A rounding technique for the polymatroid membership problem

We present an efficient technique for finding a subset which maximizes ω( X) − ϱ( X) over all subsets of a set E, where ω and ϱ are real modular and polymatroid functions respectively, using as a subroutine an algorithm which finds such a set for functions ω , ϱ which are near ω, ϱ respectively. In...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 221; pp. 41 - 57
Main Author Narayanan, H.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.1995
Online AccessGet full text
ISSN0024-3795
1873-1856
DOI10.1016/0024-3795(93)00222-L

Cover

Abstract We present an efficient technique for finding a subset which maximizes ω( X) − ϱ( X) over all subsets of a set E, where ω and ϱ are real modular and polymatroid functions respectively, using as a subroutine an algorithm which finds such a set for functions ω , ϱ which are near ω, ϱ respectively. In particular we can choose ω , ϱ to be rational with denominators equal to 12| E| 3 if we can assume, whenever ϱ( X) + ϱ( Y) > ϱ( X ∪ Y) + ϱ( X ∩ Y), that the difference between the two sides is at least one. By applying our technique, we construct an O(| E| 3 r 2) algorithm for the case where ϱ is a matroid rank function.
AbstractList We present an efficient technique for finding a subset which maximizes ω( X) − ϱ( X) over all subsets of a set E, where ω and ϱ are real modular and polymatroid functions respectively, using as a subroutine an algorithm which finds such a set for functions ω , ϱ which are near ω, ϱ respectively. In particular we can choose ω , ϱ to be rational with denominators equal to 12| E| 3 if we can assume, whenever ϱ( X) + ϱ( Y) > ϱ( X ∪ Y) + ϱ( X ∩ Y), that the difference between the two sides is at least one. By applying our technique, we construct an O(| E| 3 r 2) algorithm for the case where ϱ is a matroid rank function.
Author Narayanan, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Narayanan
  fullname: Narayanan, H.
  organization: Electrical Engineering Department Indian Institute of Technology Bombay 400076, India
BookMark eNqFkEtLxDAUhYOM4MzoP3CRpS6qeXYaBWEYfEHBja5Dm946kTapSUaYf2_HERcudHU5cL7DPWeGJs47QOiUkgtKaH5JCBMZXyh5pvj5KBjLygM0pcWCZ7SQ-QRNfyxHaBbjGyFELAibouslDn7jGutecQKzdvZ9A7j1Aac14MF3275KwdsG99DXEOLaDngIvu6gP0aHbdVFOPm-c_Ryd_u8esjKp_vH1bLMDCd5ygyTqqV13SiuBGUNEU1hlJRU5uMXVHAFtcpJzYAYZghww4rRJZkohDTQ8jkS-1wTfIwBWj0E21dhqynRuwH0rp3etdOK668BdDliV78wY1OVrHcpVLb7D77ZwzAW-7AQdDQWnIHGBjBJN97-HfAJuq11nw
CitedBy_id crossref_primary_10_1134_S1990478915030072
crossref_primary_10_1007_s00453_018_0466_x
crossref_primary_10_1145_502090_502096
Cites_doi 10.1016/0095-8956(84)90023-6
10.1007/BF02579273
10.1287/mnsc.22.11.1268
10.1007/BF02579361
10.1287/moor.11.2.362
ContentType Journal Article
Copyright 1995
Copyright_xml – notice: 1995
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/0024-3795(93)00222-L
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 57
ExternalDocumentID 10_1016_0024_3795_93_00222_L
002437959300222L
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
T9H
TN5
TWZ
WH7
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-c259f1bbd939412d04d8c9551560041439eb960b2e0c2c0e3c282d0524845cef3
IEDL.DBID AIKHN
ISSN 0024-3795
IngestDate Thu Apr 24 23:07:47 EDT 2025
Wed Oct 01 04:30:07 EDT 2025
Fri Feb 23 02:18:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c259f1bbd939412d04d8c9551560041439eb960b2e0c2c0e3c282d0524845cef3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/002437959300222L
PageCount 17
ParticipantIDs crossref_primary_10_1016_0024_3795_93_00222_L
crossref_citationtrail_10_1016_0024_3795_93_00222_L
elsevier_sciencedirect_doi_10_1016_0024_3795_93_00222_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1995-05-01
PublicationDateYYYYMMDD 1995-05-01
PublicationDate_xml – month: 05
  year: 1995
  text: 1995-05-01
  day: 01
PublicationDecade 1990
PublicationTitle Linear algebra and its applications
PublicationYear 1995
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Picard (BIB5) 1976; 22
Tardos, Tovey, Trick (BIB4) 1986; 11
Welsh (BIB6) 1976
Cunningham (BIB2) 1985
Grotschel, Lovasz, Schrijver (BIB3) 1981; 1
Cunningham (BIB1) 1984; 36
Cunningham (10.1016/0024-3795(93)00222-L_BIB2) 1985
Tardos (10.1016/0024-3795(93)00222-L_BIB4) 1986; 11
Grotschel (10.1016/0024-3795(93)00222-L_BIB3) 1981; 1
Welsh (10.1016/0024-3795(93)00222-L_BIB6) 1976
Picard (10.1016/0024-3795(93)00222-L_BIB5) 1976; 22
Cunningham (10.1016/0024-3795(93)00222-L_BIB1) 1984; 36
References_xml – volume: 36
  start-page: 161
  year: 1984
  end-page: 188
  ident: BIB1
  article-title: Testing membership in matroid polyhedra
  publication-title: J. Combin. Theory Ser. B
– year: 1976
  ident: BIB6
  article-title: Matroid Theory
– volume: 1
  start-page: 169
  year: 1981
  end-page: 197
  ident: BIB3
  article-title: The ellipsoid method and its consequences in combinatorial optimisation
  publication-title: Combinatorica
– volume: 11
  start-page: 362
  year: 1986
  end-page: 370
  ident: BIB4
  article-title: Layered augmenting path algorithms
  publication-title: Math. Oper. Res.
– start-page: 185
  year: 1985
  end-page: 190
  ident: BIB2
  article-title: On submodular function minimization
  publication-title: Combinatorica
– volume: 22
  start-page: 1268
  year: 1976
  end-page: 1277
  ident: BIB5
  article-title: Maximal closure of a graph and application to combinatorial problems
  publication-title: Management Sci.
– volume: 36
  start-page: 161
  year: 1984
  ident: 10.1016/0024-3795(93)00222-L_BIB1
  article-title: Testing membership in matroid polyhedra
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(84)90023-6
– volume: 1
  start-page: 169
  issue: 2
  year: 1981
  ident: 10.1016/0024-3795(93)00222-L_BIB3
  article-title: The ellipsoid method and its consequences in combinatorial optimisation
  publication-title: Combinatorica
  doi: 10.1007/BF02579273
– year: 1976
  ident: 10.1016/0024-3795(93)00222-L_BIB6
– volume: 22
  start-page: 1268
  issue: 11
  year: 1976
  ident: 10.1016/0024-3795(93)00222-L_BIB5
  article-title: Maximal closure of a graph and application to combinatorial problems
  publication-title: Management Sci.
  doi: 10.1287/mnsc.22.11.1268
– start-page: 185
  year: 1985
  ident: 10.1016/0024-3795(93)00222-L_BIB2
  article-title: On submodular function minimization
  publication-title: Combinatorica
  doi: 10.1007/BF02579361
– volume: 11
  start-page: 362
  year: 1986
  ident: 10.1016/0024-3795(93)00222-L_BIB4
  article-title: Layered augmenting path algorithms
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.11.2.362
SSID ssj0004702
Score 1.4787441
Snippet We present an efficient technique for finding a subset which maximizes ω( X) − ϱ( X) over all subsets of a set E, where ω and ϱ are real modular and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
Title A rounding technique for the polymatroid membership problem
URI https://dx.doi.org/10.1016/0024-3795(93)00222-L
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211101
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: IXB
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 0024-3795
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWBAPEV5VB4YYDBxYudhMRVE1ULbiUrdrNpxpEp9qZSBhd_OOXFCkRBIjLF8VvQlufsuuvsOoSseRVnGVEA4pA-EKx3DJ6UpESYKqBEpxDTb79wfRJ0hfxqFo41eGFtW6Xx_4dNzb-1WPIemt5xMPKelFwqWN3T2tlEdwk-S1FC91X3uDL66I2PqNMM5sQZlA50fedXatWA3-TGk93OA2gg67X2059gibhU3dIC2zPwQ7fYrqdXXI3TXwis7GglCEK4EWTFQUQyb8HIxfZ_Z392TFM-MHf5hq7OwGyNzjIbtx5eHDnETEYgGar8mGpKVzFcqFUxwP0gpTxMtgPRY3sKB-gijICVRgaE60NQwDRlVSsOAJzzUJmMnqDZfzM0pwiJkofFFwsdjw0MVJ_4YThOQjXA_SxhtIFbCILWTC7dTK6ayrAuz4EkLnhRM5uDJXgORympZyGX8sT8uEZbfHrsEj_6r5dm_Lc_RTtGXbqsWL1BtvXozl8As1qqJtm8__KZ7geCqO7r_BPx6xcg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIry9MAAg4kT20kspgpRFUg7tRKb1TiOVKkvlTKw8Ns5J04oEgKJ1Tpb0cW5-77o7juErngY5jlLA8KBPhCe6gg-KU2JNGFAjcwgp9l-524v7Az404t4WemFsWWVLvaXMb2I1m7Fc9705qOR57T0hGRFQ2eyjja4CCJLwG4_vso8eESdYjgn1rxqn_NDr167luymOIQkP6enlZTT3kU7DiviVvk4e2jNTPfRdrcWWn09QHctvLCDkSAB4VqOFQMQxWCE57Px-8T-7B5leGLs6A9bm4XdEJlDNGg_9O87xM1DIBqA_ZJooCq5n6aZZJL7QUZ5FmsJkMeiFg7AR5oUCEkaGKoDTQ3TwKcyKgIec6FNzo5QYzqbmmOEpWDC-DLmw6HhIo1ifwinSeAi3M9jRpuIVW5Q2omF25kVY1VVhVnnKes8JZkqnKeSJiL1rnkplvGHfVR5WH176Qri-a87T_698xJtdvrdRCWPvedTtFV2qNv6xTPUWC7ezDlgjGV6UVyiT-syxYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rounding+technique+for+the+polymatroid+membership+problem&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Narayanan%2C+H.&rft.date=1995-05-01&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=221&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1016%2F0024-3795%2893%2900222-L&rft.externalDocID=002437959300222L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon