start-page: 292
  year: 2020
  end-page: 296
  ident: b72
  article-title: Training- and test-time data augmentation for hyperspectral image segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 14
  year: 2022
  ident: b102
  article-title: A review of deep learning in multiscale agricultural sensing
  publication-title: Remote Sens.
– volume: 198
  year: 2022
  ident: b23
  article-title: Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning
  publication-title: Comput. Electron. Agric.
– volume: 187
  year: 2021
  ident: b24
  article-title: Application of deep convolutional neural networks for the detection of anthracnose in Olives using VIS/NIR hyperspectral images
  publication-title: Comput. Electron. Agric.
– volume: 24
  year: 2019
  ident: b157
  article-title: Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties
  publication-title: Molecules
– volume: 54
  start-page: 5205
  year: 2021
  end-page: 5253
  ident: b104
  article-title: A review of deep learning used in the hyperspectral image analysis for agriculture
  publication-title: Artif. Intell. Rev.
– volume: 201
  year: 2022
  ident: b22
  article-title: Corn seedling recognition algorithm based on hyperspectral image and lightweight-3D-CNN
  publication-title: Comput. Electron. Agric.
– volume: 3
  start-page: 2995
  year: 2018
  end-page: 3002
  ident: b37
  article-title: Fruit quantity and ripeness estimation using a robotic vision system
  publication-title: IEEE Robot. Autom. Lett.
– volume: 173
  year: 2020
  ident: b2
  article-title: Identification and diagnosis of whole body and fragments of Trogoderma granarium and Trogoderma variabile using visible near infrared hyperspectral imaging technique coupled with deep learning
  publication-title: Comput. Electron. Agric.
– volume: 234
  year: 2020
  ident: b109
  article-title: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
– volume: 1
  start-page: 1
  year: 2019
  end-page: 8
  ident: b43
  article-title: Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues
  publication-title: Artif. Intell. Agricult.
– volume: 18
  start-page: 49
  year: 2022
  ident: b136
  article-title: Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning
  publication-title: Plant Methods
– volume: 11
  year: 2022
  ident: b127
  article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning
  publication-title: Foods
– volume: 27
  start-page: 301
  year: 2022
  end-page: 315
  ident: b91
  article-title: Applications of hyperspectral imaging in plant phenotyping
  publication-title: Trends Plant Sci.
– year: 2021
  ident: b84
  article-title: In-field early disease recognition of potato late blight based on deep learning and proximal hyperspectral imaging
– volume: 14
  start-page: 280
  year: 2020
  end-page: 289
  ident: b44
  article-title: Research on citrus grandis granulation determination based on hyperspectral imaging through deep learning
  publication-title: Food Analyt. Methods
– volume: 11
  year: 2020
  ident: b142
  article-title: Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network
  publication-title: Front. Plant Sci.
– volume: 177
  year: 2020
  ident: b89
  article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
– volume: 16
  start-page: 873
  year: 2022
  end-page: 880
  ident: b117
  article-title: Pest identification via hyperspectral image and deep learning
  publication-title: Signal Image Video Process.
– volume: 296
  year: 2019
  ident: b75
  article-title: Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning
  publication-title: Sensors Actuators B
– volume: 212
  start-page: 46
  year: 2021
  end-page: 61
  ident: b129
  article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification
  publication-title: Biosyst. Eng.
– volume: 9
  start-page: 36699
  year: 2021
  end-page: 36718
  ident: b3
  article-title: Big data and machine learning with hyperspectral information in agriculture
  publication-title: IEEE Access
– volume: 265
  year: 2022
  ident: b60
  article-title: Hyperspectral imaging for green pepper segmentation using a complex-valued neural network
  publication-title: Optik
– volume: 12
  year: 2020
  ident: b63
  article-title: Recent advances of hyperspectral imaging technology and applications in agriculture
  publication-title: Remote Sens.
– volume: 155
  start-page: 298
  year: 2018
  end-page: 313
  ident: b107
  article-title: Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform
  publication-title: Comput. Electron. Agric.
– volume: 15
  start-page: 98
  year: 2019
  ident: b70
  article-title: Plant disease identification using explainable 3D deep learning on hyperspectral images
  publication-title: Plant Methods
– volume: 158
  start-page: 279
  year: 2019
  end-page: 317
  ident: b81
  article-title: Deep learning classifiers for hyperspectral imaging: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 2774
  year: 2022
  ident: b18
  article-title: Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images
  publication-title: Sci. Rep.
– volume: 421
  year: 2022
  ident: b19
  article-title: Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars
  publication-title: J. Hard Mater.
– volume: 20
  year: 2020
  ident: b116
  article-title: Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging
  publication-title: Sensors
– volume: 183
  year: 2021
  ident: b17
  article-title: Automated in-field leaf-level hyperspectral imaging of corn plants using a Cartesian robotic platform
  publication-title: Comput. Electron. Agric.
– volume: 21
  year: 2021
  ident: b33
  article-title: Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation
  publication-title: Sensors
– volume: 123
  year: 2022
  ident: b76
  article-title: Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples
  publication-title: Infrared Phys. Technol.
– volume: 42
  year: 2019
  ident: b99
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: J. Food Process Eng.
– volume: 217
  year: 2021
  ident: b90
  article-title: Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 229
  year: 2020
  ident: b137
  article-title: Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
– volume: 45
  year: 2022
  ident: b28
  article-title: Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology
  publication-title: J. Food Process Eng.
– volume: 178
  year: 2020
  ident: b68
  article-title: Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches
  publication-title: Comput. Electron. Agric.
– volume: 162
  start-page: 364
  year: 2019
  end-page: 372
  ident: b95
  article-title: Hyperspectral fruit and vegetable classification using convolutional neural networks
  publication-title: Comput. Electron. Agric.
– start-page: 4959
  year: 2015
  end-page: 4962
  ident: b65
  article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks
  publication-title: 2015 IEEE International Geoscience and Remote Sensing Symposium
– volume: 281
  year: 2022
  ident: b29
  article-title: Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
– volume: 186
  year: 2021
  ident: b69
  article-title: Complementary chemometrics and deep learning for semantic segmentation of tall and wide visible and near-infrared spectral images of plants
  publication-title: Comput. Electron. Agric.
– volume: 196
  year: 2022
  ident: b112
  article-title: Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition
  publication-title: Comput. Electron. Agric.
– volume: 10
  year: 2018
  ident: b45
  article-title: Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field
  publication-title: Remote Sens.
– volume: 125
  year: 2022
  ident: b147
  article-title: Hybrid convolutional network based on hyperspectral imaging for wheat seed varieties classification
  publication-title: Infrared Phys. Technol.
– volume: 15
  start-page: 4497
  year: 2021
  end-page: 4507
  ident: b41
  article-title: Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network
  publication-title: Food Measure
– volume: 15
  start-page: 204
  year: 2022
  end-page: 210
  ident: b25
  article-title: Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level
  publication-title: Int. J. Agricult. Biol. Eng.
– volume: 190
  year: 2021
  ident: b80
  article-title: Feasibility study on identifying seed viability of Sophora Japonica with optimized deep neural network and hyperspectral imaging
  publication-title: Comput. Electron. Agric.
– volume: 116
  year: 2021
  ident: b42
  article-title: Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection
  publication-title: Infrared Phys. Technol.
– volume: 7
  start-page: 4735
  year: 2022
  end-page: 4749
  ident: b47
  article-title: Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning
  publication-title: ACS Omega
– volume: 11
  year: 2021
  ident: b67
  article-title: Multi-input deep learning model with RGB and hyperspectral imaging for Banana grading
  publication-title: Agriculture
– volume: 370
  year: 2022
  ident: b140
  article-title: Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel
  publication-title: Food Chem.
– volume: 27
  year: 2022
  ident: b49
  article-title: Deep learning combined with hyperspectral imaging technology for variety discrimination of Fritillaria thunbergii
  publication-title: Molecules
– volume: 111
  year: 2020
  ident: b144
  article-title: Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning
  publication-title: Infrared Phys. Technol.
– volume: 217
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b90
  article-title: Estimation of nitrogen content in cucumber plant (Cucumis sativus L.) leaves using hyperspectral imaging data with neural network and partial least squares regressions
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2021.104404
– volume: 7
  start-page: 118239
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b126
  article-title: Diagnosis of plant cold damage based on hyperspectral imaging and convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936892
– volume: 135
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b128
  article-title: Determination of wheat kernels damaged by Fusarium head blight using monochromatic images of effective wavelengths from hyperspectral imaging coupled with an architecture self-search deep network
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.108819
– volume: 172
  start-page: 84
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b4
  article-title: Factors influencing the use of deep learning for plant disease recognition
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2018.05.013
– volume: 45
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b78
  article-title: Detection of early bruises on apples using hyperspectral imaging combining with YOLOv3 deep learning algorithm
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13952
– volume: 101
  start-page: 4532
  issue: 11
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b149
  article-title: Identification of the variety of maize seeds based on hyperspectral images coupled with convolutional neural networks and subregional voting
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.11095
– volume: 15
  start-page: 204
  issue: 2
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b25
  article-title: Detection of endogenous foreign bodies in Chinese hickory nuts by hyperspectral spectral imaging at the pixel level
  publication-title: Int. J. Agricult. Biol. Eng.
  doi: 10.25165/j.ijabe.20221502.6881
– volume: 8
  start-page: 123026
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b79
  article-title: Rapid vitality estimation and prediction of corn seeds based on spectra and images using deep learning and hyperspectral imaging techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006495
– volume: 270
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b148
  article-title: Determination of adulteration in wheat flour using multi-grained cascade forest-related models coupled with the fusion information of hyperspectral imaging
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.120813
– volume: 125
  start-page: 5
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b100
  article-title: Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective
  publication-title: J. Plant Dis. Protect.
  doi: 10.1007/s41348-017-0124-6
– volume: 10
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b83
  article-title: Potato virus y detection in seed potatoes using deep learning on hyperspectral images
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00209
– volume: 8
  issue: 9
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b121
  article-title: Physiological disorder diagnosis of plant leaves based on full-spectrum hyperspectral images with convolutional neural network
  publication-title: Horticulturae
  doi: 10.3390/horticulturae8090854
– volume: 9
  start-page: 36699
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b3
  article-title: Big data and machine learning with hyperspectral information in agriculture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3051196
– volume: 12
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b97
  article-title: Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.736334
– volume: 219
  start-page: 165
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b153
  article-title: Improving rice nitrogen stress diagnosis by denoising strips in hyperspectral images via deep learning
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2022.05.001
– volume: 265
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b60
  article-title: Hyperspectral imaging for green pepper segmentation using a complex-valued neural network
  publication-title: Optik
  doi: 10.1016/j.ijleo.2022.169527
– volume: 20
  issue: 18
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b123
  article-title: Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery
  publication-title: Sensors
  doi: 10.3390/s20185021
– volume: 229
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b137
  article-title: Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2019.117973
– volume: 158
  start-page: 279
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b81
  article-title: Deep learning classifiers for hyperspectral imaging: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.006
– volume: 222
  start-page: 156
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b110
  article-title: Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms: A review
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2022.07.013
– volume: 10
  start-page: 44149
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b122
  article-title: Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning
  publication-title: RSC Adv.
  doi: 10.1039/D0RA06938H
– volume: 8
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b16
  article-title: Rapid detection of pomelo fruit quality using near-infrared hyperspectral imaging combined with chemometric methods
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.616943
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b131
  article-title: Moldy peanuts identification based on hyperspectral images and point-centered convolutional neural network combined with embedded feature selection
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106963
– volume: 7
  start-page: 64494
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b27
  article-title: Detection of subtle bruises on winter Jujube using hyperspectral imaging with pixel-wise deep learning method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917267
– volume: 200
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b118
  article-title: A deep learning based regression method on hyperspectral data for rapid prediction of cadmium residue in lettuce leaves
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.103996
– volume: 11
  issue: 11
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b127
  article-title: Detection of pesticide residue level in grape using hyperspectral imaging with machine learning
  publication-title: Foods
  doi: 10.3390/foods11111609
– volume: 14
  start-page: 389
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b135
  article-title: Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method
  publication-title: Food Analyt. Methods
  doi: 10.1007/s12161-020-01871-8
– volume: 202
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b20
  article-title: Hyperspectral imaging coupled with dual-channel convolutional neural network for early detection of apple Valsa canker
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107411
– volume: 6
  start-page: 60
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b94
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 54
  start-page: 5205
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b104
  article-title: A review of deep learning used in the hyperspectral image analysis for agriculture
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10018-y
– volume: 13
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b115
  article-title: Deep learning and hyperspectral images based tomato soluble solids content and firmness estimation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.860656
– volume: 198
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b61
  article-title: Joint optimization of autoencoder and Self-Supervised Classifier: Anomaly detection of strawberries using hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107007
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b120
  article-title: Nondestructive phenolic compounds measurement and origin discrimination of peated Barley malt using near-infrared hyperspectral imagery and machine learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 201
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b22
  article-title: Corn seedling recognition algorithm based on hyperspectral image and lightweight-3D-CNN
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107343
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.compag.2023.107920_b52
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 132
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b58
  article-title: Using convolution neural network and hyperspectral image to identify moldy peanut kernels
  publication-title: LWT
  doi: 10.1016/j.lwt.2020.109815
– volume: 27
  start-page: 301
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b91
  article-title: Applications of hyperspectral imaging in plant phenotyping
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2021.12.003
– volume: 21
  issue: 9
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b92
  article-title: Non-destructive detection pilot study of vegetable organic residues using VNIR hyperspectral imaging and deep learning techniques
  publication-title: Sensors
  doi: 10.3390/s21092899
– volume: 18
  issue: 4
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b103
  article-title: Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data
  publication-title: Sensors
  doi: 10.3390/s18041126
– volume: 186
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b69
  article-title: Complementary chemometrics and deep learning for semantic segmentation of tall and wide visible and near-infrared spectral images of plants
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106226
– volume: 21
  issue: 2
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b125
  article-title: Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery
  publication-title: Sensors
  doi: 10.3390/s21020613
– volume: 116
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b42
  article-title: Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.103802
– volume: 183
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b155
  article-title: Pixel-level rapid detection of aflatoxin B1 based on 1D-modified temporal convolutional network and hyperspectral imaging
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.108020
– volume: 14
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b102
  article-title: A review of deep learning in multiscale agricultural sensing
  publication-title: Remote Sens.
– volume: 183
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b17
  article-title: Automated in-field leaf-level hyperspectral imaging of corn plants using a Cartesian robotic platform
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.105996
– volume: 16
  start-page: 873
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b117
  article-title: Pest identification via hyperspectral image and deep learning
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-021-02029-7
– volume: 139
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b66
  article-title: Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109077
– volume: 9
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b111
  article-title: Rapid and accurate varieties classification of different crop seeds under sample-limited condition based on hyperspectral imaging and deep transfer learning
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.696292
– volume: 177
  start-page: 204
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b1
  article-title: Characterizing and classifying urban tree species using bi-monthly terrestrial hyperspectral images in Hong Kong
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.003
– volume: 47
  start-page: 3180
  issue: 9
  year: 2009
  ident: 10.1016/j.compag.2023.107920_b14
  article-title: A novel approach to the selection of spatially invariant features for the classification of hyperspectral images with improved generalization capability
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2019636
– volume: 7
  issue: 6
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b7
  article-title: A review on the use of computer vision and artificial intelligence for fish recognition, monitoring, and management
  publication-title: Fishes
  doi: 10.3390/fishes7060335
– volume: 187
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b24
  article-title: Application of deep convolutional neural networks for the detection of anthracnose in Olives using VIS/NIR hyperspectral images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106252
– volume: 25
  start-page: 170
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b124
  article-title: Detection of the moldy status of the stored maize kernels using hyperspectral imaging and deep learning algorithms
  publication-title: Int. J. Food Prop.
  doi: 10.1080/10942912.2022.2027963
– volume: 125
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b147
  article-title: Hybrid convolutional network based on hyperspectral imaging for wheat seed varieties classification
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104270
– volume: 69
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b51
  article-title: A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101678
– volume: 143
  year: 2023
  ident: 10.1016/j.compag.2023.107920_b154
  article-title: Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2022.109291
– volume: 296
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b75
  article-title: Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning
  publication-title: Sensors Actuators B
  doi: 10.1016/j.snb.2019.126630
– volume: 8
  start-page: 93028
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b74
  article-title: Online sorting of the film on cotton based on deep learning and hyperspectral imaging
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994913
– volume: 162
  start-page: 364
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b95
  article-title: Hyperspectral fruit and vegetable classification using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.019
– volume: 177
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b89
  article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105713
– volume: 178
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b68
  article-title: Close-range hyperspectral imaging of whole plants for digital phenotyping: Recent applications and illumination correction approaches
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105780
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b15
  article-title: Real-time defect inspection of green coffee beans using NIR snapshot hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106970
– volume: 164
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b38
  article-title: Pixel-level aflatoxin detecting based on deep learning and hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104888
– volume: 29
  start-page: 59
  issue: 2
  year: 2010
  ident: 10.1016/j.compag.2023.107920_b12
  article-title: Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352681003617285
– volume: 44
  issue: 8
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b56
  article-title: Identification of Soybean varieties based on hyperspectral imaging technology and one-dimensional convolutional neural network
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13767
– volume: 208
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b87
  article-title: Detection of fusarium head blight in wheat using hyperspectral data and deep learning
  publication-title: Expert Syst. Appl.
– volume: 180
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b39
  article-title: Quality estimation of nuts using deep learning classification of hyperspectral imagery
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105868
– volume: 41
  start-page: 2263
  issue: 6
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b150
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2019.1685721
– volume: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b54
  article-title: Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—A review
  publication-title: Plants
  doi: 10.3390/plants7010003
– volume: 123
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b76
  article-title: Cognitive spectroscopy for the classification of rice varieties: A comparison of machine learning and deep learning approaches in analysing long-wave near-infrared hyperspectral images of brown and milled samples
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104100
– volume: 125
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b40
  article-title: Investigation of the data fusion of spectral and textural data from hyperspectral imaging for the near geographical origin discrimination of wolfberries using 2D-CNN algorithms
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104286
– volume: 199
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b139
  article-title: Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107153
– volume: 13
  issue: 18
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b77
  article-title: Hyperspectral imaging combined with machine learning for the detection of fusiform rust disease incidence in loblolly pine seedlings
  publication-title: Remote Sens.
  doi: 10.3390/rs13183595
– volume: 11
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b142
  article-title: Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network
  publication-title: Front. Plant Sci.
– volume: 47
  start-page: 85
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b6
  article-title: Deep learning applied to plant pathology: The problem of data representativeness
  publication-title: Trop. Plant Pathol.
  doi: 10.1007/s40858-021-00459-9
– volume: 42
  issue: 8
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b99
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13293
– volume: 404
  year: 2023
  ident: 10.1016/j.compag.2023.107920_b106
  article-title: Application of hyperspectral imaging assisted with integrated deep learning approaches in identifying geographical origins and predicting nutrient contents of Coix seeds
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.134503
– volume: 148
  start-page: 179
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b82
  article-title: Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.02.025
– volume: 47
  start-page: 14
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b11
  article-title: A phytopathometry glossary for the twenty-first century: Towards consistency and precision in intra- and inter-disciplinary dialogues
  publication-title: Trop. Plant Pathol.
  doi: 10.1007/s40858-021-00454-0
– volume: 193
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b55
  article-title: Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106655
– volume: 370
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b140
  article-title: Near-infrared hyperspectral imaging technology combined with deep convolutional generative adversarial network to predict oil content of single maize kernel
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.131047
– volume: 3
  start-page: 2995
  issue: 4
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b37
  article-title: Fruit quantity and ripeness estimation using a robotic vision system
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2018.2849514
– volume: 12
  issue: 16
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b63
  article-title: Recent advances of hyperspectral imaging technology and applications in agriculture
  publication-title: Remote Sens.
  doi: 10.3390/rs12162659
– volume: 13
  start-page: 80
  year: 2017
  ident: 10.1016/j.compag.2023.107920_b62
  article-title: Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0233-z
– volume: 14
  start-page: 280
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b44
  article-title: Research on citrus grandis granulation determination based on hyperspectral imaging through deep learning
  publication-title: Food Analyt. Methods
  doi: 10.1007/s12161-020-01873-6
– volume: 198
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b23
  article-title: Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107027
– volume: 13
  issue: 22
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b57
  article-title: Detection and classification of rice infestation with rice leaf folder (Cnaphalocrocis medinalis) using hyperspectral imaging techniques
  publication-title: Remote Sens.
  doi: 10.3390/rs13224587
– volume: 17
  start-page: 292
  issue: 2
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b72
  article-title: Training- and test-time data augmentation for hyperspectral image segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2921011
– volume: 4
  start-page: 364
  year: 2011
  ident: 10.1016/j.compag.2023.107920_b50
  article-title: Fluorescence spectroscopy measurement for quality assessment of food systems - a review
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0370-0
– volume: 3
  start-page: 767
  issue: 3
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b96
  article-title: Advanced machine learning in point spectroscopy, RGB- and hyperspectral-imaging for automatic discriminations of crops and weeds: A review
  publication-title: Smart Cities
  doi: 10.3390/smartcities3030039
– volume: 155
  start-page: 298
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b107
  article-title: Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.021
– volume: 319
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b141
  article-title: Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126536
– volume: 321
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b151
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126503
– volume: 191
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b59
  article-title: Learning an optical filter for green pepper automatic picking in agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106521
– volume: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b156
  article-title: A rapid and highly efficient method for the identification of Soybean seed varieties: Hyperspectral images combined with transfer learning
  publication-title: Molecules
  doi: 10.3390/molecules25010152
– volume: 11
  issue: 8
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b67
  article-title: Multi-input deep learning model with RGB and hyperspectral imaging for Banana grading
  publication-title: Agriculture
  doi: 10.3390/agriculture11080687
– volume: 266
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b152
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2021.120460
– volume: 190
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b108
  article-title: Reflectance images of effective wavelengths from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention convolution neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106483
– volume: 21
  issue: 3
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b73
  article-title: Early detection of plant viral disease using hyperspectral imaging and deep learning
  publication-title: Sensors
  doi: 10.3390/s21030742
– volume: 12
  start-page: 2774
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b18
  article-title: Sugariness prediction of Syzygium samarangense using convolutional learning of hyperspectral images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-06679-6
– volume: 15
  start-page: 98
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b70
  article-title: Plant disease identification using explainable 3D deep learning on hyperspectral images
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0479-8
– volume: 421
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b19
  article-title: Hyperspectral imaging with shallow convolutional neural networks (SCNN) predicts the early herbicide stress in wheat cultivars
  publication-title: J. Hard Mater.
  doi: 10.1016/j.jhazmat.2021.126706
– volume: 12
  issue: 19
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b145
  article-title: Deep learning in hyperspectral image reconstruction from single RGB images—A case study on tomato quality parameters
  publication-title: Remote Sens.
  doi: 10.3390/rs12193258
– volume: 45
  issue: 9
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b28
  article-title: Identification of maize seed varieties based on stacked sparse autoencoder and near-infrared hyperspectral imaging technology
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.14120
– volume: 175
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b133
  article-title: Integrating spectral and image data to detect Fusarium head blight of wheat
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105588
– volume: 18
  start-page: 49
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b136
  article-title: Rice bacterial blight resistant cultivar selection based on visible/near-infrared spectrum and deep learning
  publication-title: Plant Methods
  doi: 10.1186/s13007-022-00882-2
– volume: 111
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b144
  article-title: Application of near-infrared hyperspectral imaging for variety identification of coated maize kernels with deep learning
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103550
– volume: 27
  issue: 18
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b49
  article-title: Deep learning combined with hyperspectral imaging technology for variety discrimination of Fritillaria thunbergii
  publication-title: Molecules
  doi: 10.3390/molecules27186042
– volume: 9
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b105
  article-title: Early detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal auxiliary classifier generative adversarial nets (OR-AC-GAN)
  publication-title: Sci. Rep.
– volume: 19
  issue: 19
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b158
  article-title: Identification of Soybean varieties using hyperspectral imaging coupled with convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s19194065
– volume: 14
  start-page: 167
  issue: 2
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b146
  article-title: Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network
  publication-title: Int. J. Agricult. Biol. Eng.
  doi: 10.25165/j.ijabe.20211402.6023
– volume: 23
  issue: 11
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b113
  article-title: Discrimination of chrysanthemum varieties using hyperspectral imaging combined with a deep convolutional neural network
  publication-title: Molecules
  doi: 10.3390/molecules23112831
– volume: 125
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b143
  article-title: Moisture detection of single corn seed based on hyperspectral imaging and deep learning
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104279
– volume: 2
  issue: 9
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b10
  article-title: From visual estimates to fully automated sensor-based measurements of plant disease severity: Status and challenges for improving accuracy
  publication-title: Phytopathol. Res.
– volume: 1
  start-page: 1
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b43
  article-title: Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues
  publication-title: Artif. Intell. Agricult.
– volume: 6
  start-page: 27
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b48
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 120
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b119
  article-title: Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2021.104003
– volume: 190
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b80
  article-title: Feasibility study on identifying seed viability of Sophora Japonica with optimized deep neural network and hyperspectral imaging
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106426
– volume: 15
  start-page: 4497
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b41
  article-title: Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network
  publication-title: Food Measure
  doi: 10.1007/s11694-021-01012-7
– volume: 177
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b64
  article-title: Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105683
– volume: 8
  issue: 12
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b32
  article-title: Application of near-infrared hyperspectral imaging with machine learning methods to identify geographical origins of dry narrow-leaved oleaster (Elaeagnus angustifolia) fruits
  publication-title: Foods
  doi: 10.3390/foods8120620
– volume: 8
  issue: 2
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b85
  article-title: Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app8020212
– volume: 8
  start-page: 380
  issue: 3
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b36
  article-title: Grading method of soybean mosaic disease based on hyperspectral imaging technology
  publication-title: Inform. Process. Agricult.
  doi: 10.1016/j.inpa.2020.10.006
– volume: 5
  start-page: 354
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b34
  article-title: A review of neural networks in plant disease detection using hyperspectral data
  publication-title: Inform. Process. Agricult.
  doi: 10.1016/j.inpa.2018.05.002
– volume: 131
  start-page: 65
  year: 2015
  ident: 10.1016/j.compag.2023.107920_b8
  article-title: Detecting Fusarium head blight in wheat kernels using hyperspectral imaging
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2015.01.003
– volume: 24
  issue: 18
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b157
  article-title: Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties
  publication-title: Molecules
  doi: 10.3390/molecules24183268
– volume: 4
  start-page: 31
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b31
  article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning
  publication-title: Artif. Intell. Agricult.
– volume: 162
  start-page: 482
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b5
  article-title: Detection of nutrition deficiencies in plants using proximal images and machine learning: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.035
– volume: 15
  start-page: 484
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b134
  article-title: Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-020-00646-3
– volume: 11
  issue: 12
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b53
  article-title: Identification of geographical origin of Chinese chestnuts using hyperspectral imaging with 1D-CNN algorithm
  publication-title: Agriculture
  doi: 10.3390/agriculture11121274
– volume: 7
  start-page: 4735
  issue: 6
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b47
  article-title: Identification of rice seed varieties based on near-infrared hyperspectral imaging technology combined with deep learning
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c04102
– volume: 81
  start-page: 3005
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b93
  article-title: Hyperspectral imagery applications for precision agriculture - a systemic survey
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11729-8
– volume: 41
  issue: 1
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b98
  article-title: Detection for lead pollution level of lettuce leaves based on deep belief network combined with hyperspectral image technology
  publication-title: J. Food Saf.
  doi: 10.1111/jfs.12866
– volume: 234
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b109
  article-title: Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118237
– volume: 101
  start-page: 1448
  issue: 6
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b26
  article-title: Hyperspectral imaging combined with machine learning as a tool to obtain high-throughput plant salt-stress phenotyping
  publication-title: Plant J.
  doi: 10.1111/tpj.14597
– volume: 200
  start-page: 188
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b138
  article-title: Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.10.004
– volume: 281
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b29
  article-title: Nondestructive evaluation of Zn content in rape leaves using MSSAE and hyperspectral imaging
  publication-title: Spectrochimica Acta Part A: Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.121641
– volume: 21
  issue: 4
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b33
  article-title: Multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation
  publication-title: Sensors
  doi: 10.3390/s21041288
– volume: 26
  start-page: 462
  issue: 6
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b88
  article-title: How variability shapes learning and generalization
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2022.03.007
– volume: 10
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b45
  article-title: Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field
  publication-title: Remote Sens.
  doi: 10.3390/rs10030395
– volume: 9
  start-page: 12635
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b114
  article-title: Variety identification of oat seeds using hyperspectral imaging: Investigating the representation ability of deep convolutional neural network
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10335F
– volume: 212
  start-page: 46
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b129
  article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2021.09.010
– volume: 395
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b132
  article-title: Prediction of oil content in single maize kernel based on hyperspectral imaging and attention convolution neural network
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2022.133563
– volume: 155
  start-page: 24
  year: 2017
  ident: 10.1016/j.compag.2023.107920_b9
  article-title: Deoxynivalenol screening in wheat kernels using hyperspectral imaging
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.12.004
– volume: 21
  issue: 10
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b35
  article-title: Application of hyperspectral imaging and deep learning for robust prediction of sugar and pH levels in wine grape berries
  publication-title: Sensors
  doi: 10.3390/s21103459
– start-page: 4959
  year: 2015
  ident: 10.1016/j.compag.2023.107920_b65
  article-title: Deep supervised learning for hyperspectral data classification through convolutional neural networks
– volume: 16
  start-page: 1264
  issue: 8
  year: 2019
  ident: 10.1016/j.compag.2023.107920_b71
  article-title: Validating hyperspectral image segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2895697
– year: 2021
  ident: 10.1016/j.compag.2023.107920_b84
– volume: 12
  issue: 8
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b21
  article-title: Tea category identification using wavelet signal reconstruction of hyperspectral imagery and machine learning
  publication-title: Agriculture
  doi: 10.3390/agriculture12081085
– volume: 21
  issue: 24
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b30
  article-title: HyperSeed: An end-to-end method to process hyperspectral images of seeds
  publication-title: Sensors
  doi: 10.3390/s21248184
– volume: 12
  issue: 6
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b101
  article-title: Hyperspectral sensing of plant diseases: Principle and methods
  publication-title: Agronomy
  doi: 10.3390/agronomy12061451
– volume: 196
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b112
  article-title: Deep convolution neural network with weighted loss to detect rice seeds vigor based on hyperspectral imaging under the sample-imbalanced condition
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106850
– volume: 70
  start-page: 1572
  issue: 7
  year: 2021
  ident: 10.1016/j.compag.2023.107920_b13
  article-title: Spectral signatures in the UV range can be combined with secondary plant metabolites by deep learning to characterize barley–powdery mildew interaction
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13411
– volume: 172
  start-page: 188
  year: 2018
  ident: 10.1016/j.compag.2023.107920_b130
  article-title: Deep-learning-based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.12.010
– volume: 122
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b46
  article-title: Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104097
– volume: 173
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b2
  article-title: Identification and diagnosis of whole body and fragments of Trogoderma granarium and Trogoderma variabile using visible near infrared hyperspectral imaging technique coupled with deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105438
– volume: 20
  issue: 17
  year: 2020
  ident: 10.1016/j.compag.2023.107920_b116
  article-title: Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of Radix astragali by visible/short-wave near-infrared and near infrared hyperspectral imaging
  publication-title: Sensors
  doi: 10.3390/s20174940
– volume: 2022
  year: 2022
  ident: 10.1016/j.compag.2023.107920_b86
  article-title: Deep learning based dual channel Banana grading system using convolution neural network
  publication-title: J. Food Qual.
SSID ssj0016987
Score 2.5960338
SecondaryResourceType review_article
Snippet Hyperspectral images can capture the spectral characteristics of surfaces and objects, providing a 2-D spacial component to the spectral profiles found in a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107920
SubjectTerms Convolutional neural network
Electromagnetic spectrum
Machine learning
Title A review on the combination of deep learning techniques with proximal hyperspectral images in agriculture
URI https://dx.doi.org/10.1016/j.compag.2023.107920
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdoEB8RRveWANberEj7FCoAKiC1RiixzHLkGQVqWs_HbOsVNAQiChTLZ8cvTFukf83R3AaW5obITCIMf0eZRo18i9p7Wj_dE01rJX1ElityM2HCfXD-lDC86bXBhHqwy63-v0WluHmW5Aszsry-4dOisiZhI9lLroCl2BTh-tvWhDZ3B1MxwtLxOYFD5rmmHAhAJNBl1N86qp3pMz10Ucp7h0jb9_slBfrM7lBqwHd5EM_BttQstUW7A2mMxDyQyzDeWA-PwTMq0IunME98Jwt0acTC0pjJmR0BxiQpY1W1-J-wVLHI2lfMEtHjEg9XmXcxzh1ASXlBVRn3vtwPjy4v58GIUGCpHGSGARFdzg45yEwjAupbIpZRrB6kmRSC1zqTBAFcZYzTljgsaKCclUklMtU27pLrSraWX2gBToCXJlFO9bmlglpc1TXXBlLWPusnAfaANapkN1cdfk4jlraGRPmYc6c1BnHup9iJZSM19d44_1vPke2bdTkqEB-FXy4N-Sh7DqRp6iewTtxfzNHKMjsshPYOXsPT4Jx-0D8cbeJA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdgAGxKf4xgNraIsTOx4jBCq0dAEktshx7BAEaVXK_-ccOwUkBBLKFMcnRxfLfhe_uwdwmmna17HEIEef8yBUVsi9p5Sl_dGor0Qvr5PEbsds8BDePEaPLbhocmEsrdKv_W5Nr1dr39L13uxOy7J7h2Al7jOBCKUuukKXoBNaUes2dJLr4WC8OExgInZZ0wwDJjRoMuhqmldN9S7OrIo4NnFhhb9_2qG-7DpX67Dm4SJJ3BttQEtXm7CaFDNfMkNvQZkQl39CJhVBOEdwLAx3a4-TiSG51lPixSEKsqjZ-kbsL1hiaSzlKw7xhAGpy7uc4R02FdilrIj8HGsbHq4u7y8GgRdQCBRGAvMg5xovCxJyzbgQ0kSUKXRWT8ShUCITEgPUWGujOGcspn3JYsFkmFElIm7oDrSrSaV3geSIBLnUkp8bGhophMkilXNpDGP2sHAPaOO0VPnq4lbk4iVtaGTPqXN1al2dOlfvQbCwmrrqGn_05833SL_NkhQ3gF8t9_9teQLLg_vbUTq6Hg8PYMU-cXTdQ2jPZ-_6CEHJPDv2k-4DMObgCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+the+combination+of+deep+learning+techniques+with+proximal+hyperspectral+images+in+agriculture&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Barbedo%2C+Jayme+Garcia+Arnal&rft.date=2023-07-01&rft.issn=0168-1699&rft.volume=210&rft.spage=107920&rft_id=info:doi/10.1016%2Fj.compag.2023.107920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2023_107920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon