Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks

•Sugar beet nitrogen fertilization was optimized using leaf nutrient status samples.•Root yield and yield quality parameters were used as training and test data.•Ensemble decision trees and artificial neural network regression were used.•Na had high variable importance for root yield and sucrose con...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 212; p. 108076
Main Authors Varga, Ivana, Radočaj, Dorijan, Jurišić, Mladen, Markulj Kulundžić, Antonela, Antunović, Manda
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2023.108076

Cover

Abstract •Sugar beet nitrogen fertilization was optimized using leaf nutrient status samples.•Root yield and yield quality parameters were used as training and test data.•Ensemble decision trees and artificial neural network regression were used.•Na had high variable importance for root yield and sucrose content.•The top accuracy had a median R2 of 0.927 and ranged from 0.842 to 0.998. Nitrogen fertilization has a crucial role in sugar beet production, especially concerning root yield and quality. This study employed a machine learning approach to predict root yield and quality parameters based on the nutrient status of sugar beet leaves in relation to nitrogen fertilization. The field experiment included the following N fertilization treatments for sugar beet production: control (N0), presowing (N1 = 45 kg N ha−1) and presowing with top-dressing (N2 = 99 and 154.5 kg ha−1). Leaf samples were collected during the vegetation period in six intervals (May-Sept) to determine the levels of N, K and Na in the leaf dry matter. The machine learning regression based on ensemble decision trees and artificial neural network was used to determine the relationship of leaf samples based on varying N fertilization with yield parameters. Among the leaf elements analyzed, Na exhibited the highest average relative variable importance for root yield, sucrose content, and other quality parameters during the season with greater precipitation. In the season with less precipitation, N content at the beginning of July showed higher importance on root yield (74.6). The evaluated machine learning methods consistently achieved high accuracy across various combinations of input data and yield parameters, with a median R2 of 0.927 and a range from 0.842 to 0.998.
AbstractList •Sugar beet nitrogen fertilization was optimized using leaf nutrient status samples.•Root yield and yield quality parameters were used as training and test data.•Ensemble decision trees and artificial neural network regression were used.•Na had high variable importance for root yield and sucrose content.•The top accuracy had a median R2 of 0.927 and ranged from 0.842 to 0.998. Nitrogen fertilization has a crucial role in sugar beet production, especially concerning root yield and quality. This study employed a machine learning approach to predict root yield and quality parameters based on the nutrient status of sugar beet leaves in relation to nitrogen fertilization. The field experiment included the following N fertilization treatments for sugar beet production: control (N0), presowing (N1 = 45 kg N ha−1) and presowing with top-dressing (N2 = 99 and 154.5 kg ha−1). Leaf samples were collected during the vegetation period in six intervals (May-Sept) to determine the levels of N, K and Na in the leaf dry matter. The machine learning regression based on ensemble decision trees and artificial neural network was used to determine the relationship of leaf samples based on varying N fertilization with yield parameters. Among the leaf elements analyzed, Na exhibited the highest average relative variable importance for root yield, sucrose content, and other quality parameters during the season with greater precipitation. In the season with less precipitation, N content at the beginning of July showed higher importance on root yield (74.6). The evaluated machine learning methods consistently achieved high accuracy across various combinations of input data and yield parameters, with a median R2 of 0.927 and a range from 0.842 to 0.998.
ArticleNumber 108076
Author Radočaj, Dorijan
Jurišić, Mladen
Markulj Kulundžić, Antonela
Antunović, Manda
Varga, Ivana
Author_xml – sequence: 1
  givenname: Ivana
  surname: Varga
  fullname: Varga, Ivana
  organization: Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Department of Plant Production and Biotechnology, Vladimira Preloga 1, 31000 Osijek, Croatia
– sequence: 2
  givenname: Dorijan
  surname: Radočaj
  fullname: Radočaj, Dorijan
  email: dradocaj@fazos.hr
  organization: Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Department of Agricultural Engineering and Renewable Energy Sources, Vladimira Preloga 1, 31000 Osijek, Croatia
– sequence: 3
  givenname: Mladen
  surname: Jurišić
  fullname: Jurišić, Mladen
  organization: Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Department of Agricultural Engineering and Renewable Energy Sources, Vladimira Preloga 1, 31000 Osijek, Croatia
– sequence: 4
  givenname: Antonela
  surname: Markulj Kulundžić
  fullname: Markulj Kulundžić, Antonela
  organization: Agricultural Institute Osijek, Department of Breeding and Genetics of Industrial Plants, Južno predgrađe 17, 31 000 Osijek, Croatia
– sequence: 5
  givenname: Manda
  surname: Antunović
  fullname: Antunović, Manda
  organization: Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Department of Plant Production and Biotechnology, Vladimira Preloga 1, 31000 Osijek, Croatia
BookMark eNqFUctOwzAQtFCRKIU_4OAfSLGTNE44IKGKl1QJDnC2HHtdtqROsd1W5UP4XpKWEwc4jXZ3ZqSZPSUD1zog5IKzMWe8uFyMdbtcqfk4ZWnWrUomiiMy5KVIE8GZGJBhRysTXlTVCTkNYcG6uSrFkHw9ezCoI7aOtpaG9Vx5WgNEukNoDFXO0I-1ajDu6Ep5tYQIPtAtxje6UX6Hbk4dRt_OwVELPmKDn2pvtw79EVyAZd0ANaAx9PvoAcLeWHV0ixpVQx2s_R7itvXv4YwcW9UEOP_BEXm9u32ZPiSzp_vH6c0s0RkrYmImTNmM57mAXHHQRcHSNMvzIje10oIJW3LDs6ysTVVmljNmbaV1amtmxARYNiL5wVf7NgQPVq48LrtckjPZdysX8tCt7LuVh2472dUvmca4Tx29wuY_8fVBDF2wDYKXQSM43f3Bg47StPi3wTfr9J6V
CitedBy_id crossref_primary_10_1016_j_compag_2025_109917
crossref_primary_10_34133_plantphenomics_0209
crossref_primary_10_3390_agriengineering6020057
crossref_primary_10_3390_app142311349
crossref_primary_10_3390_horticulturae9121290
crossref_primary_10_1016_j_rineng_2024_103356
crossref_primary_10_3390_nitrogen5020025
crossref_primary_10_3390_agronomy14051010
crossref_primary_10_1007_s12355_024_01461_6
crossref_primary_10_1007_s42976_024_00615_2
crossref_primary_10_1016_j_fcr_2024_109646
crossref_primary_10_1016_j_fcr_2024_109689
crossref_primary_10_1016_j_compag_2023_108550
crossref_primary_10_1016_j_aiia_2025_02_004
crossref_primary_10_3390_rs16173176
crossref_primary_10_1016_j_compag_2024_109019
crossref_primary_10_3390_agriculture14020206
Cites_doi 10.1016/j.compag.2018.10.024
10.3390/rs13040641
10.3390/nitrogen3020013
10.1109/ICAIIC57133.2023.10067006
10.1016/j.indcrop.2021.113753
10.1016/j.agwat.2020.106090
10.3390/plants11131697
10.3390/rs14010120
10.18047/poljo.21.2.3
10.3390/plants11121593
10.3390/s20041231
10.1111/pce.12815
10.3390/w13091308
10.3390/plants11151923
10.1016/j.indcrop.2022.114801
10.1094/PDIS-09-22-2156-RE
10.1016/j.rse.2017.06.043
10.1016/j.neunet.2020.10.002
10.1016/j.agwat.2015.05.005
10.3390/rs14092256
10.1016/j.compag.2018.05.012
10.3390/agronomy12092210
10.1002/agg2.20337
10.1007/s11356-021-16265-4
10.32615/ps.2020.036
10.1016/j.fcr.2022.108640
10.3390/rs11111318
10.1017/S0021859607006922
10.1016/j.eja.2006.06.004
10.1016/j.atech.2022.100102
10.1016/j.indcrop.2022.115762
10.1017/S0021859600017706
10.1016/j.indcrop.2018.02.051
10.1016/j.fcr.2007.04.001
10.1016/j.compag.2017.08.024
10.18047/poljo.26.1.5
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2023.108076
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2023_108076
S0168169923004647
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
ID FETCH-LOGICAL-c306t-d50af31447e4a1ec6602234464dbac707f81d1338bd983f100ff9cc2fb0d75e03
IEDL.DBID AIKHN
ISSN 0168-1699
IngestDate Thu Apr 24 22:58:49 EDT 2025
Tue Jul 01 01:58:31 EDT 2025
Fri Feb 23 02:37:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precipitation
Accuracy assessment
Leaf samples
Sugar beet root yield
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-d50af31447e4a1ec6602234464dbac707f81d1338bd983f100ff9cc2fb0d75e03
ParticipantIDs crossref_primary_10_1016_j_compag_2023_108076
crossref_citationtrail_10_1016_j_compag_2023_108076
elsevier_sciencedirect_doi_10_1016_j_compag_2023_108076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References ICUMSA Methods Book, 2007a. Determination of α-Amino Nitrogen in Sugar Beet by the Copper Method (‘Blue Number’) (Methods GS6-5); Bartens: Berlin, Germany.
Bergmann (b0020) 1992
Pospišil (b0220) 2013
Draycott, Marsh, Tinker (b0070) 1970; 74
Hainmueller, J., Hazlett, C. 2017. KRLS: Kernel-Based Regularized Least Squares. https://CRAN.R-project.org/package=KRLS.
Hesami, Pepe, Monthony, Baiton, Jones (b0110) 2021; 170
Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T. 2022. caret: Classification and Regression Training. https://CRAN.R-project.org/package=caret.
Tao, Feng, Xu, Miao, Yang, Yang, Fan (b0250) 2020; 20
Elavarasan, Vincent, Sharma, Zomaya, Srinivasan (b0075) 2018; 155
Varga, Kerovec, Engler, Popović, Lončarić, Iljkić, Zebec, Antunović (b0270) 2022; 138
Khan, Kamaruddin, Ullah Sheikh, Zawawi, Yusup, Bakht, Mohamed Noor (b0135) 2022; 11
Lundegårdh (b0170) 1966
Bojtor, Mousavi, Illés, Golzardi, Széles, Szabó, Nagy, Marton (b0025) 2022; 11
Pejak, Lugonja, Antić, Panić, Pandžić, Alexakis, Mavrepis, Zhou, Marko, Crnojević (b0210) 2022; 14
Aasim, Katırcı, Akgur, Yildirim, Mustafa, Nadeem, Baloch, Karakoy, Yılmaz (b0010) 2022; 181
Mäck, Hoffmann (b0180) 2006; 25
Wang, Chang, Ma (b0285) 2022; 29
Li, Wei, Wang, Li, Huang, Xu, Xu (b0160) 2021; 13
Määttä, Bazaliy, Kimari, Djurabekova, Nordlund, Roos (b0175) 2021; 133
Tsiligaridis, J., 2023. Tree-Based Ensemble Models and Algorithms for Classification, in: 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Presented at the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 103–106. 10.1109/ICAIIC57133.2023.10067006.
Radočaj, Jurišić (b0230) 2022; 12
Venkataraju, Arumugam, Stepan, Kiran, Peters (b0275) 2023; 3
Kristek, Kristek, Varga, Drmić (b0145) 2015; 21
Inoue, Y., Guérif, M., Baret, F., Skidmore, A., Gitelson, A., Schlerf, M., Darvishadeh, R., Olioso, A., 2016. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation, 39, 2609-2623). 10.1111/pce.12815.
Brédy, Gallichand, Celicourt, Gumiere (b0030) 2020; 233
Tan, Hou, Wu, Du, Chen (b0245) 2019; 11
Nayak, Silva, Parihar, Krupnik, Sena, Kakraliya, Sahay Jat, Simgh Sidhu, Sharma, Lal Jat, Sapkota (b0200) 2022; 287
Liland, K. H., Mevik, B. H., Wehrens, R., Hiemstra, P., 2022. pls: Partial Least Squares and Principal Component Regression. https://CRAN.R-project.org/package=pls .
Walsh, Nambi, Shafian, Jayawardena, Ansah, Lamichhane, McClintick-Chess (b0280) 2023; 6
Mäck, Hoffmann, Märländer (b0185) 2007; 102
Buchholz, Märländer, Puke, Glattkowski, Thielecke (b0040) 1995; 120
Pevalek-Kozlina (b0215) 2003
Pulkrábek, Brinar, Javor, Dvorak, Beckova, Kuchtová, Hubácková (b0225) 2021; 137
Fei, Fan, Fan, Xu (b0080) 2020; 58
Guan, Wu, Kimball, Anderson, Frolking, Li, Hain, Lobell (b0100) 2017; 199
Li, Jákli, Lu, Ren, Ming, Liu, Wang, Lu (b0155) 2018; 116
Pavlů, Chochola (b0205) 2021; 137
ICUMSA Methods Book, 2007 b. Determination of Potassium and Sodium in Sugar Beet by Flame Photometry (Methods GS6-7); Bartens: Berlin, Germany.
Jaggard, Qi, Semenov (b0120) 2007; 145
Gilbertson, Van Niekerk (b0095) 2017; 142
Khalifani, Darvishzadeh, Azad, Rahmani (b0130) 2022; 189
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan, J. 2022. xgboost: Extreme Gradient Boosting. https://CRAN.R-project.org/package=xgboost.
Kiymaz, Ertek (b0140) 2015; 158
Barzin, Lotfi, Varco, Bora (b0015) 2021; 14
Mahajan, Das, Murgaokar, Herrmann, Berger, Sahoo, Patel, Desai, Morajkar, Kulkarni (b0190) 2021; 13
Breiman., L., Cutler, A., Liaw, A., Wiener, M. 2022. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. https://CRAN.R-project.org/package=randomForest.
Fugate, Khan, Eide, Hakk, Lafta, Qi (b0085) 2023; 107
Varga, Lončarić, Pospišil, Rastija, Antunović (b0260) 2020; 26
Dong, Wu, Liu, Fan, Leng, Yang (b0055) 2020; 123
(b0065) 2003
Varga, Jović, Rastija, Markulj Kulundžić, Zebec, Lončarić, Iljklić, Antunović (b0265) 2022; 3
Karatzoglou, A., Smola, A., Hornik, K., Maniscalco, M. A., Teo, C. H. 2022. kernlab: Kernel-Based Machine Learning Lab. https://CRAN.R-project.org/package=kernlab .
Drachovská, Šandera (b0060) 1959
Chlingaryan, Sukkarieh, Whelan (b0050) 2018; 151
Ge, Zhao, Yu, Liu, Zhang, Gong, Sun (b0090) 2022; 11
Dong (10.1016/j.compag.2023.108076_b0055) 2020; 123
Wang (10.1016/j.compag.2023.108076_b0285) 2022; 29
Chlingaryan (10.1016/j.compag.2023.108076_b0050) 2018; 151
Brédy (10.1016/j.compag.2023.108076_b0030) 2020; 233
Pospišil (10.1016/j.compag.2023.108076_b0220) 2013
Pavlů (10.1016/j.compag.2023.108076_b0205) 2021; 137
Pevalek-Kozlina (10.1016/j.compag.2023.108076_b0215) 2003
Khalifani (10.1016/j.compag.2023.108076_b0130) 2022; 189
Elavarasan (10.1016/j.compag.2023.108076_b0075) 2018; 155
Ge (10.1016/j.compag.2023.108076_b0090) 2022; 11
Venkataraju (10.1016/j.compag.2023.108076_b0275) 2023; 3
Tao (10.1016/j.compag.2023.108076_b0250) 2020; 20
Li (10.1016/j.compag.2023.108076_b0160) 2021; 13
Varga (10.1016/j.compag.2023.108076_b0265) 2022; 3
Fei (10.1016/j.compag.2023.108076_b0080) 2020; 58
Varga (10.1016/j.compag.2023.108076_b0270) 2022; 138
10.1016/j.compag.2023.108076_b0105
Khan (10.1016/j.compag.2023.108076_b0135) 2022; 11
Aasim (10.1016/j.compag.2023.108076_b0010) 2022; 181
Bojtor (10.1016/j.compag.2023.108076_b0025) 2022; 11
Hesami (10.1016/j.compag.2023.108076_b0110) 2021; 170
10.1016/j.compag.2023.108076_b0150
Mäck (10.1016/j.compag.2023.108076_b0180) 2006; 25
Pulkrábek (10.1016/j.compag.2023.108076_b0225) 2021; 137
Kiymaz (10.1016/j.compag.2023.108076_b0140) 2015; 158
10.1016/j.compag.2023.108076_b0195
Buchholz (10.1016/j.compag.2023.108076_b0040) 1995; 120
Barzin (10.1016/j.compag.2023.108076_b0015) 2021; 14
Draycott (10.1016/j.compag.2023.108076_b0070) 1970; 74
10.1016/j.compag.2023.108076_b0035
Määttä (10.1016/j.compag.2023.108076_b0175) 2021; 133
10.1016/j.compag.2023.108076_b0115
10.1016/j.compag.2023.108076_b0165
Li (10.1016/j.compag.2023.108076_b0155) 2018; 116
Walsh (10.1016/j.compag.2023.108076_b0280) 2023; 6
Kristek (10.1016/j.compag.2023.108076_b0145) 2015; 21
Varga (10.1016/j.compag.2023.108076_b0260) 2020; 26
Tan (10.1016/j.compag.2023.108076_b0245) 2019; 11
Pejak (10.1016/j.compag.2023.108076_b0210) 2022; 14
10.1016/j.compag.2023.108076_b0125
Bergmann (10.1016/j.compag.2023.108076_b0020) 1992
Drachovská (10.1016/j.compag.2023.108076_b0060) 1959
10.1016/j.compag.2023.108076_b0045
Fugate (10.1016/j.compag.2023.108076_b0085) 2023; 107
10.1016/j.compag.2023.108076_b0005
Nayak (10.1016/j.compag.2023.108076_b0200) 2022; 287
Jaggard (10.1016/j.compag.2023.108076_b0120) 2007; 145
Mäck (10.1016/j.compag.2023.108076_b0185) 2007; 102
Radočaj (10.1016/j.compag.2023.108076_b0230) 2022; 12
Gilbertson (10.1016/j.compag.2023.108076_b0095) 2017; 142
Guan (10.1016/j.compag.2023.108076_b0100) 2017; 199
Lundegårdh (10.1016/j.compag.2023.108076_b0170) 1966
10.1016/j.compag.2023.108076_b0255
(10.1016/j.compag.2023.108076_b0065) 2003
Mahajan (10.1016/j.compag.2023.108076_b0190) 2021; 13
References_xml – reference: Tsiligaridis, J., 2023. Tree-Based Ensemble Models and Algorithms for Classification, in: 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Presented at the 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 103–106. 10.1109/ICAIIC57133.2023.10067006.
– volume: 137
  start-page: 245
  year: 2021
  end-page: 247
  ident: b0205
  article-title: Short Study on Sugar Beet Nitrogen Fertilization – Local versus Uniform Nitrogen Application
  publication-title: Listy Cukrovarnické a Reparské
– volume: 133
  start-page: 123
  year: 2021
  end-page: 131
  ident: b0175
  article-title: Gradient-based training and pruning of radial basis function networks with an application in materials physics
  publication-title: Neural Netw.
– volume: 11
  start-page: 1593
  year: 2022
  ident: b0025
  article-title: Nutrient Composition Analysis of Maize Hybrids Affected by Different Nitrogen Fertilisation Systems
  publication-title: Plants
– volume: 29
  start-page: 7014
  year: 2022
  end-page: 7024
  ident: b0285
  article-title: Predicting flocculant dosage in the drinking water treatment process using Elman neural network
  publication-title: Environ. Sci. Pollut. Res.
– reference: Karatzoglou, A., Smola, A., Hornik, K., Maniscalco, M. A., Teo, C. H. 2022. kernlab: Kernel-Based Machine Learning Lab. https://CRAN.R-project.org/package=kernlab .
– year: 2003
  ident: b0215
  article-title: Fiziologija bilja
– volume: 181
  year: 2022
  ident: b0010
  article-title: Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (
  publication-title: Ind. Crop. Prod.
– volume: 14
  start-page: 120
  year: 2021
  ident: b0015
  article-title: Machine Learning in Evaluating Multispectral Active Canopy Sensor for Prediction of Corn Leaf Nitrogen Concentration and Yield
  publication-title: Remote Sens. (Basel)
– volume: 74
  start-page: 567
  year: 1970
  end-page: 573
  ident: b0070
  article-title: Sodium and potassium relationships in sugar beet
  publication-title: J. Agric. Sci.
– volume: 142
  start-page: 50
  year: 2017
  end-page: 58
  ident: b0095
  article-title: Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning
  publication-title: Comput. Electron. Agric.
– volume: 21
  start-page: 15
  year: 2015
  end-page: 22
  ident: b0145
  article-title: Results of sugar beet production depending on the hybrids selection and the number of fungicide application
  publication-title: Poljoprivreda
– reference: Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., Yuan, J. 2022. xgboost: Extreme Gradient Boosting. https://CRAN.R-project.org/package=xgboost.
– year: 1992
  ident: b0020
  article-title: Nutritional Disorders of Plants – Development, visual and analytical diagnosis
– volume: 138
  start-page: 69
  year: 2022
  end-page: 72
  ident: b0270
  article-title: Determination of N-NO
  publication-title: Listy cukrovarnicke a reparske
– volume: 14
  start-page: 2256
  year: 2022
  ident: b0210
  article-title: Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data
  publication-title: Remote Sens. (Basel)
– volume: 199
  start-page: 333
  year: 2017
  end-page: 349
  ident: b0100
  article-title: The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields
  publication-title: Remote Sens. Environ.
– volume: 123
  start-page: 49
  year: 2020
  end-page: 73
  ident: b0055
  article-title: Simulation of daily diffuse solar radiation based on three machine learning models
  publication-title: Comput. Model. Eng. Sci.
– volume: 12
  start-page: 2210
  year: 2022
  ident: b0230
  article-title: GIS-Based Cropland Suitability Prediction Using Machine Learning: A Novel Approach to Sustainable Agricultural Production
  publication-title: Agronomy
– volume: 11
  start-page: 1318
  year: 2019
  ident: b0245
  article-title: Anomaly detection for hyperspectral imagery based on the regularized subspace method and collaborative representation
  publication-title: Remote Sens. (Basel)
– volume: 107
  start-page: 1816
  year: 2023
  end-page: 1821
  ident: b0085
  article-title: Sugar beet root storage properties are unaffected by Cercospora leaf spot
  publication-title: Plant Dis.
– volume: 25
  start-page: 270
  year: 2006
  end-page: 279
  ident: b0180
  article-title: Organ-specific adaptation to low precipitation in solute concentration of sugar beet (
  publication-title: Eur. J. Agron.
– reference: ICUMSA Methods Book, 2007a. Determination of α-Amino Nitrogen in Sugar Beet by the Copper Method (‘Blue Number’) (Methods GS6-5); Bartens: Berlin, Germany.
– volume: 13
  start-page: 1308
  year: 2021
  ident: b0160
  article-title: A medium and Long-Term runoff forecast method based on massive meteorological data and machine learning algorithms
  publication-title: Water
– volume: 158
  start-page: 225
  year: 2015
  end-page: 234
  ident: b0140
  article-title: Water use and yield of sugar beet (
  publication-title: Agric. Water Manag.
– volume: 3
  start-page: 170
  year: 2022
  end-page: 185
  ident: b0265
  article-title: Efficiency and Management of Nitrogen Fertilization in Sugar Beet as Spring Crop: A Review
  publication-title: Nitrogen
– volume: 189
  year: 2022
  ident: b0130
  article-title: Prediction of sunflower grain yield under normal and salinity stress by RBF-K, MLP and CNN models
  publication-title: Ind. Crops Prod.
– volume: 3
  start-page: 100102
  year: 2023
  ident: b0275
  article-title: A Review of Machine Learning Techniques for Identifying Weeds in Corn
  publication-title: Smart Agric. Technol.
– volume: 58
  start-page: 869
  year: 2020
  end-page: 872
  ident: b0080
  article-title: Estimation of total nitrogen content in sugar beet leaves based on chlorophyll fluorescence parameters
  publication-title: Photosynthetica
– volume: 20
  start-page: 1231
  year: 2020
  ident: b0250
  article-title: Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images
  publication-title: Sensors
– volume: 11
  start-page: 1697
  year: 2022
  ident: b0135
  article-title: Prediction of Oil Palm Yield Using Machine Learning in the Perspective of Fluctuating Weather and Soil Moisture Conditions: Evaluation of a Generic Workflow
  publication-title: Plants
– volume: 120
  start-page: 113
  year: 1995
  end-page: 121
  ident: b0040
  article-title: Neubewertung des technischen Wertes von Zucker-rüben
  publication-title: Zuckerindustrie
– volume: 155
  start-page: 257
  year: 2018
  end-page: 282
  ident: b0075
  article-title: Forecasting yield by integrating agrarian factors and machine learning models: A survey
  publication-title: Comput. Electron. Agric.
– reference: Hainmueller, J., Hazlett, C. 2017. KRLS: Kernel-Based Regularized Least Squares. https://CRAN.R-project.org/package=KRLS.
– reference: Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T. 2022. caret: Classification and Regression Training. https://CRAN.R-project.org/package=caret.
– volume: 170
  year: 2021
  ident: b0110
  article-title: Modeling and optimizing in vitro seed germination of industrial hemp (
  publication-title: Ind. Crop. Prod.
– volume: 287
  year: 2022
  ident: b0200
  article-title: Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India
  publication-title: Field Crop Res
– volume: 13
  start-page: 641
  year: 2021
  ident: b0190
  article-title: Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models
  publication-title: Remote Sens. (Basel)
– volume: 26
  start-page: 32
  year: 2020
  end-page: 39
  ident: b0260
  article-title: Dynamics of sugar beet root, crown and leaves mass with regard to plant densities and spring nitrogen fertilization
  publication-title: Poljoprivreda
– reference: ICUMSA Methods Book, 2007 b. Determination of Potassium and Sodium in Sugar Beet by Flame Photometry (Methods GS6-7); Bartens: Berlin, Germany.
– year: 1959
  ident: b0060
  article-title: Fysiologie cukrovky
– volume: 145
  start-page: 367
  year: 2007
  end-page: 375
  ident: b0120
  article-title: The impact of climate change on sugarbeet yield in the UK: 1976–2004
  publication-title: J. Agric. Sci.
– year: 2003
  ident: b0065
  publication-title: Nutrients for sugar beet production: soil-plant relationships
– reference: Breiman., L., Cutler, A., Liaw, A., Wiener, M. 2022. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. https://CRAN.R-project.org/package=randomForest.
– volume: 11
  start-page: 1923
  year: 2022
  ident: b0090
  article-title: Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
  publication-title: Plants
– year: 1966
  ident: b0170
  article-title: Plant phisiology
– volume: 137
  start-page: 184
  year: 2021
  end-page: 193
  ident: b0225
  article-title: Experience with variable fertilization of sugar beet
  publication-title: Listy cukrovarnicke a reparske
– volume: 233
  year: 2020
  ident: b0030
  article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches
  publication-title: Agric. Water Manag.
– reference: Inoue, Y., Guérif, M., Baret, F., Skidmore, A., Gitelson, A., Schlerf, M., Darvishadeh, R., Olioso, A., 2016. Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation, 39, 2609-2623). 10.1111/pce.12815.
– volume: 151
  start-page: 61
  year: 2018
  end-page: 69
  ident: b0050
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
– reference: Liland, K. H., Mevik, B. H., Wehrens, R., Hiemstra, P., 2022. pls: Partial Least Squares and Principal Component Regression. https://CRAN.R-project.org/package=pls .
– volume: 102
  start-page: 210
  year: 2007
  end-page: 218
  ident: b0185
  article-title: Nitrogen compounds in organs of two sugar beet genotypes (
  publication-title: Field Crop Res
– year: 2013
  ident: b0220
  article-title: Ratarstvo II. dio – Industrijsko bilje
– volume: 6
  start-page: e20337
  year: 2023
  ident: b0280
  article-title: UAV-based NDVI estimation of sugarbeet yield and quality under varied nitrogen and water rates
  publication-title: Agrosyst., Geosci. Environ.
– volume: 116
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0155
  article-title: Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution
  publication-title: Ind. Crops Prod.
– volume: 137
  start-page: 245
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0205
  article-title: Short Study on Sugar Beet Nitrogen Fertilization – Local versus Uniform Nitrogen Application
  publication-title: Listy Cukrovarnické a Reparské
– volume: 155
  start-page: 257
  year: 2018
  ident: 10.1016/j.compag.2023.108076_b0075
  article-title: Forecasting yield by integrating agrarian factors and machine learning models: A survey
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.10.024
– year: 2003
  ident: 10.1016/j.compag.2023.108076_b0215
– volume: 13
  start-page: 641
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0190
  article-title: Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs13040641
– volume: 138
  start-page: 69
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0270
  article-title: Determination of N-NO3– in Sugar Beet Leaves
  publication-title: Listy cukrovarnicke a reparske
– volume: 3
  start-page: 170
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0265
  article-title: Efficiency and Management of Nitrogen Fertilization in Sugar Beet as Spring Crop: A Review
  publication-title: Nitrogen
  doi: 10.3390/nitrogen3020013
– year: 1966
  ident: 10.1016/j.compag.2023.108076_b0170
– ident: 10.1016/j.compag.2023.108076_b0255
  doi: 10.1109/ICAIIC57133.2023.10067006
– volume: 170
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0110
  article-title: Modeling and optimizing in vitro seed germination of industrial hemp (Cannabis sativa L.)
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2021.113753
– volume: 120
  start-page: 113
  year: 1995
  ident: 10.1016/j.compag.2023.108076_b0040
  article-title: Neubewertung des technischen Wertes von Zucker-rüben
  publication-title: Zuckerindustrie
– volume: 233
  year: 2020
  ident: 10.1016/j.compag.2023.108076_b0030
  article-title: Water table depth forecasting in cranberry fields using two decision-tree-modeling approaches
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106090
– volume: 11
  start-page: 1697
  issue: 13
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0135
  article-title: Prediction of Oil Palm Yield Using Machine Learning in the Perspective of Fluctuating Weather and Soil Moisture Conditions: Evaluation of a Generic Workflow
  publication-title: Plants
  doi: 10.3390/plants11131697
– ident: 10.1016/j.compag.2023.108076_b0045
– volume: 14
  start-page: 120
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0015
  article-title: Machine Learning in Evaluating Multispectral Active Canopy Sensor for Prediction of Corn Leaf Nitrogen Concentration and Yield
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14010120
– year: 2003
  ident: 10.1016/j.compag.2023.108076_b0065
– ident: 10.1016/j.compag.2023.108076_b0125
– ident: 10.1016/j.compag.2023.108076_b0150
– volume: 137
  start-page: 184
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0225
  article-title: Experience with variable fertilization of sugar beet
  publication-title: Listy cukrovarnicke a reparske
– volume: 123
  start-page: 49
  issue: 1
  year: 2020
  ident: 10.1016/j.compag.2023.108076_b0055
  article-title: Simulation of daily diffuse solar radiation based on three machine learning models
  publication-title: Comput. Model. Eng. Sci.
– volume: 21
  start-page: 15
  year: 2015
  ident: 10.1016/j.compag.2023.108076_b0145
  article-title: Results of sugar beet production depending on the hybrids selection and the number of fungicide application
  publication-title: Poljoprivreda
  doi: 10.18047/poljo.21.2.3
– volume: 11
  start-page: 1593
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0025
  article-title: Nutrient Composition Analysis of Maize Hybrids Affected by Different Nitrogen Fertilisation Systems
  publication-title: Plants
  doi: 10.3390/plants11121593
– year: 1992
  ident: 10.1016/j.compag.2023.108076_b0020
– volume: 20
  start-page: 1231
  issue: 4
  year: 2020
  ident: 10.1016/j.compag.2023.108076_b0250
  article-title: Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images
  publication-title: Sensors
  doi: 10.3390/s20041231
– ident: 10.1016/j.compag.2023.108076_b0115
  doi: 10.1111/pce.12815
– volume: 13
  start-page: 1308
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0160
  article-title: A medium and Long-Term runoff forecast method based on massive meteorological data and machine learning algorithms
  publication-title: Water
  doi: 10.3390/w13091308
– volume: 11
  start-page: 1923
  issue: 15
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0090
  article-title: Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
  publication-title: Plants
  doi: 10.3390/plants11151923
– volume: 181
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0010
  article-title: Machine learning (ML) algorithms and artificial neural network for optimizing in vitro germination and growth indices of industrial hemp (Cannabis sativa L.)
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2022.114801
– volume: 107
  start-page: 1816
  issue: 6
  year: 2023
  ident: 10.1016/j.compag.2023.108076_b0085
  article-title: Sugar beet root storage properties are unaffected by Cercospora leaf spot
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-09-22-2156-RE
– volume: 199
  start-page: 333
  year: 2017
  ident: 10.1016/j.compag.2023.108076_b0100
  article-title: The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.043
– ident: 10.1016/j.compag.2023.108076_b0195
– volume: 133
  start-page: 123
  year: 2021
  ident: 10.1016/j.compag.2023.108076_b0175
  article-title: Gradient-based training and pruning of radial basis function networks with an application in materials physics
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.10.002
– volume: 158
  start-page: 225
  year: 2015
  ident: 10.1016/j.compag.2023.108076_b0140
  article-title: Water use and yield of sugar beet (Beta vulgaris L.) under drip irrigation at different water regimes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.05.005
– volume: 14
  start-page: 2256
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0210
  article-title: Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14092256
– volume: 151
  start-page: 61
  year: 2018
  ident: 10.1016/j.compag.2023.108076_b0050
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– ident: 10.1016/j.compag.2023.108076_b0105
– volume: 12
  start-page: 2210
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0230
  article-title: GIS-Based Cropland Suitability Prediction Using Machine Learning: A Novel Approach to Sustainable Agricultural Production
  publication-title: Agronomy
  doi: 10.3390/agronomy12092210
– year: 1959
  ident: 10.1016/j.compag.2023.108076_b0060
– volume: 6
  start-page: e20337
  issue: 1
  year: 2023
  ident: 10.1016/j.compag.2023.108076_b0280
  article-title: UAV-based NDVI estimation of sugarbeet yield and quality under varied nitrogen and water rates
  publication-title: Agrosyst., Geosci. Environ.
  doi: 10.1002/agg2.20337
– volume: 29
  start-page: 7014
  issue: 5
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0285
  article-title: Predicting flocculant dosage in the drinking water treatment process using Elman neural network
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-16265-4
– volume: 58
  start-page: 869
  issue: 3
  year: 2020
  ident: 10.1016/j.compag.2023.108076_b0080
  article-title: Estimation of total nitrogen content in sugar beet leaves based on chlorophyll fluorescence parameters
  publication-title: Photosynthetica
  doi: 10.32615/ps.2020.036
– ident: 10.1016/j.compag.2023.108076_b0005
– volume: 287
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0200
  article-title: Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2022.108640
– volume: 11
  start-page: 1318
  issue: 11
  year: 2019
  ident: 10.1016/j.compag.2023.108076_b0245
  article-title: Anomaly detection for hyperspectral imagery based on the regularized subspace method and collaborative representation
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs11111318
– year: 2013
  ident: 10.1016/j.compag.2023.108076_b0220
– volume: 145
  start-page: 367
  year: 2007
  ident: 10.1016/j.compag.2023.108076_b0120
  article-title: The impact of climate change on sugarbeet yield in the UK: 1976–2004
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859607006922
– volume: 25
  start-page: 270
  year: 2006
  ident: 10.1016/j.compag.2023.108076_b0180
  article-title: Organ-specific adaptation to low precipitation in solute concentration of sugar beet (Beta vulgaris L.)
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2006.06.004
– volume: 3
  start-page: 100102
  year: 2023
  ident: 10.1016/j.compag.2023.108076_b0275
  article-title: A Review of Machine Learning Techniques for Identifying Weeds in Corn
  publication-title: Smart Agric. Technol.
  doi: 10.1016/j.atech.2022.100102
– volume: 189
  year: 2022
  ident: 10.1016/j.compag.2023.108076_b0130
  article-title: Prediction of sunflower grain yield under normal and salinity stress by RBF-K, MLP and CNN models
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2022.115762
– ident: 10.1016/j.compag.2023.108076_b0165
– volume: 74
  start-page: 567
  issue: 3
  year: 1970
  ident: 10.1016/j.compag.2023.108076_b0070
  article-title: Sodium and potassium relationships in sugar beet
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600017706
– ident: 10.1016/j.compag.2023.108076_b0035
– volume: 116
  start-page: 1
  year: 2018
  ident: 10.1016/j.compag.2023.108076_b0155
  article-title: Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2018.02.051
– volume: 102
  start-page: 210
  issue: 3
  year: 2007
  ident: 10.1016/j.compag.2023.108076_b0185
  article-title: Nitrogen compounds in organs of two sugar beet genotypes (Beta vulgaris L.) during the season
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2007.04.001
– volume: 142
  start-page: 50
  year: 2017
  ident: 10.1016/j.compag.2023.108076_b0095
  article-title: Value of dimensionality reduction for crop differentiation with multi-temporal imagery and machine learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.08.024
– volume: 26
  start-page: 32
  year: 2020
  ident: 10.1016/j.compag.2023.108076_b0260
  article-title: Dynamics of sugar beet root, crown and leaves mass with regard to plant densities and spring nitrogen fertilization
  publication-title: Poljoprivreda
  doi: 10.18047/poljo.26.1.5
SSID ssj0016987
Score 2.4914467
Snippet •Sugar beet nitrogen fertilization was optimized using leaf nutrient status samples.•Root yield and yield quality parameters were used as training and test...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108076
SubjectTerms Accuracy assessment
Leaf samples
Machine learning
Precipitation
Sugar beet root yield
Title Prediction of sugar beet yield and quality parameters with varying nitrogen fertilization using ensemble decision trees and artificial neural networks
URI https://dx.doi.org/10.1016/j.compag.2023.108076
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS9xQEB90vdhDaa2itpU5eI2b75ccF6msFUWwgreQ97Uo6-6SXQUv_TP693bmvRepIAo9hYRMCDOTNzOZ3_wewGFqY9WmWR7ZVFGBUksbUVw3EfmKrAqR2sTRNZ1flOPr_OdNcbMGx_0sDMMqw9rv13S3Wocrw6DN4eL2dnhFyUqVlDVlKK4_J9ZhI6VoXw1gY3R6Nr54biaUdeWnpksqmEign6BzMC8H9Z4c8S7iDm_H5COvRah_os7JJ_gY0kUc-Tf6DGtmtgUfRpMuUGaYL_DnsuNmCysY5xaXD5O2Q2nMCp8YnYbtTKMfnXxCJvq-ZwDMEvkHLD62HY85IX3X3ZxcCS3DrKdhNhMZFD9BKnTNvZwa1GE_HuRO9tI9mFXlOSiQmTHdweHKl9twffLj1_E4CrstRIrKhlWki7i1GdVXwuRtYlRZUnjPqFrMtWyViIWl1JYrWqnrKrNJHFtbK5VaGWtRmDjbgcFsPjO7gIWmoGcLaXIlc5PqymYxPVRowVQ4Qu5B1mu4UYGKnHfEmDY95uyu8XZp2C6Nt8seRM9SC0_F8c79ojde88KlGooWb0ru_7fkV9jkMw9C-waDVfdgvlPWspIHsH70OzkIvvkXQnTwPg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MT6nIPX2DSvTY9SlPpEUMFbyL6KUltJW8GLP8Pf68zuRhREwVMg2V3CzGRnJvvNN4wdRCaUZRQngYkkJigdYQL06zpAWxF5yiPTtnRNl1dZ7y45u0_vZ1i3roUhWKXf-92ebndrf6flpdl6fnho3WCwkrezDkYo9nyOz7K5hNocoFEfvn3iPHBE7mqmM0yXcHhdP2dBXhbo3T-kHuIWbUfUIz_5py8-52SZLflgEY7c-6ywGT1cZYtH_coTZug19n5d0VELiRdGBsbTflmB0HoCr4RNg3KowBVOvgLRfD8R_GUM9PsVXsqKipwAv-pqhIYEhkDWA1-ZCQSJ7wOmufpJDDQo340H6Bx7bBcmQTkGCiBeTHuxqPLxOrs7Ob7t9gLfayGQmDRMApWGpYkxu-I6KdtaZhk69xhzxUSJUvKQGwxsKZ8VqpPHph2GxnSkjIwIFU91GG-wxnA01JsMUoUuz6RCJ1IkOlK5iUNclCtORDhcNFlcS7iQnoic-mEMihpx9lg4vRSkl8LppcmCz1nPjojjj_G8Vl7xzaAK9BW_ztz698x9Nt-7vbwoLk6vzrfZAj1xcLQd1phUU72L8ctE7Fn7_AA6E_EA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+sugar+beet+yield+and+quality+parameters+with+varying+nitrogen+fertilization+using+ensemble+decision+trees+and+artificial+neural+networks&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Varga%2C+Ivana&rft.au=Rado%C4%8Daj%2C+Dorijan&rft.au=Juri%C5%A1i%C4%87%2C+Mladen&rft.au=Markulj+Kulund%C5%BEi%C4%87%2C+Antonela&rft.date=2023-09-01&rft.issn=0168-1699&rft.volume=212&rft.spage=108076&rft_id=info:doi/10.1016%2Fj.compag.2023.108076&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2023_108076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon