Distributed online convex optimization with a bandit primal-dual mirror descent push-sum algorithm

The distributed online convex optimization problem with time-varying constraints for multi-agent networks is addressed in this article. The purpose is to optimize a sequence of time-varying global cost functions defined as the accumulated values of local cost functions, also attempt to meet the requ...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 497; pp. 204 - 215
Main Authors Wang, Cong, Xu, Shengyuan, Yuan, Deming, Zhang, Baoyong, Zhang, Zhengqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2022.05.024

Cover

Abstract The distributed online convex optimization problem with time-varying constraints for multi-agent networks is addressed in this article. The purpose is to optimize a sequence of time-varying global cost functions defined as the accumulated values of local cost functions, also attempt to meet the requirement of a sequence of time-varying coupled constraint functions which denote the sum of local constraint functions. Cost functions and constraint functions are unknown to agents beforehand. It is supposed that each agent in the network communicates with its neighbours through a uniformly strongly connected sequence of time-varying directed communication topologies. This paper proposes the bandit distributed primal-dual mirror descent push-sum (BDPDMDPS) algorithm constructed by bandit primal-dual, mirror descent and push-sum methods. Operational performance of the presented algorithm is measured by expected regret and expected constraint violation, both of which are proved to be sublinear with respect to the total iteration span T in this paper. Finally, a numerical simulation example is shown, which confirms the results for expected regret and expected constraint violation of BDPDMDPS algorithm.
AbstractList The distributed online convex optimization problem with time-varying constraints for multi-agent networks is addressed in this article. The purpose is to optimize a sequence of time-varying global cost functions defined as the accumulated values of local cost functions, also attempt to meet the requirement of a sequence of time-varying coupled constraint functions which denote the sum of local constraint functions. Cost functions and constraint functions are unknown to agents beforehand. It is supposed that each agent in the network communicates with its neighbours through a uniformly strongly connected sequence of time-varying directed communication topologies. This paper proposes the bandit distributed primal-dual mirror descent push-sum (BDPDMDPS) algorithm constructed by bandit primal-dual, mirror descent and push-sum methods. Operational performance of the presented algorithm is measured by expected regret and expected constraint violation, both of which are proved to be sublinear with respect to the total iteration span T in this paper. Finally, a numerical simulation example is shown, which confirms the results for expected regret and expected constraint violation of BDPDMDPS algorithm.
Author Xu, Shengyuan
Yuan, Deming
Wang, Cong
Zhang, Zhengqiang
Zhang, Baoyong
Author_xml – sequence: 1
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 2
  givenname: Shengyuan
  surname: Xu
  fullname: Xu, Shengyuan
  email: syxu@njust.edu.cn
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 3
  givenname: Deming
  surname: Yuan
  fullname: Yuan, Deming
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 4
  givenname: Baoyong
  surname: Zhang
  fullname: Zhang, Baoyong
  organization: School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
– sequence: 5
  givenname: Zhengqiang
  surname: Zhang
  fullname: Zhang, Zhengqiang
  organization: School of Electrical Engineering and Automation, Qufu Normal University, Rizhao 276826, China
BookMark eNqFkL1OwzAUhS1UJErhDRj8Agm2E6cJAxIqv1IlFpgt59qmrhK7sp3y8_SkLRMDTHc4-o7u-U7RxHmnEbqgJKeEVpfr3OkBfJ8zwlhOeE5YeYSmtJ6zrGZ1NUFT0jCesYKyE3Qa45oQOqesmaL21sYUbDskrbB3nXUag3db_YH9JtnefslkvcPvNq2wxK10yia8CbaXXaYG2eHehuADVjqCdmM0xFUWhx7L7s2HkerP0LGRXdTnP3eGXu_vXhaP2fL54Wlxs8ygIFXKQEkDrDCNIXNZtcDnhSqBF6RRLSgFHKApWwNF05CybCtNDSF1YSo-RryGYobKQy8EH2PQRuzfDJ-CErHzJNbi4EnsPAnCxehpxK5-YWDTfnQK0nb_wdcHWI_DtlYHEcFqB1rZoCEJ5e3fBd_9gIxP
CitedBy_id crossref_primary_10_1016_j_neunet_2024_106291
crossref_primary_10_1007_s12555_023_0211_3
crossref_primary_10_1109_TNSE_2024_3409061
crossref_primary_10_3390_math10244689
crossref_primary_10_1016_j_knosys_2024_112582
crossref_primary_10_1049_cth2_12548
crossref_primary_10_1016_j_neucom_2024_127789
crossref_primary_10_1016_j_neucom_2024_128213
crossref_primary_10_1109_ACCESS_2023_3244070
crossref_primary_10_1016_j_amc_2023_127865
crossref_primary_10_3390_pr11051416
crossref_primary_10_1080_24725854_2024_2428652
crossref_primary_10_1109_ACCESS_2023_3305529
Cites_doi 10.1109/TCYB.2020.2999309
10.1109/TAC.2011.2161027
10.1109/TAC.2017.2650563
10.1109/TAC.2018.2860546
10.1109/TAC.2020.2987379
10.1016/j.neucom.2020.05.006
10.1109/TAC.2020.3030743
10.1109/TAC.2014.2364096
10.1109/TSP.2020.2964200
10.1016/S0167-6377(02)00231-6
10.1109/TAC.2017.2743462
10.1109/TCNS.2016.2573639
10.1109/TAC.2020.3021011
10.1109/TAC.2016.2529285
10.1109/TAC.2020.3030883
10.1109/TCYB.2017.2755720
10.1016/j.neucom.2015.12.017
10.1109/TAC.2008.2009515
10.1109/TNSE.2014.2363554
10.1016/j.neucom.2017.01.021
10.1109/TCYB.2020.2990796
10.1109/TCNS.2015.2505149
10.1016/j.automatica.2017.12.053
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.05.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 215
ExternalDocumentID 10_1016_j_neucom_2022_05_024
S0925231222005562
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-cdafc23f9f07a6bc573d4c5309dbcddc5cc94bfc399044b6e1f0083f65c5c58c3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:49:22 EDT 2025
Thu Oct 16 04:34:39 EDT 2025
Fri Feb 23 02:40:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-varying constraint
Bandit feedback
Distributed online convex optimization
Time-varying directed network topology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-cdafc23f9f07a6bc573d4c5309dbcddc5cc94bfc399044b6e1f0083f65c5c58c3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_05_024
crossref_citationtrail_10_1016_j_neucom_2022_05_024
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_05_024
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Zhao, Hu, Zhang, Ghosh (b0100) 2020; 407
Mateos-Nnez, Corts (b0025) 2014; 1
Nedic, Olshevsky (b0105) 2015; 60
Nedic, Ozdaglar (b0005) 2009; 54
Duchi, Agarwal, Wainwright (b0010) 2012; 57
Cao, Zhang, Poor (b0095) 2021; 66
Q. L, H. Li, D. Xia, Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication, Neurocomputing 235 (2017) 255-263.
Akbari, Gharesifard, Linder (b0050) 2019; 64
Tsianos, Lawlor, Rabbat (b0115) 2012
Yuan, Hong, Ho, Xu (b0035) 2021; 66
Yuan, Ho, Jiang (b0055) 2018; 48
Tsianos, Rabbat (b0080) 2016; 2
A.D. Flaxman, A.T. Kalai, H.B. McMahan, Online convex optimization in the bandit setting: gradient descent without a gradient, Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), Vancouver, pp. 385–394, 2005.
S. Lee, M.M. Zavlanos On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, arXiv preprint. arXiv:1705.11128.
Yi, Li, Xie, Johansson (b0065) 2020; 68
Nedic, Olshevsky (b0110) 2016; 61
Lee, Nedic, Raginsky (b0045) 2017; 62
Li, Yi, Xie (b0075) 2021; 66
Li, Chen, Dong, Wu (b0020) 2016; 177
Lee, Nedic, Raginsky (b0040) 2018; 5
Hazen (b0135) 2015
Yi, Li, Yang, Xie, Chai, Johansson (b0090) 2021; 66
Akbari, Gharesifard, Linder (b0120) 2017; 4
Yuan, Hong, Ho, Jiang (b0015) 2018; 90
C. Wang, S. Xu, D. Yuan, D. Yuan, B. Zhang, Z. Zhang, Push-sum distributed online optimization with bandit feedback, IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2999309.
Shahrampour, Jadbabaie (b0030) 2018; 63
Li, Gu, Wu, Huang (b0060) 2022; 52
Beck, Teboulle (b0140) 2003; 31
Shahrampour (10.1016/j.neucom.2022.05.024_b0030) 2018; 63
Lee (10.1016/j.neucom.2022.05.024_b0040) 2018; 5
Tsianos (10.1016/j.neucom.2022.05.024_b0080) 2016; 2
Li (10.1016/j.neucom.2022.05.024_b0100) 2020; 407
Yuan (10.1016/j.neucom.2022.05.024_b0035) 2021; 66
Nedic (10.1016/j.neucom.2022.05.024_b0110) 2016; 61
Yi (10.1016/j.neucom.2022.05.024_b0065) 2020; 68
10.1016/j.neucom.2022.05.024_b0130
Li (10.1016/j.neucom.2022.05.024_b0075) 2021; 66
10.1016/j.neucom.2022.05.024_b0070
Hazen (10.1016/j.neucom.2022.05.024_b0135) 2015
Nedic (10.1016/j.neucom.2022.05.024_b0005) 2009; 54
Tsianos (10.1016/j.neucom.2022.05.024_b0115) 2012
Duchi (10.1016/j.neucom.2022.05.024_b0010) 2012; 57
Mateos-Nnez (10.1016/j.neucom.2022.05.024_b0025) 2014; 1
Li (10.1016/j.neucom.2022.05.024_b0060) 2022; 52
Lee (10.1016/j.neucom.2022.05.024_b0045) 2017; 62
Beck (10.1016/j.neucom.2022.05.024_b0140) 2003; 31
10.1016/j.neucom.2022.05.024_b0085
Nedic (10.1016/j.neucom.2022.05.024_b0105) 2015; 60
Yuan (10.1016/j.neucom.2022.05.024_b0055) 2018; 48
Akbari (10.1016/j.neucom.2022.05.024_b0120) 2017; 4
Yi (10.1016/j.neucom.2022.05.024_b0090) 2021; 66
Li (10.1016/j.neucom.2022.05.024_b0020) 2016; 177
10.1016/j.neucom.2022.05.024_b0125
Yuan (10.1016/j.neucom.2022.05.024_b0015) 2018; 90
Akbari (10.1016/j.neucom.2022.05.024_b0050) 2019; 64
Cao (10.1016/j.neucom.2022.05.024_b0095) 2021; 66
References_xml – reference: C. Wang, S. Xu, D. Yuan, D. Yuan, B. Zhang, Z. Zhang, Push-sum distributed online optimization with bandit feedback, IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2999309.
– volume: 64
  start-page: 1746
  year: 2019
  end-page: 1752
  ident: b0050
  article-title: Individual regret bounds for the distributed online alternating direction method of multipliers
  publication-title: IEEE Trans. Autom. Control
– reference: S. Lee, M.M. Zavlanos On the sublinear regret of distributed primal-dual algorithms for online constrained optimization, arXiv preprint. arXiv:1705.11128.
– volume: 48
  start-page: 3045
  year: 2018
  end-page: 3055
  ident: b0055
  article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Trans. Cybern.
– volume: 90
  start-page: 196
  year: 2018
  end-page: 203
  ident: b0015
  article-title: Optimal distributed stochastic mirror descent for strongly convex optimization
  publication-title: Automatica
– volume: 66
  start-page: 5049
  year: 2021
  end-page: 5064
  ident: b0095
  article-title: Constrained online convex optimization with feedback delays
  publication-title: IEEE Trans. Autom. Control
– volume: 52
  start-page: 1009
  year: 2022
  end-page: 1020
  ident: b0060
  article-title: Online learning algorithm for distributed convex optimization with time-varying coupled constraints and bandit feedback
  publication-title: IEEE Trans. Cybern.
– volume: 177
  start-page: 643
  year: 2016
  end-page: 650
  ident: b0020
  article-title: Distributed mirror descent method for multi-agent optimization with delay
  publication-title: Neurocomputing
– volume: 66
  start-page: 4620
  year: 2021
  end-page: 4635
  ident: b0090
  article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 2
  start-page: 489
  year: 2016
  end-page: 506
  ident: b0080
  article-title: Efficient distributed online prediction and stochastic optimization with approximate distributed averaging
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 1
  start-page: 23
  year: 2014
  end-page: 37
  ident: b0025
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 407
  start-page: 155
  year: 2020
  end-page: 162
  ident: b0100
  article-title: Distributed initialization-free algorithms for multi-agent optimization problems with coupled inequality constraints
  publication-title: Neurocomputing
– volume: 31
  start-page: 167
  year: 2003
  end-page: 175
  ident: b0140
  article-title: Mirror descent and nonlinear projected sub-gradient methods for convex optimization
  publication-title: Oper. Res. Lett.
– volume: 54
  start-page: 48
  year: 2009
  end-page: 61
  ident: b0005
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
– start-page: 5453
  year: 2012
  end-page: 5458
  ident: b0115
  article-title: Push-sum distributed dual averaging for convex optimization, proc
  publication-title: 51st IEEE Conf. Decis. Control, Maui, Hawaii
– volume: 62
  start-page: 6407
  year: 2017
  end-page: 6414
  ident: b0045
  article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 68
  start-page: 731
  year: 2020
  end-page: 746
  ident: b0065
  article-title: Distributed online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Trans. Signal Process.
– volume: 66
  start-page: 714
  year: 2021
  end-page: 729
  ident: b0035
  article-title: Distributed mirror descent for online composite optimization
  publication-title: IEEE Trans. Autom. Control
– year: 2015
  ident: b0135
  article-title: Introduction to online convex optimization
– reference: Q. L, H. Li, D. Xia, Distributed optimization of first-order discrete-time multi-agent systems with event-triggered communication, Neurocomputing 235 (2017) 255-263.
– reference: A.D. Flaxman, A.T. Kalai, H.B. McMahan, Online convex optimization in the bandit setting: gradient descent without a gradient, Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), Vancouver, pp. 385–394, 2005.
– volume: 57
  start-page: 592
  year: 2012
  end-page: 606
  ident: b0010
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Autom. Control
– volume: 66
  start-page: 3575
  year: 2021
  end-page: 3591
  ident: b0075
  article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints
  publication-title: IEEE Trans. Autom. Control
– volume: 60
  start-page: 601
  year: 2015
  end-page: 615
  ident: b0105
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– volume: 4
  start-page: 417
  year: 2017
  end-page: 428
  ident: b0120
  article-title: Distributed online convex optimization on time-varying directed graphs
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 5
  start-page: 34
  year: 2018
  end-page: 44
  ident: b0040
  article-title: Coordinate dual averaging for decentralized online optimization with nonseparable global objectives
  publication-title: IEEE Trans. Control Netw. Syst.
– volume: 63
  start-page: 714
  year: 2018
  end-page: 725
  ident: b0030
  article-title: Distributed online optimization in dynamic environments using mirror descent
  publication-title: IEEE Trans. Autom. Control
– volume: 61
  start-page: 3936
  year: 2016
  end-page: 3947
  ident: b0110
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
– ident: 10.1016/j.neucom.2022.05.024_b0125
  doi: 10.1109/TCYB.2020.2999309
– volume: 57
  start-page: 592
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2022.05.024_b0010
  article-title: Dual averaging for distributed optimization: convergence analysis and network scaling
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2011.2161027
– start-page: 5453
  year: 2012
  ident: 10.1016/j.neucom.2022.05.024_b0115
  article-title: Push-sum distributed dual averaging for convex optimization, proc
  publication-title: 51st IEEE Conf. Decis. Control, Maui, Hawaii
– volume: 62
  start-page: 6407
  issue: 12
  year: 2017
  ident: 10.1016/j.neucom.2022.05.024_b0045
  article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2650563
– year: 2015
  ident: 10.1016/j.neucom.2022.05.024_b0135
– volume: 64
  start-page: 1746
  issue: 4
  year: 2019
  ident: 10.1016/j.neucom.2022.05.024_b0050
  article-title: Individual regret bounds for the distributed online alternating direction method of multipliers
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2018.2860546
– volume: 66
  start-page: 714
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2022.05.024_b0035
  article-title: Distributed mirror descent for online composite optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.2987379
– ident: 10.1016/j.neucom.2022.05.024_b0085
– volume: 2
  start-page: 489
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2022.05.024_b0080
  article-title: Efficient distributed online prediction and stochastic optimization with approximate distributed averaging
  publication-title: IEEE Trans. Signal Inf. Process. Netw.
– volume: 407
  start-page: 155
  year: 2020
  ident: 10.1016/j.neucom.2022.05.024_b0100
  article-title: Distributed initialization-free algorithms for multi-agent optimization problems with coupled inequality constraints
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.05.006
– volume: 66
  start-page: 5049
  issue: 11
  year: 2021
  ident: 10.1016/j.neucom.2022.05.024_b0095
  article-title: Constrained online convex optimization with feedback delays
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.3030743
– volume: 60
  start-page: 601
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2022.05.024_b0105
  article-title: Distributed optimization over time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2364096
– volume: 68
  start-page: 731
  year: 2020
  ident: 10.1016/j.neucom.2022.05.024_b0065
  article-title: Distributed online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2964200
– volume: 31
  start-page: 167
  issue: 3
  year: 2003
  ident: 10.1016/j.neucom.2022.05.024_b0140
  article-title: Mirror descent and nonlinear projected sub-gradient methods for convex optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00231-6
– volume: 63
  start-page: 714
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2022.05.024_b0030
  article-title: Distributed online optimization in dynamic environments using mirror descent
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2743462
– volume: 5
  start-page: 34
  issue: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.05.024_b0040
  article-title: Coordinate dual averaging for decentralized online optimization with nonseparable global objectives
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2016.2573639
– volume: 66
  start-page: 3575
  issue: 8
  year: 2021
  ident: 10.1016/j.neucom.2022.05.024_b0075
  article-title: Distributed online optimization for multi-agent networks with coupled inequality constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.3021011
– volume: 61
  start-page: 3936
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2022.05.024_b0110
  article-title: Stochastic gradient-push for strongly convex functions on time-varying directed graphs
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2529285
– volume: 66
  start-page: 4620
  issue: 10
  year: 2021
  ident: 10.1016/j.neucom.2022.05.024_b0090
  article-title: Distributed bandit online convex optimization with time-varying coupled inequality constraints
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.3030883
– volume: 48
  start-page: 3045
  issue: 11
  year: 2018
  ident: 10.1016/j.neucom.2022.05.024_b0055
  article-title: An adaptive primal-dual subgradient algorithm for online distributed constrained optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2755720
– ident: 10.1016/j.neucom.2022.05.024_b0070
– volume: 177
  start-page: 643
  year: 2016
  ident: 10.1016/j.neucom.2022.05.024_b0020
  article-title: Distributed mirror descent method for multi-agent optimization with delay
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.017
– volume: 54
  start-page: 48
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2022.05.024_b0005
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2009515
– volume: 1
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.05.024_b0025
  article-title: Distributed online convex optimization over jointly connected digraphs
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2014.2363554
– ident: 10.1016/j.neucom.2022.05.024_b0130
  doi: 10.1016/j.neucom.2017.01.021
– volume: 52
  start-page: 1009
  issue: 2
  year: 2022
  ident: 10.1016/j.neucom.2022.05.024_b0060
  article-title: Online learning algorithm for distributed convex optimization with time-varying coupled constraints and bandit feedback
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2990796
– volume: 4
  start-page: 417
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2022.05.024_b0120
  article-title: Distributed online convex optimization on time-varying directed graphs
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2015.2505149
– volume: 90
  start-page: 196
  year: 2018
  ident: 10.1016/j.neucom.2022.05.024_b0015
  article-title: Optimal distributed stochastic mirror descent for strongly convex optimization
  publication-title: Automatica
  doi: 10.1016/j.automatica.2017.12.053
SSID ssj0017129
Score 2.463616
Snippet The distributed online convex optimization problem with time-varying constraints for multi-agent networks is addressed in this article. The purpose is to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms Bandit feedback
Distributed online convex optimization
Time-varying constraint
Time-varying directed network topology
Title Distributed online convex optimization with a bandit primal-dual mirror descent push-sum algorithm
URI https://dx.doi.org/10.1016/j.neucom.2022.05.024
Volume 497
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXtbvJbh7HUi1VsRct9BayL620aYkpePK3u5NHURAFj0l2IMxOZmbD932D0CULDWU64CQKfEt4pCiJtbLE59xEOkw9jwJR-GEcjCb8biqmLTRouDAAq6xzf5XTy2xd3-nV3uytZrPeI409d4pirsCBkFSZhzkPYYrB1ccG5sFC5lV6e54gsLqhz5UYr8ysATPiuUJW6nd6_Ofy9KXkDPfQTt0r4n71OvuoZbIDtNvMYcD1Z3mI5DWo38LgKqNxJX2BSzT5O166jLCoqZYY_rniFEtgshR4BToTcwJcLLyY5fkyx7rSdsKr9dsLcSGK0_nzMndWiyM0Gd48DUaknp1AlDsEFETp1CrPt7GlYRpIJUJfcyV8GmuptFZCqZhLq1x_QjmXgWEWujEbCPdIRMo_Ru1smZkThKVNwzSSzOc24IbFEQWBGGFcKxZwzaIO8huXJaoWFof5FvOkQZC9JpWjE3B0QkXiHN1BZGO1qoQ1_lgfNruRfAuQxOX-Xy1P_215hrbhqsL7naN2ka_NhetBCtktg6yLtvq396PxJ-Gi3lE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgQxEA0yHvTiLu7m4DVOkk56OYoL43rRgbmFzqYjs9HOgCe_3VQvg4IoeO2koKmuVFWa914hdMISR5mNBUnjyBORGkoyazyJhHCpTXLOKRCF7x_iTlfc9GRvAZ03XBiAVda5v8rpZbaun7Rrb7Yn_X77kWY83KJYKHAgJAV5eFFInsAN7PRjjvNgCeOV4B6XBLY3_LkS5DVyMwCN8FDJSgFPLn6uT19qztUaWqmbRXxWvc86WnCjDbTaDGLA9bncRPoC5G9hcpWzuNK-wCWc_B2PQ0oY1lxLDD9dcY41UFmmeAJCEwMCZCw87BfFuMC2EnfCk9nbCwkxivPB87gIVsMt1L26fDrvkHp4AjHhFjAlxube8MhnniZ5rI1MIiuMjGhmtbHWSGMyob0JDQoVQseOeWjHfCzDkkxNtI1ao_HI7SCsfZ7kqWaR8LFwLEspKMRIF3qxWFiW7qKocZkytbI4DLgYqAZC9qoqRytwtKJSBUfvIjK3mlTKGn_sT5qvob5FiArJ_1fLvX9bHqOlztP9nbq7frjdR8uwUoH_DlBrWszcYWhIpvqoDLhPIRTf5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+online+convex+optimization+with+a+bandit+primal-dual+mirror+descent+push-sum+algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Wang%2C+Cong&rft.au=Xu%2C+Shengyuan&rft.au=Yuan%2C+Deming&rft.au=Zhang%2C+Baoyong&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=497&rft.spage=204&rft.epage=215&rft_id=info:doi/10.1016%2Fj.neucom.2022.05.024&rft.externalDocID=S0925231222005562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon