Improving Chen and Han's algorithm on the discrete geodesic problem

The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In this article, we present an exact algorithm for the single-source all-vertices shortest path problem. Mitchell et al. [1987] proposed an O ( n 2 l...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 28; no. 4; pp. 1 - 8
Main Authors Xin, Shi-Qing, Wang, Guo-Jin
Format Journal Article
LanguageEnglish
Published 01.08.2009
Subjects
Online AccessGet full text
ISSN0730-0301
1557-7368
DOI10.1145/1559755.1559761

Cover

Abstract The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In this article, we present an exact algorithm for the single-source all-vertices shortest path problem. Mitchell et al. [1987] proposed an O ( n 2 log n ) method (MMP), based on Dijkstra's algorithm, where n is the complexity of the polyhedral surface. Then, Chen and Han [1990] (CH) improved the running time to O ( n 2 ). Interestingly Surazhsky et al. [2005] provided experimental evidence demonstrating that the MMP algorithm runs many times faster, in practice, than the CH algorithm. The CH algorithm encodes the structure of the set of shortest paths using a set of windows on the edges of the polyhedron. Our experiments showed that in many examples over 99% of the windows created by the CH algorithm are of no use to define a shortest path. So this article proposes to improve the CH algorithm by two separate techniques. One is to filter out useless windows using the current estimates of the distances to the vertices, the other is to maintain a priority queue like that achieved in Dijkstra's algorithm. Our experimental results suggest that the improved CH algorithm, in spite of an O ( n 2 log n ) asymptotic time complexity, greatly outperforms the original CH algorithm in both time and space. Furthermore, it generally runs faster than the MMP algorithm and uses considerably less space.
AbstractList The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In this article, we present an exact algorithm for the single-source all-vertices shortest path problem.
The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In this article, we present an exact algorithm for the single-source all-vertices shortest path problem. Mitchell et al. [1987] proposed an O ( n 2 log n ) method (MMP), based on Dijkstra's algorithm, where n is the complexity of the polyhedral surface. Then, Chen and Han [1990] (CH) improved the running time to O ( n 2 ). Interestingly Surazhsky et al. [2005] provided experimental evidence demonstrating that the MMP algorithm runs many times faster, in practice, than the CH algorithm. The CH algorithm encodes the structure of the set of shortest paths using a set of windows on the edges of the polyhedron. Our experiments showed that in many examples over 99% of the windows created by the CH algorithm are of no use to define a shortest path. So this article proposes to improve the CH algorithm by two separate techniques. One is to filter out useless windows using the current estimates of the distances to the vertices, the other is to maintain a priority queue like that achieved in Dijkstra's algorithm. Our experimental results suggest that the improved CH algorithm, in spite of an O ( n 2 log n ) asymptotic time complexity, greatly outperforms the original CH algorithm in both time and space. Furthermore, it generally runs faster than the MMP algorithm and uses considerably less space.
Author Wang, Guo-Jin
Xin, Shi-Qing
Author_xml – sequence: 1
  givenname: Shi-Qing
  surname: Xin
  fullname: Xin, Shi-Qing
  organization: Zhejiang University, Hangzhou, PR China
– sequence: 2
  givenname: Guo-Jin
  surname: Wang
  fullname: Wang, Guo-Jin
  organization: Zhejiang University, Hangzhou, PR China
BookMark eNp9kD1PwzAQhi1UJNrCzOqtLGnP38mIIqCVKrHAHDmO0xoldoldJP49gXZCgulueJ57T-8MTXzwFqFbAktCuFgRIQolxPJnSnKBpuOmMsVkPkFTUAwyYECu0CzGNwCQnMspKjf9YQgfzu9wubcea9_gtfaLiHW3C4NL-x4Hj9Pe4sZFM9hk8c6GxkZn8GjWne2v0WWru2hvznOOXh8fXsp1tn1-2pT328wwkCkzDVethYZTyvJaAGso51YoME1NDKGigFbz2nAlTMGZBqJoLWuSC6FpDYbN0eJ0d8x9P9qYqn58yXad9jYcY6U4U0QBkyN59y9JaM5kMQbREV2dUDOEGAfbVofB9Xr4rAhU38VW52Krc7GjIX4ZxiWdXPBp0K770_sCuUJ7qg
CitedBy_id crossref_primary_10_1016_j_tcs_2015_09_003
crossref_primary_10_1145_3618317
crossref_primary_10_1111_cgf_14371
crossref_primary_10_1007_s41095_016_0057_1
crossref_primary_10_1016_j_compfluid_2021_105037
crossref_primary_10_1016_j_cpc_2025_109545
crossref_primary_10_15701_kcgs_2022_28_1_11
crossref_primary_10_1016_j_cag_2023_10_006
crossref_primary_10_1016_j_engappai_2024_108821
crossref_primary_10_1145_2535596
crossref_primary_10_1080_00405000_2021_1944513
crossref_primary_10_1111_cgf_13248
crossref_primary_10_1145_3588694
crossref_primary_10_1109_TVCG_2015_2407404
crossref_primary_10_1145_3639261
crossref_primary_10_1111_cgf_13607
crossref_primary_10_1145_2897824_2925930
crossref_primary_10_1155_2014_943647
crossref_primary_10_1080_10095020_2024_2446306
crossref_primary_10_1016_j_cagd_2024_102291
crossref_primary_10_14778_2733004_2733051
crossref_primary_10_1016_j_addma_2020_101622
crossref_primary_10_1145_2980179_2982428
crossref_primary_10_1145_3414685_3417839
crossref_primary_10_1109_TVCG_2021_3109042
crossref_primary_10_1145_2508363_2508379
crossref_primary_10_1145_3550454_3555453
crossref_primary_10_1016_j_cad_2015_04_009
crossref_primary_10_1016_j_cag_2013_10_037
crossref_primary_10_1093_imaiai_iaad046
crossref_primary_10_1016_j_gmod_2017_02_004
crossref_primary_10_1016_j_camwa_2023_11_045
crossref_primary_10_1111_cgf_12173
crossref_primary_10_3390_sym13101936
crossref_primary_10_1016_j_jobe_2021_103827
crossref_primary_10_1515_phys_2019_0027
crossref_primary_10_1109_TPAMI_2019_2933209
crossref_primary_10_1016_j_cad_2020_102943
crossref_primary_10_1016_j_cad_2013_08_031
crossref_primary_10_1016_j_cag_2018_05_021
crossref_primary_10_1016_j_cam_2012_03_028
crossref_primary_10_1109_ACCESS_2019_2918494
crossref_primary_10_1088_1742_6596_1326_1_012026
crossref_primary_10_1155_2014_832837
crossref_primary_10_1109_TVCG_2021_3135021
crossref_primary_10_1109_TCSVT_2011_2158337
crossref_primary_10_1016_j_cad_2019_05_023
crossref_primary_10_1007_s41095_022_0326_0
crossref_primary_10_1016_j_cad_2017_05_022
crossref_primary_10_1145_2534161
crossref_primary_10_1016_j_cad_2018_04_019
crossref_primary_10_1371_journal_pone_0264192
crossref_primary_10_1109_TVCG_2011_119
crossref_primary_10_1109_TVCG_2019_2904271
crossref_primary_10_1016_j_cad_2020_102879
crossref_primary_10_1016_j_cad_2018_04_021
crossref_primary_10_1016_j_cad_2011_08_027
crossref_primary_10_1145_2866570
crossref_primary_10_26599_TST_2024_9010239
crossref_primary_10_1080_15481603_2023_2171703
crossref_primary_10_1016_j_cad_2016_05_014
crossref_primary_10_1145_3563773
crossref_primary_10_1016_j_cad_2014_08_023
crossref_primary_10_1007_3DRes_02_2012_4
crossref_primary_10_1007_s11390_018_1814_7
crossref_primary_10_1016_j_cagd_2017_03_010
crossref_primary_10_1007_s11390_012_1289_x
crossref_primary_10_3390_sym10010017
crossref_primary_10_1016_j_gmod_2023_101196
crossref_primary_10_1142_S0218195923500048
crossref_primary_10_1016_j_cad_2022_103333
crossref_primary_10_1016_j_pnucene_2017_05_004
crossref_primary_10_1080_02331934_2023_2241496
crossref_primary_10_1016_j_cad_2021_103077
crossref_primary_10_1016_j_cad_2010_05_009
crossref_primary_10_1016_j_comgeo_2011_05_006
crossref_primary_10_1109_TWC_2014_2341585
crossref_primary_10_1016_j_cad_2023_103552
crossref_primary_10_3390_math12070993
crossref_primary_10_1109_LRA_2021_3061869
crossref_primary_10_1016_j_cad_2015_07_012
crossref_primary_10_1016_j_gmod_2012_04_009
crossref_primary_10_1109_TKDE_2024_3484434
crossref_primary_10_1111_cgf_13116
crossref_primary_10_1016_j_cad_2013_08_016
crossref_primary_10_1109_TVCG_2021_3109975
crossref_primary_10_1109_TVCG_2013_63
crossref_primary_10_1111_cgf_14803
crossref_primary_10_1111_j_1467_8659_2011_01896_x
crossref_primary_10_1145_3592136
crossref_primary_10_1016_j_jcss_2017_09_002
crossref_primary_10_1145_3144567
crossref_primary_10_1016_j_cagd_2022_102077
Cites_doi 10.21236/ADA166246
10.1023/A:1016617010088
10.1007/PL00009417
10.1007/3-7643-7384-9_18
10.1137/0215014
10.1007/BF01386390
10.1145/1073204.1073228
10.1137/S0097539793253371
10.1145/263867.263869
10.1145/997817.997839
10.1137/S0097539797325223
10.1145/1057432.1057439
10.1145/301250.301449
10.1137/S0036144598347059
10.1137/0216045
10.1016/j.cad.2007.08.001
10.1109/2945.998671
10.1073/pnas.95.15.8431
10.1145/1185657.1185664
10.1145/98524.98601
10.1145/336154.336213
10.1016/j.cag.2005.08.003
ContentType Journal Article
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1145/1559755.1559761
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 8
ExternalDocumentID 10_1145_1559755_1559761
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
9M8
AAFWJ
AAKMM
AALFJ
AAYFX
AAYXX
ABFSI
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AI.
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
E.L
EBS
EJD
F5P
FEDTE
GUFHI
HF~
HGAVV
I07
LHSKQ
MVM
NHB
OHT
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UKR
UPT
VH1
WH7
XJT
XOL
XSW
ZCA
ZY4
~02
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c306t-cd47fe0d42238b503d244e570cdb1c12590fa4bc475c943a0172b6b1855a2b0c3
ISSN 0730-0301
IngestDate Thu Jul 10 17:52:38 EDT 2025
Fri Jul 11 07:09:36 EDT 2025
Wed Oct 01 06:03:51 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-cd47fe0d42238b503d244e570cdb1c12590fa4bc475c943a0172b6b1855a2b0c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1283694752
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_743717036
proquest_miscellaneous_1283694752
crossref_primary_10_1145_1559755_1559761
crossref_citationtrail_10_1145_1559755_1559761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-01
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-01
  day: 01
PublicationDecade 2000
PublicationTitle ACM transactions on graphics
PublicationYear 2009
References Varadarajan K. R. (e_1_2_1_27_1)
e_1_2_1_20_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
Kaneva B. (e_1_2_1_11_1) 2000
Hershberger J. (e_1_2_1_9_1)
Aleksandrov L. (e_1_2_1_4_1)
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_13_1
e_1_2_1_1_1
Mitchell J. S. B. (e_1_2_1_14_1) 2000; 15
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_15_1
Kanai T. (e_1_2_1_10_1)
Sander P. V. (e_1_2_1_23_1)
Novotni M. (e_1_2_1_19_1)
e_1_2_1_18_1
References_xml – ident: e_1_2_1_18_1
  doi: 10.21236/ADA166246
– ident: e_1_2_1_21_1
  doi: 10.1023/A:1016617010088
– ident: e_1_2_1_7_1
  doi: 10.1007/PL00009417
– volume-title: Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP). Eurographics Association, 146--155
  ident: e_1_2_1_23_1
– ident: e_1_2_1_20_1
  doi: 10.1007/3-7643-7384-9_18
– ident: e_1_2_1_25_1
  doi: 10.1137/0215014
– ident: e_1_2_1_6_1
  doi: 10.1007/BF01386390
– volume-title: Proceedings of Foundations of Computation Theory (FCT). 246--257
  ident: e_1_2_1_4_1
– ident: e_1_2_1_26_1
  doi: 10.1145/1073204.1073228
– ident: e_1_2_1_1_1
  doi: 10.1137/S0097539793253371
– ident: e_1_2_1_3_1
  doi: 10.1145/263867.263869
– volume-title: Proceedings of the 10th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG).
  ident: e_1_2_1_19_1
– volume-title: Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied Mathematics
  ident: e_1_2_1_9_1
– volume-title: Proceedings of the 12th Canadian Conference on Computational Geometry (CCCG).
  year: 2000
  ident: e_1_2_1_11_1
– ident: e_1_2_1_16_1
  doi: 10.1145/997817.997839
– ident: e_1_2_1_8_1
  doi: 10.1137/S0097539797325223
– ident: e_1_2_1_29_1
  doi: 10.1145/1057432.1057439
– volume-title: Proceedings of the IEEE Symposium on Foundations of Computer Science. 182--191
  ident: e_1_2_1_27_1
– ident: e_1_2_1_12_1
  doi: 10.1145/301250.301449
– ident: e_1_2_1_24_1
  doi: 10.1137/S0036144598347059
– ident: e_1_2_1_15_1
  doi: 10.1137/0216045
– ident: e_1_2_1_28_1
  doi: 10.1016/j.cad.2007.08.001
– ident: e_1_2_1_30_1
  doi: 10.1109/2945.998671
– ident: e_1_2_1_13_1
  doi: 10.1073/pnas.95.15.8431
– ident: e_1_2_1_22_1
  doi: 10.1145/1185657.1185664
– ident: e_1_2_1_5_1
  doi: 10.1145/98524.98601
– ident: e_1_2_1_2_1
  doi: 10.1145/336154.336213
– volume-title: Proceedings of the Geometric Modeling and Processing (GMP). IEEE Computer Society
  ident: e_1_2_1_10_1
– volume: 15
  start-page: 633
  year: 2000
  ident: e_1_2_1_14_1
  article-title: Geometric shortest paths and network optimization. In Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds. Elsevier
  publication-title: Chapter
– ident: e_1_2_1_17_1
  doi: 10.1016/j.cag.2005.08.003
SSID ssj0006446
Score 2.3178847
Snippet The computation of geodesic distances or paths between two points on triangulated meshes is a common operation in many computer graphics applications. In this...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Computation
Computer graphics
Shortest-path problems
Title Improving Chen and Han's algorithm on the discrete geodesic problem
URI https://www.proquest.com/docview/1283694752
https://www.proquest.com/docview/743717036
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1557-7368
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006446
  issn: 0730-0301
  databaseCode: ADMLS
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLa28sIeEGNDlMtkpGmbhFzSxE6ax6pcKtQyTbRS3yLbsekklnBJX_j1HCd2miKQYC9JlaRJ5M85_o6Pz3cQ-t6DEyqMQqKkbxwUnZKYcY9wKVIgwJrp0CQnjy_D4ZRezNhsWZuzzC4pREc-vphX8j-owjHA1WTJvgPZ-qZwAH4DvrAFhGH7JoyXMwKDuapWFQ95VSOF31zn4PfP_9logInEAEEs1NG1ylMF2BzZWjJNetofjE3RCFdBvAwllJLWjTXxs0p14Gr-l_xx4145I19ZjfNFTi6snLebTYjrtWzO6MAXT4yb1LSQfq_RE-jLhpcajQoT44wY65T7SmR9VeL68ndyNh2NksnpbPLj9o6Y6l8mSm5LoXxEaz5YZ6-F1von49FVPaYCayujzu7trEgTPPX42TNX-cXq8Fpyhskm2rBkH_cr5D6jDyrbQp8aEpBf0KDGEBsMMWCIAcOfD7hGEOcZBgSxQxA7BLFF8Cuanp1OBkNiC1sQCR5aQWRKI628lAI36wnmBSmQLMUiT6aiK4Fyxp7mVEgaMRnTgBs_XYQCqBXjvvBksI1aWZ6pHYTjQEeChyJMo4BqzYCvA6fmWnHVVczjbdRxzZFIq_puio_cJFVGOkts-yW2_droV_2H20rw5PVLD137JmCUTKSJZypfPCRAeoIwhtf32wi_cg1Q16hr5N9233CbPbS-7K37qFXcL9QBsMFCfLNd5QlqYF62
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Chen+and+Han%27s+algorithm+on+the+discrete+geodesic+problem&rft.jtitle=ACM+transactions+on+graphics&rft.au=Xin%2C+Shi-Qing&rft.au=Wang%2C+Guo-Jin&rft.date=2009-08-01&rft.issn=0730-0301&rft.volume=28&rft.issue=4&rft_id=info:doi/10.1145%2F1559755.1559761&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon