MOCPSO: A multi-objective cooperative particle swarm optimization algorithm with dual search strategies

Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs), renowned for its simplicity and swift convergence. However, when faced with large-scale multi-objective optimization problems (LSMOPs), most PS...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 562; p. 126892
Main Authors Zhang, Yan, Li, Bingdong, Hong, Wenjing, Zhou, Aimin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.12.2023
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2023.126892

Cover

Abstract Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs), renowned for its simplicity and swift convergence. However, when faced with large-scale multi-objective optimization problems (LSMOPs), most PSOs suffer from limited local search capabilities and insufficient randomness. This can result in suboptimal results, particularly in high-dimensional spaces. To address these issues, this paper introduces MOCPSO, a Multi-Objective Cooperative Particle Swarm Optimization Algorithm with Dual Search Strategies. MOCPSO incorporates a diversity search strategy (DSS) to augment perturbation and enhance the local search scope of particles, alongside a more convergent search strategy (CSS) to expedite particle convergence. Moreover, MOCPSO utilizes a three-category framework to effectively leverage the benefits of both DSS and CSS. Experimental results on benchmark LSMOPs with 500, 1000, and 2000 decision variables demonstrate that MOCPSO outperforms existing state-of-the-art large-scale multi-objective evolutionary algorithms on most test instances.
AbstractList Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs), renowned for its simplicity and swift convergence. However, when faced with large-scale multi-objective optimization problems (LSMOPs), most PSOs suffer from limited local search capabilities and insufficient randomness. This can result in suboptimal results, particularly in high-dimensional spaces. To address these issues, this paper introduces MOCPSO, a Multi-Objective Cooperative Particle Swarm Optimization Algorithm with Dual Search Strategies. MOCPSO incorporates a diversity search strategy (DSS) to augment perturbation and enhance the local search scope of particles, alongside a more convergent search strategy (CSS) to expedite particle convergence. Moreover, MOCPSO utilizes a three-category framework to effectively leverage the benefits of both DSS and CSS. Experimental results on benchmark LSMOPs with 500, 1000, and 2000 decision variables demonstrate that MOCPSO outperforms existing state-of-the-art large-scale multi-objective evolutionary algorithms on most test instances.
ArticleNumber 126892
Author Zhang, Yan
Li, Bingdong
Hong, Wenjing
Zhou, Aimin
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-3545-7890
  surname: Zhang
  fullname: Zhang, Yan
  email: 71215901034@stu.ecnu.edu.cn
  organization: Lab of Artificial Intelligence for Education, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
– sequence: 2
  givenname: Bingdong
  orcidid: 0000-0002-1742-2766
  surname: Li
  fullname: Li, Bingdong
  email: bdli@cs.ecnu.edu.cn
  organization: Lab of Artificial Intelligence for Education, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
– sequence: 3
  givenname: Wenjing
  orcidid: 0000-0001-9054-5714
  surname: Hong
  fullname: Hong, Wenjing
  email: hongwj@sustech.edu.cn
  organization: Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
– sequence: 4
  givenname: Aimin
  orcidid: 0000-0002-4768-5946
  surname: Zhou
  fullname: Zhou, Aimin
  email: amzhou@cs.ecnu.edu.cn
  organization: Lab of Artificial Intelligence for Education, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
BookMark eNqFkF1LwzAUhoNMcE7_gRf5A53Nx9J2F8IYfsFkgnodkvR0S2mbknQb-uvtVq-80JtzDhyeF97nEo0a1wBCNySekpiI23LawM64ekpjyqaEijSjZ2hM0oRGKU3FCI3jjM4iygi9QJchlHFMEkKzMdq8rJevb-s5XuB6V3U2croE09k9YONcC16d7lb5zpoKcDgoX2PXdra2X_3PNVhVG-dtt63xoZ8436kKB1DebHHoeh42FsIVOi9UFeD6Z0_Qx8P9-_IpWq0fn5eLVWRYLLrIEA3CzLKcC6MywigXlHPNgOSGF4nIeQZJypnRiqaFzqg2fTPFdaFZLgrKJogPuca7EDwUsvW2Vv5TklgeZclSDrLkUZYcZPXY_BdmbHeq1zew1X_w3QBDX2xvwctgLDQGcut7lzJ39u-Ab537jMg
CitedBy_id crossref_primary_10_1016_j_matcom_2024_08_022
crossref_primary_10_1016_j_conbuildmat_2024_136080
crossref_primary_10_1016_j_engappai_2024_109229
crossref_primary_10_1051_e3sconf_202453703011
crossref_primary_10_1051_e3sconf_202451101032
crossref_primary_10_2118_225429_PA
crossref_primary_10_1016_j_ces_2024_120403
crossref_primary_10_3390_s25020520
crossref_primary_10_1007_s00521_024_10315_x
crossref_primary_10_1007_s11227_024_06547_2
crossref_primary_10_1051_e3sconf_202458101024
crossref_primary_10_1016_j_swevo_2025_101886
crossref_primary_10_1080_0305215X_2024_2434726
crossref_primary_10_1016_j_nexus_2023_100260
crossref_primary_10_1016_j_rico_2024_100501
crossref_primary_10_1038_s41598_024_58029_3
Cites_doi 10.1109/TSMCB.2012.2209115
10.1016/j.asoc.2017.05.060
10.1029/2010WR009194
10.1109/TEVC.2016.2600642
10.1109/TEVC.2017.2749619
10.1109/TEVC.2004.826069
10.1016/j.neucom.2022.04.117
10.1109/TEVC.2018.2872453
10.1109/TCBB.2007.070203
10.1109/TEVC.2021.3063606
10.1016/j.ejor.2015.06.071
10.1109/TEVC.2007.892759
10.1109/TCYB.2019.2906383
10.1016/j.jpdc.2017.05.018
10.1016/j.swevo.2019.100626
10.1016/j.ins.2020.02.066
10.1109/TEVC.2018.2875430
10.1109/TCYB.2016.2600577
10.1016/j.swevo.2022.101055
10.1109/TEVC.2016.2519378
10.1109/TEVC.2015.2455812
10.1016/j.ins.2018.10.007
10.1109/TEVC.2016.2549267
10.1016/j.neucom.2020.12.022
10.1109/TEVC.2017.2754271
10.1016/j.ins.2015.07.018
10.1109/TCYB.2014.2322602
10.1109/MCI.2017.2742868
10.1016/j.ejor.2012.11.019
10.1016/j.asoc.2020.106120
10.1162/EVCO_a_00009
10.1109/TEVC.2016.2631279
10.1007/s11633-020-1253-0
10.1109/TEVC.2013.2262178
10.1145/3205651.3208250
10.1109/TCYB.2020.2979930
10.1109/TEVC.2017.2704782
10.1109/TCYB.2020.3034427
10.1109/TEVC.2022.3155593
10.1609/aaai.v31i1.10664
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2023.126892
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2023_126892
S0925231223010159
GrantInformation_xml – fundername: the Science and Technology Commission of Shanghai Municipality
  grantid: 22511105901
– fundername: National Natural Science Foundation of China
  grantid: 62106098
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-c1be6c59d46ca913246244b3e1dc4f76d49e7843cba28fb92bc092a4bfb3d6f23
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Oct 16 04:31:44 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 23 02:34:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Large-scale multi-objective optimization
Particle swarm optimization
Evolutionary algorithm
Meta-heuristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-c1be6c59d46ca913246244b3e1dc4f76d49e7843cba28fb92bc092a4bfb3d6f23
ORCID 0000-0002-1742-2766
0000-0002-4768-5946
0000-0002-3545-7890
0000-0001-9054-5714
ParticipantIDs crossref_primary_10_1016_j_neucom_2023_126892
crossref_citationtrail_10_1016_j_neucom_2023_126892
elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126892
PublicationCentury 2000
PublicationDate 2023-12-28
PublicationDateYYYYMMDD 2023-12-28
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kollat, Reed, Maxwell (b2) 2011; 47
Zhang, Li (b18) 2007; 11
Cheng, Jin (b32) 2014; 45
Deb, Goyal (b57) 1996; 26
Zhang, Wang, Li, Yeh, Jian, Dong (b21) 2020; 522
Zhan, Li, Cao, Zhang, Chung, Shi (b42) 2013; 43
Zhou, Jin, Zhang, Sendhoff, Tsang (b55) 2006
Zhang, Tian, Cheng, Jin (b6) 2016; 22
Oldewage, Engelbrecht, Cleghorn (b8) 2017
Eberhart, Kennedy (b31) 1995
Antonio, Coello (b17) 2013
Lin, Li, Du, Chen, Ming (b27) 2015; 247
Tian, Zheng, Zhang, Jin (b28) 2019; 50
Zhan, Shi, Tan, Zhang (b44) 2022
Liu, Zhan, Gao, Zhang, Kwong, Zhang (b46) 2018; 23
Hu, Yen (b34) 2013; 19
Atashpendar, Dorronsoro, Danoy, Bouvry (b41) 2018; 112
Tian, Cheng, Zhang, Jin (b56) 2017; 12
Zhao, Chen, Zhan, Kwong, Zhang (b47) 2021; 430
Cheng, Jin, Olhofer (b54) 2016; 47
Bader, Zitzler (b58) 2011; 19
Kennedy, Eberhart (b30) 1995
Yang, Chen, Gu, Jin, Mao, Zhang (b48) 2020; 52
Lin, Liu, Zhu, Tang, Song, Chen, Coello, Wong, Zhang (b37) 2016; 22
Ming, Gong, Wang, Lu (b40) 2022; 70
Cheng, Jin, Olhofer, Sendhoff (b51) 2016; 20
Chen, Cheng, Wen, Li, Weng (b25) 2020; 509
Liu, Ren, Liu, Liu (b12) 2020; 89
Li, Tang, Li, Yao (b53) 2016; 20
Ma, Liu, Qi, Wang, Li, Jiao, Yin, Gong (b7) 2015; 20
Handl, Kell, Knowles (b1) 2007; 4
Samanlioglu (b4) 2013; 226
Zille, Ishibuchi, Mostaghim, Nojima (b14) 2017; 22
Li, Zhang, Yang, Yao, Zhou (b43) 2023
Qin, Sun, Jin, Tan, Fieldsend (b15) 2021; 25
Yue, Qu, Liang (b35) 2017; 22
M. Li, J. Wei, A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1716–1721.
Liang, Li, Wan (b26) 2020
Deb, Agrawal, Pratap, Meyarivan (b50) 2000
Farias, Araújo (b29) 2021
Miguel Antonio, Coello Coello (b19) 2016
Nebro, Durillo, Garcia-Nieto, Coello, Luna, Alba (b38) 2009
Tian, Lu, Zhang, Tan, Jin (b13) 2020; 51
Liu, Li, Lin, Tian, Tan (b49) 2022; 27
Hollander, Wolfe, Chicken (b59) 2013
Wang, Ong, Sun, Gupta, Zhang (b60) 2018; 23
Tian, Si, Zhang, Cheng, He, Tan, Jin (b10) 2021; 54
Hong, Yang, Tang (b9) 2021; 18
Wang, Zhang, Wang, Jin (b22) 2021
Van den Bergh, Engelbrecht (b39) 2004; 8
Li, Yang, Liu (b52) 2013; 18
He, Cheng, Yazdani (b24) 2020
Cao, Zhao, Gu, Ling, Ma (b20) 2020; 53
Mohapatra, Das, Roy (b23) 2017; 59
Coello, Lechuga (b36) 2002
Kruisselbrink, Emmerich, Bäck, Bender, IJzerman, Horst (b3) 2009
Li, Li, Wu, You, Zeng (b45) 2022; 494
Dai, Wang, Ye (b33) 2015; 325
Tian, Cheng, Zhang, Cheng, Jin (b5) 2017; 22
H. Qian, Y. Yu, Solving high-dimensional multi-objective optimization problems with low effective dimensions, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2017.
Zhan (10.1016/j.neucom.2023.126892_b46) 2022
Li (10.1016/j.neucom.2023.126892_b54) 2013; 18
Yang (10.1016/j.neucom.2023.126892_b50) 2020; 52
Liu (10.1016/j.neucom.2023.126892_b51) 2022; 27
Zhang (10.1016/j.neucom.2023.126892_b20) 2007; 11
Cheng (10.1016/j.neucom.2023.126892_b53) 2016; 20
Ma (10.1016/j.neucom.2023.126892_b9) 2015; 20
Tian (10.1016/j.neucom.2023.126892_b7) 2017; 22
Yang (10.1016/j.neucom.2023.126892_b6) 2023
Antonio (10.1016/j.neucom.2023.126892_b19) 2013
Cheng (10.1016/j.neucom.2023.126892_b34) 2014; 45
Tian (10.1016/j.neucom.2023.126892_b12) 2021; 54
Handl (10.1016/j.neucom.2023.126892_b1) 2007; 4
Yue (10.1016/j.neucom.2023.126892_b37) 2017; 22
Eberhart (10.1016/j.neucom.2023.126892_b33) 1995
Liu (10.1016/j.neucom.2023.126892_b5) 2021
Li (10.1016/j.neucom.2023.126892_b47) 2022; 494
Wang (10.1016/j.neucom.2023.126892_b62) 2018; 23
Zille (10.1016/j.neucom.2023.126892_b16) 2017; 22
Samanlioglu (10.1016/j.neucom.2023.126892_b4) 2013; 226
Zhao (10.1016/j.neucom.2023.126892_b49) 2021; 430
Liang (10.1016/j.neucom.2023.126892_b28) 2020
Kennedy (10.1016/j.neucom.2023.126892_b32) 1995
Deb (10.1016/j.neucom.2023.126892_b52) 2000
Liu (10.1016/j.neucom.2023.126892_b14) 2020; 89
Qin (10.1016/j.neucom.2023.126892_b17) 2021; 25
Li (10.1016/j.neucom.2023.126892_b55) 2016; 20
Tian (10.1016/j.neucom.2023.126892_b15) 2020; 51
Atashpendar (10.1016/j.neucom.2023.126892_b43) 2018; 112
Hu (10.1016/j.neucom.2023.126892_b36) 2013; 19
Chen (10.1016/j.neucom.2023.126892_b27) 2020; 509
Wang (10.1016/j.neucom.2023.126892_b24) 2021
Zhan (10.1016/j.neucom.2023.126892_b44) 2013; 43
Oldewage (10.1016/j.neucom.2023.126892_b10) 2017
Van den Bergh (10.1016/j.neucom.2023.126892_b41) 2004; 8
Coello (10.1016/j.neucom.2023.126892_b38) 2002
Bader (10.1016/j.neucom.2023.126892_b60) 2011; 19
Dai (10.1016/j.neucom.2023.126892_b35) 2015; 325
Cao (10.1016/j.neucom.2023.126892_b22) 2020; 53
Tian (10.1016/j.neucom.2023.126892_b30) 2019; 50
Deb (10.1016/j.neucom.2023.126892_b59) 1996; 26
He (10.1016/j.neucom.2023.126892_b26) 2020
Liu (10.1016/j.neucom.2023.126892_b48) 2018; 23
Hollander (10.1016/j.neucom.2023.126892_b61) 2013
Nebro (10.1016/j.neucom.2023.126892_b40) 2009
Farias (10.1016/j.neucom.2023.126892_b31) 2021
Cheng (10.1016/j.neucom.2023.126892_b56) 2016; 47
Li (10.1016/j.neucom.2023.126892_b45) 2023
Hong (10.1016/j.neucom.2023.126892_b11) 2021; 18
Zhou (10.1016/j.neucom.2023.126892_b57) 2006
Tian (10.1016/j.neucom.2023.126892_b58) 2017; 12
Zhang (10.1016/j.neucom.2023.126892_b23) 2020; 522
Zhang (10.1016/j.neucom.2023.126892_b8) 2016; 22
Ming (10.1016/j.neucom.2023.126892_b42) 2022; 70
Kollat (10.1016/j.neucom.2023.126892_b2) 2011; 47
Miguel Antonio (10.1016/j.neucom.2023.126892_b21) 2016
10.1016/j.neucom.2023.126892_b18
Mohapatra (10.1016/j.neucom.2023.126892_b25) 2017; 59
10.1016/j.neucom.2023.126892_b13
Lin (10.1016/j.neucom.2023.126892_b29) 2015; 247
Lin (10.1016/j.neucom.2023.126892_b39) 2016; 22
Kruisselbrink (10.1016/j.neucom.2023.126892_b3) 2009
References_xml – volume: 226
  start-page: 332
  year: 2013
  end-page: 340
  ident: b4
  article-title: A multi-objective mathematical model for the industrial hazardous waste location-routing problem
  publication-title: European J. Oper. Res.
– volume: 50
  start-page: 3696
  year: 2019
  end-page: 3708
  ident: b28
  article-title: Efficient large-scale multiobjective optimization based on a competitive swarm optimizer
  publication-title: IEEE Trans. Cybern.
– start-page: 66
  year: 2009
  end-page: 73
  ident: b38
  article-title: SMPSO: A new PSO-based metaheuristic for multi-objective optimization
  publication-title: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making
– volume: 53
  year: 2020
  ident: b20
  article-title: Applying graph-based differential grouping for multiobjective large-scale optimization
  publication-title: Swarm Evol. Comput.
– volume: 23
  start-page: 587
  year: 2018
  end-page: 602
  ident: b46
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 805
  year: 2017
  end-page: 817
  ident: b35
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 27
  start-page: 67
  year: 2022
  end-page: 81
  ident: b49
  article-title: Learning to accelerate evolutionary search for large-scale multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 47
  start-page: 4108
  year: 2016
  end-page: 4121
  ident: b54
  article-title: Test problems for large-scale multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
– year: 2021
  ident: b22
  article-title: An enhanced competitive swarm optimizer with strongly convex sparse operator for large-scale multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1051
  year: 2002
  end-page: 1056
  ident: b36
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 2
– volume: 70
  year: 2022
  ident: b40
  article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 509
  start-page: 457
  year: 2020
  end-page: 469
  ident: b25
  article-title: Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations
  publication-title: Inform. Sci.
– volume: 22
  start-page: 32
  year: 2016
  end-page: 46
  ident: b37
  article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2020
  ident: b24
  article-title: Adaptive offspring generation for evolutionary large-scale multiobjective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. A
– start-page: 1
  year: 2022
  end-page: 52
  ident: b44
  article-title: A survey on evolutionary computation for complex continuous optimization
  publication-title: Artif. Intell. Rev.
– volume: 18
  start-page: 155
  year: 2021
  end-page: 169
  ident: b9
  article-title: Evolutionary computation for large-scale multi-objective optimization: A decade of progresses
  publication-title: Int. J. Autom. Comput.
– year: 2013
  ident: b59
  article-title: Nonparametric Statistical Methods
– volume: 54
  start-page: 1
  year: 2021
  end-page: 34
  ident: b10
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput. Surv.
– volume: 89
  year: 2020
  ident: b12
  article-title: A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems
  publication-title: Appl. Soft Comput.
– volume: 522
  start-page: 1
  year: 2020
  end-page: 16
  ident: b21
  article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization
  publication-title: Inform. Sci.
– volume: 45
  start-page: 191
  year: 2014
  end-page: 204
  ident: b32
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b51
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2020
  ident: b26
  article-title: Large scale many-objective optimization driven by distributional adversarial networks
– volume: 494
  start-page: 356
  year: 2022
  end-page: 367
  ident: b45
  article-title: A ranking-system-based switching particle swarm optimizer with dynamic learning strategies
  publication-title: Neurocomputing
– volume: 47
  year: 2011
  ident: b2
  article-title: Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics
  publication-title: Water Resour. Res.
– start-page: 462
  year: 2021
  end-page: 467
  ident: b29
  article-title: IM-MOEA/D: an inverse modeling multi-objective evolutionary algorithm based on decomposition
  publication-title: 2021 IEEE International Conference on Systems, Man, and Cybernetics
– volume: 51
  start-page: 3115
  year: 2020
  end-page: 3128
  ident: b13
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Trans. Cybern.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b31
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 22
  start-page: 609
  year: 2017
  end-page: 622
  ident: b5
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 1
  year: 2013
  end-page: 18
  ident: b34
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
– volume: 325
  start-page: 541
  year: 2015
  end-page: 557
  ident: b33
  article-title: A new multi-objective particle swarm optimization algorithm based on decomposition
  publication-title: Inform. Sci.
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: b42
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– start-page: 892
  year: 2006
  end-page: 899
  ident: b55
  article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion
  publication-title: 2006 IEEE International Conference on Evolutionary Computation
– volume: 4
  start-page: 279
  year: 2007
  end-page: 292
  ident: b1
  article-title: Multiobjective optimization in bioinformatics and computational biology
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b30
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4
– volume: 19
  start-page: 45
  year: 2011
  end-page: 76
  ident: b58
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– volume: 430
  start-page: 58
  year: 2021
  end-page: 70
  ident: b47
  article-title: Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
  publication-title: Neurocomputing
– volume: 20
  start-page: 924
  year: 2016
  end-page: 938
  ident: b53
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b56
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: b57
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Comput. Sci. Inform.
– start-page: 525
  year: 2016
  end-page: 534
  ident: b19
  article-title: Decomposition-based approach for solving large scale multi-objective problems
  publication-title: International Conference on Parallel Problem Solving from Nature
– year: 2023
  ident: b43
  article-title: A two-population algorithm for large-scale multi-objective optimization based on fitness-aware operator and adaptive environmental selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 556
  year: 2018
  end-page: 571
  ident: b60
  article-title: A generator for multiobjective test problems with difficult-to-approximate Pareto front boundaries
  publication-title: IEEE Trans. Evol. Comput.
– volume: 59
  start-page: 340
  year: 2017
  end-page: 362
  ident: b23
  article-title: A modified competitive swarm optimizer for large scale optimization problems
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 97
  year: 2016
  end-page: 112
  ident: b6
  article-title: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2758
  year: 2013
  end-page: 2765
  ident: b17
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– reference: H. Qian, Y. Yu, Solving high-dimensional multi-objective optimization problems with low effective dimensions, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2017.
– volume: 18
  start-page: 348
  year: 2013
  end-page: 365
  ident: b52
  article-title: Shift-based density estimation for Pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 453
  year: 2009
  end-page: 467
  ident: b3
  article-title: Combining aggregation with Pareto optimization: A case study in evolutionary molecular design
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– start-page: 1
  year: 2017
  end-page: 8
  ident: b8
  article-title: The merits of velocity clamping particle swarm optimisation in high dimensional spaces
  publication-title: 2017 IEEE Symposium Series on Computational Intelligence
– reference: M. Li, J. Wei, A cooperative co-evolutionary algorithm for large-scale multi-objective optimization problems, in: Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2018, pp. 1716–1721.
– start-page: 849
  year: 2000
  end-page: 858
  ident: b50
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
  publication-title: International Conference on Parallel Problem Solving from Nature
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: b39
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 724
  year: 2021
  end-page: 738
  ident: b15
  article-title: Large-scale evolutionary multiobjective optimization assisted by directed sampling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 112
  start-page: 111
  year: 2018
  end-page: 125
  ident: b41
  article-title: A scalable parallel cooperative coevolutionary PSO algorithm for multi-objective optimization
  publication-title: J. Parallel Distrib. Comput.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b18
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 247
  start-page: 732
  year: 2015
  end-page: 744
  ident: b27
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European J. Oper. Res.
– volume: 20
  start-page: 275
  year: 2015
  end-page: 298
  ident: b7
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
– volume: 52
  start-page: 1960
  year: 2020
  end-page: 1976
  ident: b48
  article-title: An adaptive stochastic dominant learning swarm optimizer for high-dimensional optimization
  publication-title: IEEE Trans. Cybern.
– volume: 22
  start-page: 260
  year: 2017
  end-page: 275
  ident: b14
  article-title: A framework for large-scale multiobjective optimization based on problem transformation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2023.126892_b44
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2209115
– volume: 59
  start-page: 340
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b25
  article-title: A modified competitive swarm optimizer for large scale optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.060
– volume: 47
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2023.126892_b2
  article-title: Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009194
– volume: 19
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2023.126892_b36
  article-title: Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2758
  year: 2013
  ident: 10.1016/j.neucom.2023.126892_b19
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
– volume: 22
  start-page: 97
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b8
  article-title: A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2600642
– year: 2023
  ident: 10.1016/j.neucom.2023.126892_b45
  article-title: A two-population algorithm for large-scale multi-objective optimization based on fitness-aware operator and adaptive environmental selection
  publication-title: IEEE Trans. Evol. Comput.
– year: 2021
  ident: 10.1016/j.neucom.2023.126892_b24
  article-title: An enhanced competitive swarm optimizer with strongly convex sparse operator for large-scale multi-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– year: 2013
  ident: 10.1016/j.neucom.2023.126892_b61
– volume: 22
  start-page: 609
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b7
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2749619
– start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b10
  article-title: The merits of velocity clamping particle swarm optimisation in high dimensional spaces
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.neucom.2023.126892_b41
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– start-page: 453
  year: 2009
  ident: 10.1016/j.neucom.2023.126892_b3
  article-title: Combining aggregation with Pareto optimization: A case study in evolutionary molecular design
– start-page: 525
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b21
  article-title: Decomposition-based approach for solving large scale multi-objective problems
– start-page: 1
  year: 2022
  ident: 10.1016/j.neucom.2023.126892_b46
  article-title: A survey on evolutionary computation for complex continuous optimization
  publication-title: Artif. Intell. Rev.
– volume: 494
  start-page: 356
  year: 2022
  ident: 10.1016/j.neucom.2023.126892_b47
  article-title: A ranking-system-based switching particle swarm optimizer with dynamic learning strategies
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.117
– volume: 23
  start-page: 556
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2023.126892_b62
  article-title: A generator for multiobjective test problems with difficult-to-approximate Pareto front boundaries
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2872453
– volume: 4
  start-page: 279
  issue: 2
  year: 2007
  ident: 10.1016/j.neucom.2023.126892_b1
  article-title: Multiobjective optimization in bioinformatics and computational biology
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2007.070203
– volume: 25
  start-page: 724
  issue: 4
  year: 2021
  ident: 10.1016/j.neucom.2023.126892_b17
  article-title: Large-scale evolutionary multiobjective optimization assisted by directed sampling
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3063606
– volume: 247
  start-page: 732
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2023.126892_b29
  article-title: A novel multi-objective particle swarm optimization with multiple search strategies
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.06.071
– start-page: 462
  year: 2021
  ident: 10.1016/j.neucom.2023.126892_b31
  article-title: IM-MOEA/D: an inverse modeling multi-objective evolutionary algorithm based on decomposition
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.neucom.2023.126892_b20
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 50
  start-page: 3696
  issue: 8
  year: 2019
  ident: 10.1016/j.neucom.2023.126892_b30
  article-title: Efficient large-scale multiobjective optimization based on a competitive swarm optimizer
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2906383
– start-page: 892
  year: 2006
  ident: 10.1016/j.neucom.2023.126892_b57
  article-title: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion
– start-page: 849
  year: 2000
  ident: 10.1016/j.neucom.2023.126892_b52
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– volume: 112
  start-page: 111
  year: 2018
  ident: 10.1016/j.neucom.2023.126892_b43
  article-title: A scalable parallel cooperative coevolutionary PSO algorithm for multi-objective optimization
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2017.05.018
– volume: 53
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b22
  article-title: Applying graph-based differential grouping for multiobjective large-scale optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100626
– year: 2020
  ident: 10.1016/j.neucom.2023.126892_b28
– volume: 522
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b23
  article-title: Enhancing MOEA/D with information feedback models for large-scale many-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.02.066
– volume: 23
  start-page: 587
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2023.126892_b48
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2875430
– volume: 47
  start-page: 4108
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b56
  article-title: Test problems for large-scale multiobjective and many-objective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2600577
– start-page: 39
  year: 1995
  ident: 10.1016/j.neucom.2023.126892_b33
  article-title: A new optimizer using particle swarm theory
– year: 2020
  ident: 10.1016/j.neucom.2023.126892_b26
  article-title: Adaptive offspring generation for evolutionary large-scale multiobjective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. A
– volume: 70
  year: 2022
  ident: 10.1016/j.neucom.2023.126892_b42
  article-title: A tri-population based co-evolutionary framework for constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101055
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b53
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– volume: 20
  start-page: 275
  issue: 2
  year: 2015
  ident: 10.1016/j.neucom.2023.126892_b9
  article-title: A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective optimization problems with large-scale variables
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2455812
– volume: 509
  start-page: 457
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b27
  article-title: Solving large-scale many-objective optimization problems by covariance matrix adaptation evolution strategy with scalable small subpopulations
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.10.007
– year: 2021
  ident: 10.1016/j.neucom.2023.126892_b5
– volume: 20
  start-page: 924
  issue: 6
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b55
  article-title: Stochastic ranking algorithm for many-objective optimization based on multiple indicators
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2549267
– volume: 430
  start-page: 58
  year: 2021
  ident: 10.1016/j.neucom.2023.126892_b49
  article-title: Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.022
– volume: 22
  start-page: 805
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b37
  article-title: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2754271
– volume: 325
  start-page: 541
  year: 2015
  ident: 10.1016/j.neucom.2023.126892_b35
  article-title: A new multi-objective particle swarm optimization algorithm based on decomposition
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.07.018
– volume: 45
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2023.126892_b34
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b58
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 226
  start-page: 332
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2023.126892_b4
  article-title: A multi-objective mathematical model for the industrial hazardous waste location-routing problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2012.11.019
– volume: 89
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b14
  article-title: A clustering and dimensionality reduction based evolutionary algorithm for large-scale multi-objective problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106120
– start-page: 66
  year: 2009
  ident: 10.1016/j.neucom.2023.126892_b40
  article-title: SMPSO: A new PSO-based metaheuristic for multi-objective optimization
– volume: 19
  start-page: 45
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2023.126892_b60
  article-title: Hype: An algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 22
  start-page: 32
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2023.126892_b39
  article-title: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2631279
– volume: 18
  start-page: 155
  issue: 2
  year: 2021
  ident: 10.1016/j.neucom.2023.126892_b11
  article-title: Evolutionary computation for large-scale multi-objective optimization: A decade of progresses
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-020-1253-0
– year: 2023
  ident: 10.1016/j.neucom.2023.126892_b6
– volume: 54
  start-page: 1
  issue: 8
  year: 2021
  ident: 10.1016/j.neucom.2023.126892_b12
  article-title: Evolutionary large-scale multi-objective optimization: A survey
  publication-title: ACM Comput. Surv.
– start-page: 1942
  year: 1995
  ident: 10.1016/j.neucom.2023.126892_b32
  article-title: Particle swarm optimization
– volume: 18
  start-page: 348
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2023.126892_b54
  article-title: Shift-based density estimation for Pareto-based algorithms in many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2262178
– volume: 26
  start-page: 30
  year: 1996
  ident: 10.1016/j.neucom.2023.126892_b59
  article-title: A combined genetic adaptive search (geneas) for engineering design
  publication-title: Comput. Sci. Inform.
– ident: 10.1016/j.neucom.2023.126892_b13
  doi: 10.1145/3205651.3208250
– volume: 51
  start-page: 3115
  issue: 6
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b15
  article-title: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2979930
– volume: 22
  start-page: 260
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2023.126892_b16
  article-title: A framework for large-scale multiobjective optimization based on problem transformation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2704782
– start-page: 1051
  year: 2002
  ident: 10.1016/j.neucom.2023.126892_b38
  article-title: MOPSO: A proposal for multiple objective particle swarm optimization
– volume: 52
  start-page: 1960
  issue: 3
  year: 2020
  ident: 10.1016/j.neucom.2023.126892_b50
  article-title: An adaptive stochastic dominant learning swarm optimizer for high-dimensional optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3034427
– volume: 27
  start-page: 67
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2023.126892_b51
  article-title: Learning to accelerate evolutionary search for large-scale multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3155593
– ident: 10.1016/j.neucom.2023.126892_b18
  doi: 10.1609/aaai.v31i1.10664
SSID ssj0017129
Score 2.5131466
Snippet Particle swarm optimization (PSO) is a widely embraced meta-heuristic approach to tackling the complexities of multi-objective optimization problems (MOPs),...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126892
SubjectTerms Evolutionary algorithm
Large-scale multi-objective optimization
Meta-heuristics
Particle swarm optimization
Title MOCPSO: A multi-objective cooperative particle swarm optimization algorithm with dual search strategies
URI https://dx.doi.org/10.1016/j.neucom.2023.126892
Volume 562
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL158i8-Sg9e0TTb7iLdSLFXxAVXwtuSpLe1uabd487ebNFlREAWPu2SW3W-TmUz4vhkAznGmsOhgjRiVBNl4axBXUiPKeEcYmhplnBr59i4ZPNHr5_h5DfRqLYyjVQbf7336yluHO-2AZns2GrWHHUZsFoVtfHN10mIn4qM0dV0MWu-fNA-cYuLr7ZEYudG1fG7F8Sr00nFGXAvxFiZJxsjP4elLyOlvg82wV4Rd_zo7YE0Xu2Cr7sMAw7LcAy-3972H4f0F7MIVPxCVYuz9GJRlOdO-uDeche-Cizc-n8LSOotpUGFCPnkp56PqdQrdwSx0Ai3oFwFcVHU1iX3w1L987A1QaKCApM0EKiSx0ImMmaKJ5MzmnTSx0VxEGitJTZooynSa0UgKTjIjGBHS4sSpMCJSiSHRAWgUZaEPAYw14TGOsKZSUAsUJx2jlX0004olUhyBqMYtl6G6uGtyMclrGtk492jnDu3co30E0KfVzFfX-GN8Wv-S_NssyW0A-NXy-N-WJ2DDXTkKC8lOQaOaL_WZ3YhUormaaU2w3r26Gdx9ADTw4Ic
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW3ybg9fYJpt9xJsUpWqrggreljxrS9stdYs3f7tJkxUFUfC6m1l2v01mMuGbbwA4wZnCook1YlQSZOOtQVxJjSjjTWFoapRx1cjd26T9RK-f4-caaFW1MI5WGXy_9-lzbx2uNAKajUm_33hoMmKzKGzjm9NJi9kCWKQxSV0Gdvr-yfPAKSZecI_EyA2v6ufmJK-xnjnSiOshfopJkjHyc3z6EnMu18BK2CzCc_8-66CmxxtgtWrEAMO63AS97l3r_uHuDJ7DOUEQFWLgHRmURTHRXt0bTsKHwdc3Ph3BwnqLUSjDhHzYK6b98mUE3cksdBVa0K8C-FpWchJb4Ony4rHVRqGDApI2FSiRxEInMmaKJpIzm3jSxIZzEWmsJDVpoijTaUYjKTjJjGBESIsTp8KISCWGRNugPi7GegfAWBMe4whrKgW1QHHSNFrZRzOtWCLFLogq3HIZ5MVdl4thXvHIBrlHO3do5x7tXYA-rSZeXuOP8Wn1S_Jv0yS3EeBXy71_Wx6DpfZjt5N3rm5v9sGyu-P4LCQ7APVyOtOHdldSiqP5rPsAfu3iHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOCPSO%3A+A+multi-objective+cooperative+particle+swarm+optimization+algorithm+with+dual+search+strategies&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Yan&rft.au=Li%2C+Bingdong&rft.au=Hong%2C+Wenjing&rft.au=Zhou%2C+Aimin&rft.date=2023-12-28&rft.issn=0925-2312&rft.volume=562&rft.spage=126892&rft_id=info:doi/10.1016%2Fj.neucom.2023.126892&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2023_126892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon