A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI

This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 250; pp. 45 - 56
Main Authors Martín-Smith, Pedro, Ortega, Julio, Asensio-Cubero, Javier, Gan, John Q., Ortiz, Andrés
Format Journal Article
LanguageEnglish
Published Elsevier B.V 09.08.2017
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2016.09.123

Cover

Abstract This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility functions is compared with wrapper approaches using the accuracy and generalization properties in the effective searching of the most adequate subset of features through an evolutionary multi-objective optimization scheme. The target application corresponds to a brain–computer interface (BCI) classification task based on linear discriminant analysis (LDA) classifiers, where the properties of multi-resolution analysis (MRA) for signal analysis in temporal and spectral domains have been used to extract features from electroencephalogram (EEG) signals. The results, corresponding to a dataset obtained from the databases of the BCI Laboratory of the University of Essex, UK, including ten subjects with three different imagery movements, have allowed us to evaluate the advantages and drawbacks of the different approaches with respect to time consumption, accuracy and generalization capabilities.
AbstractList This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility functions is compared with wrapper approaches using the accuracy and generalization properties in the effective searching of the most adequate subset of features through an evolutionary multi-objective optimization scheme. The target application corresponds to a brain–computer interface (BCI) classification task based on linear discriminant analysis (LDA) classifiers, where the properties of multi-resolution analysis (MRA) for signal analysis in temporal and spectral domains have been used to extract features from electroencephalogram (EEG) signals. The results, corresponding to a dataset obtained from the databases of the BCI Laboratory of the University of Essex, UK, including ten subjects with three different imagery movements, have allowed us to evaluate the advantages and drawbacks of the different approaches with respect to time consumption, accuracy and generalization capabilities.
Author Ortiz, Andrés
Martín-Smith, Pedro
Ortega, Julio
Asensio-Cubero, Javier
Gan, John Q.
Author_xml – sequence: 1
  givenname: Pedro
  surname: Martín-Smith
  fullname: Martín-Smith, Pedro
  email: pmartin@ugr.es
  organization: Department of Computer Architecture and Technology, CITIC, University of Granada, Spain
– sequence: 2
  givenname: Julio
  surname: Ortega
  fullname: Ortega, Julio
  email: jortega@ugr.es, julio@atc.ugr.es
  organization: Department of Computer Architecture and Technology, CITIC, University of Granada, Spain
– sequence: 3
  givenname: Javier
  surname: Asensio-Cubero
  fullname: Asensio-Cubero, Javier
  email: javier@neuralcubes.co.uk
  organization: Neuralcubes Ltd., United Kingdom
– sequence: 4
  givenname: John Q.
  orcidid: 0000-0003-1230-7643
  surname: Gan
  fullname: Gan, John Q.
  email: jqgan@essex.ac.uk
  organization: School of Computer Science and Electronic Engineering, University of Essex, United Kingdom
– sequence: 5
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  email: aortiz@ic.uma.es
  organization: Department of Communications Engineering, University of Málaga, Spain
BookMark eNqFkEFLwzAYhoNMcJv-Aw_9A61J0zWtB2GOOQcDL3oOSfoVU7JmJO1gR_-5aevJg57yfW94H5JngWatbQGhe4ITgkn-0CQt9MoekzRsCS4TktIrNCcFS-MiLfIZmuMyXcUpJekNWnjfYEwYScs5-lpHvj-BO2sPVVRr04GLjtB92rDZMPam07GVDahOnyGqQXS9g8iDGRLbRrqNtttdpIzwXtdaiTGVYuCFYQI48Nb0441ohbl47Uf882Z_i65rYTzc_ZxL9PGyfd-8xoe33X6zPsSK4ryLpRRUrGqRUZozJSVhgsoSM5LhChgoKlihcJmBWjHBAMqS1bQAGaJKUFLTJXqcuMpZ7x3UXOlufGznhDacYD7I5A2fZPJBJsclDzJDOftVPjl9FO7yX-1pqkH42FmD415paBVU2gV9vLL6b8A3l5WWpg
CitedBy_id crossref_primary_10_1142_S0129065720500173
crossref_primary_10_1142_S1469026820500182
crossref_primary_10_1016_j_asoc_2019_105519
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1371_journal_pone_0234178
crossref_primary_10_2478_cait_2019_0001
crossref_primary_10_1109_ACCESS_2021_3097206
crossref_primary_10_1016_j_neucom_2019_01_017
crossref_primary_10_1109_TEVC_2023_3292527
crossref_primary_10_1016_j_jneumeth_2021_109425
crossref_primary_10_1016_j_knosys_2019_04_024
crossref_primary_10_1016_j_neucom_2017_11_077
crossref_primary_10_3390_s21062096
crossref_primary_10_1155_2018_6265108
crossref_primary_10_1007_s00607_023_01193_7
crossref_primary_10_1142_S0218001420540154
crossref_primary_10_1155_2022_5974634
crossref_primary_10_1007_s11277_019_06423_w
crossref_primary_10_3389_fncom_2022_909553
crossref_primary_10_3390_s17102282
Cites_doi 10.1093/bioinformatics/btl407
10.1088/1741-2560/10/4/046014
10.1142/S0218001415590089
10.1016/j.neucom.2013.01.001
10.1016/S1388-2457(99)00141-8
10.1016/j.knosys.2014.03.015
10.1088/1741-2560/4/2/R01
10.3233/IDA-2002-6605
10.1016/S0004-3702(03)00079-1
10.1016/j.neucom.2012.08.020
10.1093/bioinformatics/btm344
10.1142/S021800140300271X
10.3233/BME-151397
10.1177/001316446002000104
10.1007/s10115-012-0487-8
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.09.123
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 56
ExternalDocumentID 10_1016_j_neucom_2016_09_123
S0925231217302291
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-bba3a5fa43367cbb17a3b907140de7ec3a78c094ec57a7ee997f38eb094da31f3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:11:58 EDT 2025
Wed Oct 01 02:27:32 EDT 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Filter methods
Brain–computer interfaces (BCI)
Feature selection
Multi-objective optimization
Multi-resolution analysis (MRA)
Wrapper-based feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-bba3a5fa43367cbb17a3b907140de7ec3a78c094ec57a7ee997f38eb094da31f3
ORCID 0000-0003-1230-7643
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2016_09_123
crossref_primary_10_1016_j_neucom_2016_09_123
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_09_123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-09
PublicationDateYYYYMMDD 2017-08-09
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-09
  day: 09
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Raudys, Jain (bib0020) 1991; 13(3)
Saeys, Inza, Larrañaga (bib0023) 2007; 23
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0014) 2007; 4
Acir, Güzelis (bib0001) 2004; vol. 3261
Ortega, Asensio-Cubero, Q. Gan, Ortiz (bib0018) 2015
Rejer (bib0021) 2015; 29
Sima, Dougherty (bib0024) 2006; 22
Zhang, Wang, Phillips, Ji (bib0025) 2014; 64
Oliveira, Sabourin, Bortolozzi, Suen (bib0017) 2003; 17
Gan, Sang, Huang, Tong, Dan (bib0011) 2013; 101
Handl, Knowles (bib0012) 2006; 8
Duan, Ge, Ma, Miao (bib0009) 2015; 26
Rodríguez-Bermúdez, García-Laencina, Roca-González, Roca-Dorda (bib0022) 2013; 115
Martín-Smith, Ortega, Asensio-Cubero, Q. Gan, Ortiz (bib0015) 2015
Morita, Sabourin, Bortolozzi, Suen (bib0016) 2003
Deb, Agrawal, Pratap, Meyarivan (bib0008) 2000
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib0004) 2012; 34
Emmanouilidis, Hunter, MacIntyre (bib0010) 2000
Daubechies (bib0007) 1992
Pfurtscheller, Lopes da Silva (bib0019) 1999; 110
Kim, Street, Menczer (bib0013) 2002; 6
Basu, Banerjee, Mooney (bib0003) 2002
Dash, Liu (bib0006) 2003; 151
Asensio-Cubero, Q. Gan, Palaniappan (bib0002) 2013; 10
Cohen (bib0005) 1960; 20
Cohen (10.1016/j.neucom.2016.09.123_bib0005) 1960; 20
Saeys (10.1016/j.neucom.2016.09.123_bib0023) 2007; 23
Emmanouilidis (10.1016/j.neucom.2016.09.123_bib0010) 2000
Acir (10.1016/j.neucom.2016.09.123_bib0001) 2004; vol. 3261
Handl (10.1016/j.neucom.2016.09.123_bib0012) 2006; 8
Rejer (10.1016/j.neucom.2016.09.123_bib0021) 2015; 29
Morita (10.1016/j.neucom.2016.09.123_bib0016) 2003
Dash (10.1016/j.neucom.2016.09.123_bib0006) 2003; 151
Asensio-Cubero (10.1016/j.neucom.2016.09.123_bib0002) 2013; 10
Basu (10.1016/j.neucom.2016.09.123_bib0003) 2002
Duan (10.1016/j.neucom.2016.09.123_bib0009) 2015; 26
Zhang (10.1016/j.neucom.2016.09.123_bib0025) 2014; 64
Oliveira (10.1016/j.neucom.2016.09.123_bib0017) 2003; 17
Lotte (10.1016/j.neucom.2016.09.123_bib0014) 2007; 4
Deb (10.1016/j.neucom.2016.09.123_bib0008) 2000
Sima (10.1016/j.neucom.2016.09.123_bib0024) 2006; 22
Raudys (10.1016/j.neucom.2016.09.123_bib0020) 1991; 13(3)
Daubechies (10.1016/j.neucom.2016.09.123_bib0007) 1992
Kim (10.1016/j.neucom.2016.09.123_bib0013) 2002; 6
Pfurtscheller (10.1016/j.neucom.2016.09.123_bib0019) 1999; 110
Bolón-Canedo (10.1016/j.neucom.2016.09.123_bib0004) 2012; 34
Gan (10.1016/j.neucom.2016.09.123_bib0011) 2013; 101
Ortega (10.1016/j.neucom.2016.09.123_bib0018) 2015
Rodríguez-Bermúdez (10.1016/j.neucom.2016.09.123_bib0022) 2013; 115
Martín-Smith (10.1016/j.neucom.2016.09.123_bib0015) 2015
References_xml – volume: 26
  start-page: S1019
  year: 2015
  end-page: S1025
  ident: bib0009
  article-title: EEG feature selection method based on decision tree
  publication-title: Bio-Med. Mater. Eng.
– volume: 6
  start-page: 531
  year: 2002
  end-page: 556
  ident: bib0013
  article-title: Evolutionary model selection in unsupervised learning
  publication-title: Intell. Data Anal.
– volume: 8
  start-page: 217
  year: 2006
  end-page: 238
  ident: bib0012
  article-title: Feature subset selection in unsupervised learning via multiobjective optimization
  publication-title: Int. J. Comput. Intell.
– volume: 29
  start-page: 1
  year: 2015
  end-page: 27
  ident: bib0021
  article-title: Genetic algorithms for feature selection for brain–computer interface
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– year: 2015
  ident: bib0018
  article-title: Evolutionary multi-objective feature selection in multiresolution analysis for BCI
  publication-title: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering, Granada
– start-page: 27
  year: 2002
  end-page: 34
  ident: bib0003
  article-title: Semi-supervised clustering by seeding
  publication-title: Proceedings of the Nineteenth International Conference on Machine Learning, San Francisco, CA, USA
– volume: 64
  start-page: 22
  year: 2014
  end-page: 31
  ident: bib0025
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl. Based Syst.
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  ident: bib0019
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles.
  publication-title: Clin. Neurophysiol.
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib0023
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 115
  start-page: 161
  year: 2013
  end-page: 165
  ident: bib0022
  article-title: Efficient feature selection and linear discrimination of EEG signals
  publication-title: Neurocomputing
– start-page: 309
  year: 2000
  end-page: 316
  ident: bib0010
  article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation
– start-page: 666
  year: 2003
  ident: bib0016
  article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition
  publication-title: Proceedings of the Seventh International Conference on Document Analysis and Recognition, Washington, DC, USA
– volume: 22
  start-page: 2430
  year: 2006
  end-page: 2436
  ident: bib0024
  article-title: What should be expected from feature selection in small-sample settings
  publication-title: Bioinformatics
– volume: 17
  start-page: 2003
  year: 2003
  ident: bib0017
  article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– year: 1992
  ident: bib0007
  article-title: Ten Lectures on Wavelets
– volume: 20
  start-page: 37
  year: 1960
  ident: bib0005
  article-title: A coefficient of agreement for nominal scales
  publication-title: Edu. Psychol. Meas.
– volume: 4
  year: 2007
  ident: bib0014
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: vol. 3261
  start-page: 462
  year: 2004
  end-page: 471
  ident: bib0001
  article-title: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method
  publication-title: Proceedings of the Third International Conference in Advances in Information Systems
– start-page: 849
  year: 2000
  end-page: 858
  ident: bib0008
  article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
– volume: 151
  start-page: 155
  year: 2003
  end-page: 176
  ident: bib0006
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
– volume: 10
  start-page: 046014
  year: 2013
  ident: bib0002
  article-title: Multiresolution analysis over simple graphs for brain–computer interfaces
  publication-title: J. Neural Eng.
– start-page: 133
  year: 2015
  end-page: 144
  ident: bib0015
  article-title: A label-aided filter method for multi-objective feature selection in EEG classification for BCI
  publication-title: Proceedings of the 13th International Work-Conference on Artificial Neural Networks
– volume: 34
  start-page: 483
  year: 2012
  end-page: 519
  ident: bib0004
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
– volume: 13(3)
  start-page: 252
  year: 1991
  end-page: 264
  ident: bib0020
  article-title: Small sample size effects in statistical sattern secognition: recommendations for practitioners
  publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence
– volume: 101
  start-page: 290
  year: 2013
  end-page: 298
  ident: bib0011
  article-title: Using clustering analysis to improve semi-supervised classification
  publication-title: Neurocomputing
– volume: 8
  start-page: 217
  issue: 3
  year: 2006
  ident: 10.1016/j.neucom.2016.09.123_bib0012
  article-title: Feature subset selection in unsupervised learning via multiobjective optimization
  publication-title: Int. J. Comput. Intell.
– volume: 22
  start-page: 2430
  issue: 19
  year: 2006
  ident: 10.1016/j.neucom.2016.09.123_bib0024
  article-title: What should be expected from feature selection in small-sample settings
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl407
– volume: vol. 3261
  start-page: 462
  year: 2004
  ident: 10.1016/j.neucom.2016.09.123_bib0001
  article-title: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method
– volume: 10
  start-page: 046014
  issue: 4
  year: 2013
  ident: 10.1016/j.neucom.2016.09.123_bib0002
  article-title: Multiresolution analysis over simple graphs for brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046014
– volume: 29
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.neucom.2016.09.123_bib0021
  article-title: Genetic algorithms for feature selection for brain–computer interface
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001415590089
– volume: 115
  start-page: 161
  year: 2013
  ident: 10.1016/j.neucom.2016.09.123_bib0022
  article-title: Efficient feature selection and linear discrimination of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.001
– volume: 110
  start-page: 1842
  issue: 11
  year: 1999
  ident: 10.1016/j.neucom.2016.09.123_bib0019
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 64
  start-page: 22
  year: 2014
  ident: 10.1016/j.neucom.2016.09.123_bib0025
  article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.03.015
– volume: 4
  year: 2007
  ident: 10.1016/j.neucom.2016.09.123_bib0014
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/2/R01
– volume: 6
  start-page: 531
  issue: 6
  year: 2002
  ident: 10.1016/j.neucom.2016.09.123_bib0013
  article-title: Evolutionary model selection in unsupervised learning
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2002-6605
– start-page: 666
  year: 2003
  ident: 10.1016/j.neucom.2016.09.123_bib0016
  article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition
– volume: 13(3)
  start-page: 252
  year: 1991
  ident: 10.1016/j.neucom.2016.09.123_bib0020
  article-title: Small sample size effects in statistical sattern secognition: recommendations for practitioners
– start-page: 309
  year: 2000
  ident: 10.1016/j.neucom.2016.09.123_bib0010
  article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
– start-page: 133
  year: 2015
  ident: 10.1016/j.neucom.2016.09.123_bib0015
  article-title: A label-aided filter method for multi-objective feature selection in EEG classification for BCI
– year: 2015
  ident: 10.1016/j.neucom.2016.09.123_bib0018
  article-title: Evolutionary multi-objective feature selection in multiresolution analysis for BCI
– start-page: 849
  year: 2000
  ident: 10.1016/j.neucom.2016.09.123_bib0008
– volume: 151
  start-page: 155
  issue: 1–2
  year: 2003
  ident: 10.1016/j.neucom.2016.09.123_bib0006
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(03)00079-1
– start-page: 27
  year: 2002
  ident: 10.1016/j.neucom.2016.09.123_bib0003
  article-title: Semi-supervised clustering by seeding
– volume: 101
  start-page: 290
  year: 2013
  ident: 10.1016/j.neucom.2016.09.123_bib0011
  article-title: Using clustering analysis to improve semi-supervised classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.020
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.neucom.2016.09.123_bib0023
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– year: 1992
  ident: 10.1016/j.neucom.2016.09.123_bib0007
– volume: 17
  start-page: 2003
  year: 2003
  ident: 10.1016/j.neucom.2016.09.123_bib0017
  article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S021800140300271X
– volume: 26
  start-page: S1019
  year: 2015
  ident: 10.1016/j.neucom.2016.09.123_bib0009
  article-title: EEG feature selection method based on decision tree
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-151397
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 10.1016/j.neucom.2016.09.123_bib0005
  article-title: A coefficient of agreement for nominal scales
  publication-title: Edu. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 34
  start-page: 483
  issue: 3
  year: 2012
  ident: 10.1016/j.neucom.2016.09.123_bib0004
  article-title: A review of feature selection methods on synthetic data
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-012-0487-8
SSID ssj0017129
Score 2.3252678
Snippet This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Brain–computer interfaces (BCI)
Feature selection
Filter methods
Multi-objective optimization
Multi-resolution analysis (MRA)
Wrapper-based feature selection
Title A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI
URI https://dx.doi.org/10.1016/j.neucom.2016.09.123
Volume 250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvC6dpPsNt1jLa2tYi9a6C0kuwlskW2x7VXwnzt5bFEQBW9L2IQlk8x8w37zDUI3SgMOUDkgt1gmUZLBVVQZADkSK0OZSYgXe36adEbT5GGWzhqoX9fCWFpl8P3epztvHUbaYTfby7JsP8cZhSyKAKZmEIh8BXvCbReD2_ctzYNwQr3eHk0j-3ZdPuc4XpXeWM4IBMGOVTsllP0cnr6EnOEh2g9YEff85xyhhq6O0UHdhwGHa3mCPnp4tVnaS7_SBTal_QGOfWtoDJgUO9JgtFBz79yw0U7NE69cDxwwDC4rPBjc49xCacsdcubCNsIVGB78ApCYh3OKZZAyccvf9cenaDocvPRHUWitEOWQI6wjpSSTqZEJYx2eK0W4ZCqzxUxxobnOmeTdHDI_nadccq2zjBvW1QqGCsmIYWdop1pU-hzhlBqAFBnlqgsOwAqXK50qQA0qBfQuZROxekdFHnTHbfuLV1ETzObC20FYO4g4E2CHJoq2s5Zed-OP93ltLPHt_AgIDb_OvPj3zEu0R22QdwSSK7Szftvoa4Aoa9VyZ7CFdnvjx9HkE0GM6G8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHvTi24jPHryu7La7lB6RgKDARUi4Ne1uN4GYhQhcTfznTh9LNDGaeNs022bTaWe-yX7zDUJ3SgMOUCkgt1DGQczhKioOQC4KVU5oHkdO7Hk4avQm8dM0mVZQu6yFMbRK7_udT7fe2o_U_W7Wl7NZ_SXkBLKoCDA1hUBkKth34oQwk4Hdv295HhGLiBPcI0lgXi_r5yzJq9AbQxqBKNgwcqcRoT_Hpy8xp3uI9j1YxC33PUeoootjdFA2YsD-Xp6gjxZebZbm1q90hvOZ-QOOXW9oDKAUW9ZgsFBz591wrq2cJ17ZJjhgGTwrcKfziFODpQ15yNoLmxCXYXhwC0Bm7g8qll7LxC7_0O6fokm3M273At9bIUghSVgHSkkqk1zGlDZYqlTEJFXcVDOFmWY6pZI1U0j9dJowybTmnOW0qRUMZZJGOT1D1WJR6HOEE5IDpuCEqSZ4AKNcrnSiADaoBOC7lDVEyx0VqRceN_0vXkXJMJsLZwdh7CBCLsAONRRsZy2d8MYf77PSWOLbARIQG36defHvmbdotzceDsSgP3q-RHvERHzLJrlC1fXbRl8DXlmrG3sePwGvheoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+supervised+filter+method+for+multi-objective+feature+selection+in+EEG+classification+based+on+multi-resolution+analysis+for+BCI&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Mart%C3%ADn-Smith%2C+Pedro&rft.au=Ortega%2C+Julio&rft.au=Asensio-Cubero%2C+Javier&rft.au=Gan%2C+John+Q.&rft.date=2017-08-09&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=250&rft.spage=45&rft.epage=56&rft_id=info:doi/10.1016%2Fj.neucom.2016.09.123&rft.externalDocID=S0925231217302291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon