A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI
This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 250; pp. 45 - 56 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
09.08.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2016.09.123 |
Cover
| Abstract | This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility functions is compared with wrapper approaches using the accuracy and generalization properties in the effective searching of the most adequate subset of features through an evolutionary multi-objective optimization scheme. The target application corresponds to a brain–computer interface (BCI) classification task based on linear discriminant analysis (LDA) classifiers, where the properties of multi-resolution analysis (MRA) for signal analysis in temporal and spectral domains have been used to extract features from electroencephalogram (EEG) signals. The results, corresponding to a dataset obtained from the databases of the BCI Laboratory of the University of Essex, UK, including ten subjects with three different imagery movements, have allowed us to evaluate the advantages and drawbacks of the different approaches with respect to time consumption, accuracy and generalization capabilities. |
|---|---|
| AbstractList | This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature space, which is evaluated by comparison with wrapper approaches for the same application. The filter method based on a set of label-aided utility functions is compared with wrapper approaches using the accuracy and generalization properties in the effective searching of the most adequate subset of features through an evolutionary multi-objective optimization scheme. The target application corresponds to a brain–computer interface (BCI) classification task based on linear discriminant analysis (LDA) classifiers, where the properties of multi-resolution analysis (MRA) for signal analysis in temporal and spectral domains have been used to extract features from electroencephalogram (EEG) signals. The results, corresponding to a dataset obtained from the databases of the BCI Laboratory of the University of Essex, UK, including ten subjects with three different imagery movements, have allowed us to evaluate the advantages and drawbacks of the different approaches with respect to time consumption, accuracy and generalization capabilities. |
| Author | Ortiz, Andrés Martín-Smith, Pedro Ortega, Julio Asensio-Cubero, Javier Gan, John Q. |
| Author_xml | – sequence: 1 givenname: Pedro surname: Martín-Smith fullname: Martín-Smith, Pedro email: pmartin@ugr.es organization: Department of Computer Architecture and Technology, CITIC, University of Granada, Spain – sequence: 2 givenname: Julio surname: Ortega fullname: Ortega, Julio email: jortega@ugr.es, julio@atc.ugr.es organization: Department of Computer Architecture and Technology, CITIC, University of Granada, Spain – sequence: 3 givenname: Javier surname: Asensio-Cubero fullname: Asensio-Cubero, Javier email: javier@neuralcubes.co.uk organization: Neuralcubes Ltd., United Kingdom – sequence: 4 givenname: John Q. orcidid: 0000-0003-1230-7643 surname: Gan fullname: Gan, John Q. email: jqgan@essex.ac.uk organization: School of Computer Science and Electronic Engineering, University of Essex, United Kingdom – sequence: 5 givenname: Andrés surname: Ortiz fullname: Ortiz, Andrés email: aortiz@ic.uma.es organization: Department of Communications Engineering, University of Málaga, Spain |
| BookMark | eNqFkEFLwzAYhoNMcJv-Aw_9A61J0zWtB2GOOQcDL3oOSfoVU7JmJO1gR_-5aevJg57yfW94H5JngWatbQGhe4ITgkn-0CQt9MoekzRsCS4TktIrNCcFS-MiLfIZmuMyXcUpJekNWnjfYEwYScs5-lpHvj-BO2sPVVRr04GLjtB92rDZMPam07GVDahOnyGqQXS9g8iDGRLbRrqNtttdpIzwXtdaiTGVYuCFYQI48Nb0441ohbl47Uf882Z_i65rYTzc_ZxL9PGyfd-8xoe33X6zPsSK4ryLpRRUrGqRUZozJSVhgsoSM5LhChgoKlihcJmBWjHBAMqS1bQAGaJKUFLTJXqcuMpZ7x3UXOlufGznhDacYD7I5A2fZPJBJsclDzJDOftVPjl9FO7yX-1pqkH42FmD415paBVU2gV9vLL6b8A3l5WWpg |
| CitedBy_id | crossref_primary_10_1142_S0129065720500173 crossref_primary_10_1142_S1469026820500182 crossref_primary_10_1016_j_asoc_2019_105519 crossref_primary_10_1016_j_engappai_2021_104210 crossref_primary_10_1371_journal_pone_0234178 crossref_primary_10_2478_cait_2019_0001 crossref_primary_10_1109_ACCESS_2021_3097206 crossref_primary_10_1016_j_neucom_2019_01_017 crossref_primary_10_1109_TEVC_2023_3292527 crossref_primary_10_1016_j_jneumeth_2021_109425 crossref_primary_10_1016_j_knosys_2019_04_024 crossref_primary_10_1016_j_neucom_2017_11_077 crossref_primary_10_3390_s21062096 crossref_primary_10_1155_2018_6265108 crossref_primary_10_1007_s00607_023_01193_7 crossref_primary_10_1142_S0218001420540154 crossref_primary_10_1155_2022_5974634 crossref_primary_10_1007_s11277_019_06423_w crossref_primary_10_3389_fncom_2022_909553 crossref_primary_10_3390_s17102282 |
| Cites_doi | 10.1093/bioinformatics/btl407 10.1088/1741-2560/10/4/046014 10.1142/S0218001415590089 10.1016/j.neucom.2013.01.001 10.1016/S1388-2457(99)00141-8 10.1016/j.knosys.2014.03.015 10.1088/1741-2560/4/2/R01 10.3233/IDA-2002-6605 10.1016/S0004-3702(03)00079-1 10.1016/j.neucom.2012.08.020 10.1093/bioinformatics/btm344 10.1142/S021800140300271X 10.3233/BME-151397 10.1177/001316446002000104 10.1007/s10115-012-0487-8 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2016.09.123 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 56 |
| ExternalDocumentID | 10_1016_j_neucom_2016_09_123 S0925231217302291 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-bba3a5fa43367cbb17a3b907140de7ec3a78c094ec57a7ee997f38eb094da31f3 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Thu Apr 24 23:11:58 EDT 2025 Wed Oct 01 02:27:32 EDT 2025 Fri Feb 23 02:30:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Filter methods Brain–computer interfaces (BCI) Feature selection Multi-objective optimization Multi-resolution analysis (MRA) Wrapper-based feature selection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-bba3a5fa43367cbb17a3b907140de7ec3a78c094ec57a7ee997f38eb094da31f3 |
| ORCID | 0000-0003-1230-7643 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2016_09_123 crossref_primary_10_1016_j_neucom_2016_09_123 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_09_123 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-09 |
| PublicationDateYYYYMMDD | 2017-08-09 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Raudys, Jain (bib0020) 1991; 13(3) Saeys, Inza, Larrañaga (bib0023) 2007; 23 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (bib0014) 2007; 4 Acir, Güzelis (bib0001) 2004; vol. 3261 Ortega, Asensio-Cubero, Q. Gan, Ortiz (bib0018) 2015 Rejer (bib0021) 2015; 29 Sima, Dougherty (bib0024) 2006; 22 Zhang, Wang, Phillips, Ji (bib0025) 2014; 64 Oliveira, Sabourin, Bortolozzi, Suen (bib0017) 2003; 17 Gan, Sang, Huang, Tong, Dan (bib0011) 2013; 101 Handl, Knowles (bib0012) 2006; 8 Duan, Ge, Ma, Miao (bib0009) 2015; 26 Rodríguez-Bermúdez, García-Laencina, Roca-González, Roca-Dorda (bib0022) 2013; 115 Martín-Smith, Ortega, Asensio-Cubero, Q. Gan, Ortiz (bib0015) 2015 Morita, Sabourin, Bortolozzi, Suen (bib0016) 2003 Deb, Agrawal, Pratap, Meyarivan (bib0008) 2000 Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (bib0004) 2012; 34 Emmanouilidis, Hunter, MacIntyre (bib0010) 2000 Daubechies (bib0007) 1992 Pfurtscheller, Lopes da Silva (bib0019) 1999; 110 Kim, Street, Menczer (bib0013) 2002; 6 Basu, Banerjee, Mooney (bib0003) 2002 Dash, Liu (bib0006) 2003; 151 Asensio-Cubero, Q. Gan, Palaniappan (bib0002) 2013; 10 Cohen (bib0005) 1960; 20 Cohen (10.1016/j.neucom.2016.09.123_bib0005) 1960; 20 Saeys (10.1016/j.neucom.2016.09.123_bib0023) 2007; 23 Emmanouilidis (10.1016/j.neucom.2016.09.123_bib0010) 2000 Acir (10.1016/j.neucom.2016.09.123_bib0001) 2004; vol. 3261 Handl (10.1016/j.neucom.2016.09.123_bib0012) 2006; 8 Rejer (10.1016/j.neucom.2016.09.123_bib0021) 2015; 29 Morita (10.1016/j.neucom.2016.09.123_bib0016) 2003 Dash (10.1016/j.neucom.2016.09.123_bib0006) 2003; 151 Asensio-Cubero (10.1016/j.neucom.2016.09.123_bib0002) 2013; 10 Basu (10.1016/j.neucom.2016.09.123_bib0003) 2002 Duan (10.1016/j.neucom.2016.09.123_bib0009) 2015; 26 Zhang (10.1016/j.neucom.2016.09.123_bib0025) 2014; 64 Oliveira (10.1016/j.neucom.2016.09.123_bib0017) 2003; 17 Lotte (10.1016/j.neucom.2016.09.123_bib0014) 2007; 4 Deb (10.1016/j.neucom.2016.09.123_bib0008) 2000 Sima (10.1016/j.neucom.2016.09.123_bib0024) 2006; 22 Raudys (10.1016/j.neucom.2016.09.123_bib0020) 1991; 13(3) Daubechies (10.1016/j.neucom.2016.09.123_bib0007) 1992 Kim (10.1016/j.neucom.2016.09.123_bib0013) 2002; 6 Pfurtscheller (10.1016/j.neucom.2016.09.123_bib0019) 1999; 110 Bolón-Canedo (10.1016/j.neucom.2016.09.123_bib0004) 2012; 34 Gan (10.1016/j.neucom.2016.09.123_bib0011) 2013; 101 Ortega (10.1016/j.neucom.2016.09.123_bib0018) 2015 Rodríguez-Bermúdez (10.1016/j.neucom.2016.09.123_bib0022) 2013; 115 Martín-Smith (10.1016/j.neucom.2016.09.123_bib0015) 2015 |
| References_xml | – volume: 26 start-page: S1019 year: 2015 end-page: S1025 ident: bib0009 article-title: EEG feature selection method based on decision tree publication-title: Bio-Med. Mater. Eng. – volume: 6 start-page: 531 year: 2002 end-page: 556 ident: bib0013 article-title: Evolutionary model selection in unsupervised learning publication-title: Intell. Data Anal. – volume: 8 start-page: 217 year: 2006 end-page: 238 ident: bib0012 article-title: Feature subset selection in unsupervised learning via multiobjective optimization publication-title: Int. J. Comput. Intell. – volume: 29 start-page: 1 year: 2015 end-page: 27 ident: bib0021 article-title: Genetic algorithms for feature selection for brain–computer interface publication-title: Int. J. Pattern Recognit. Artif. Intell. – year: 2015 ident: bib0018 article-title: Evolutionary multi-objective feature selection in multiresolution analysis for BCI publication-title: Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering, Granada – start-page: 27 year: 2002 end-page: 34 ident: bib0003 article-title: Semi-supervised clustering by seeding publication-title: Proceedings of the Nineteenth International Conference on Machine Learning, San Francisco, CA, USA – volume: 64 start-page: 22 year: 2014 end-page: 31 ident: bib0025 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl. Based Syst. – volume: 110 start-page: 1842 year: 1999 end-page: 1857 ident: bib0019 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles. publication-title: Clin. Neurophysiol. – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib0023 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 115 start-page: 161 year: 2013 end-page: 165 ident: bib0022 article-title: Efficient feature selection and linear discrimination of EEG signals publication-title: Neurocomputing – start-page: 309 year: 2000 end-page: 316 ident: bib0010 article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator publication-title: Proceedings of the 2000 Congress on Evolutionary Computation – start-page: 666 year: 2003 ident: bib0016 article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition publication-title: Proceedings of the Seventh International Conference on Document Analysis and Recognition, Washington, DC, USA – volume: 22 start-page: 2430 year: 2006 end-page: 2436 ident: bib0024 article-title: What should be expected from feature selection in small-sample settings publication-title: Bioinformatics – volume: 17 start-page: 2003 year: 2003 ident: bib0017 article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. – year: 1992 ident: bib0007 article-title: Ten Lectures on Wavelets – volume: 20 start-page: 37 year: 1960 ident: bib0005 article-title: A coefficient of agreement for nominal scales publication-title: Edu. Psychol. Meas. – volume: 4 year: 2007 ident: bib0014 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: vol. 3261 start-page: 462 year: 2004 end-page: 471 ident: bib0001 article-title: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method publication-title: Proceedings of the Third International Conference in Advances in Information Systems – start-page: 849 year: 2000 end-page: 858 ident: bib0008 article-title: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II – volume: 151 start-page: 155 year: 2003 end-page: 176 ident: bib0006 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. – volume: 10 start-page: 046014 year: 2013 ident: bib0002 article-title: Multiresolution analysis over simple graphs for brain–computer interfaces publication-title: J. Neural Eng. – start-page: 133 year: 2015 end-page: 144 ident: bib0015 article-title: A label-aided filter method for multi-objective feature selection in EEG classification for BCI publication-title: Proceedings of the 13th International Work-Conference on Artificial Neural Networks – volume: 34 start-page: 483 year: 2012 end-page: 519 ident: bib0004 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. – volume: 13(3) start-page: 252 year: 1991 end-page: 264 ident: bib0020 article-title: Small sample size effects in statistical sattern secognition: recommendations for practitioners publication-title: IEEE Trans. Pattern Analysis and Machine Intelligence – volume: 101 start-page: 290 year: 2013 end-page: 298 ident: bib0011 article-title: Using clustering analysis to improve semi-supervised classification publication-title: Neurocomputing – volume: 8 start-page: 217 issue: 3 year: 2006 ident: 10.1016/j.neucom.2016.09.123_bib0012 article-title: Feature subset selection in unsupervised learning via multiobjective optimization publication-title: Int. J. Comput. Intell. – volume: 22 start-page: 2430 issue: 19 year: 2006 ident: 10.1016/j.neucom.2016.09.123_bib0024 article-title: What should be expected from feature selection in small-sample settings publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl407 – volume: vol. 3261 start-page: 462 year: 2004 ident: 10.1016/j.neucom.2016.09.123_bib0001 article-title: An application of support vector machine in bioinformatics: automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method – volume: 10 start-page: 046014 issue: 4 year: 2013 ident: 10.1016/j.neucom.2016.09.123_bib0002 article-title: Multiresolution analysis over simple graphs for brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/4/046014 – volume: 29 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.neucom.2016.09.123_bib0021 article-title: Genetic algorithms for feature selection for brain–computer interface publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001415590089 – volume: 115 start-page: 161 year: 2013 ident: 10.1016/j.neucom.2016.09.123_bib0022 article-title: Efficient feature selection and linear discrimination of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.001 – volume: 110 start-page: 1842 issue: 11 year: 1999 ident: 10.1016/j.neucom.2016.09.123_bib0019 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles. publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(99)00141-8 – volume: 64 start-page: 22 year: 2014 ident: 10.1016/j.neucom.2016.09.123_bib0025 article-title: Binary PSO with mutation operator for feature selection using decision tree applied to spam detection publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.03.015 – volume: 4 year: 2007 ident: 10.1016/j.neucom.2016.09.123_bib0014 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/2/R01 – volume: 6 start-page: 531 issue: 6 year: 2002 ident: 10.1016/j.neucom.2016.09.123_bib0013 article-title: Evolutionary model selection in unsupervised learning publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6605 – start-page: 666 year: 2003 ident: 10.1016/j.neucom.2016.09.123_bib0016 article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition – volume: 13(3) start-page: 252 year: 1991 ident: 10.1016/j.neucom.2016.09.123_bib0020 article-title: Small sample size effects in statistical sattern secognition: recommendations for practitioners – start-page: 309 year: 2000 ident: 10.1016/j.neucom.2016.09.123_bib0010 article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator – start-page: 133 year: 2015 ident: 10.1016/j.neucom.2016.09.123_bib0015 article-title: A label-aided filter method for multi-objective feature selection in EEG classification for BCI – year: 2015 ident: 10.1016/j.neucom.2016.09.123_bib0018 article-title: Evolutionary multi-objective feature selection in multiresolution analysis for BCI – start-page: 849 year: 2000 ident: 10.1016/j.neucom.2016.09.123_bib0008 – volume: 151 start-page: 155 issue: 1–2 year: 2003 ident: 10.1016/j.neucom.2016.09.123_bib0006 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(03)00079-1 – start-page: 27 year: 2002 ident: 10.1016/j.neucom.2016.09.123_bib0003 article-title: Semi-supervised clustering by seeding – volume: 101 start-page: 290 year: 2013 ident: 10.1016/j.neucom.2016.09.123_bib0011 article-title: Using clustering analysis to improve semi-supervised classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.020 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.neucom.2016.09.123_bib0023 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – year: 1992 ident: 10.1016/j.neucom.2016.09.123_bib0007 – volume: 17 start-page: 2003 year: 2003 ident: 10.1016/j.neucom.2016.09.123_bib0017 article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S021800140300271X – volume: 26 start-page: S1019 year: 2015 ident: 10.1016/j.neucom.2016.09.123_bib0009 article-title: EEG feature selection method based on decision tree publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-151397 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 10.1016/j.neucom.2016.09.123_bib0005 article-title: A coefficient of agreement for nominal scales publication-title: Edu. Psychol. Meas. doi: 10.1177/001316446002000104 – volume: 34 start-page: 483 issue: 3 year: 2012 ident: 10.1016/j.neucom.2016.09.123_bib0004 article-title: A review of feature selection methods on synthetic data publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-012-0487-8 |
| SSID | ssj0017129 |
| Score | 2.3252678 |
| Snippet | This paper proposes a supervised filter method for evolutionary multi-objective feature selection for classification problems in high-dimensional feature... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Brain–computer interfaces (BCI) Feature selection Filter methods Multi-objective optimization Multi-resolution analysis (MRA) Wrapper-based feature selection |
| Title | A supervised filter method for multi-objective feature selection in EEG classification based on multi-resolution analysis for BCI |
| URI | https://dx.doi.org/10.1016/j.neucom.2016.09.123 |
| Volume | 250 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvC6dpPsNt1jLa2tYi9a6C0kuwlskW2x7VXwnzt5bFEQBW9L2IQlk8x8w37zDUI3SgMOUDkgt1gmUZLBVVQZADkSK0OZSYgXe36adEbT5GGWzhqoX9fCWFpl8P3epztvHUbaYTfby7JsP8cZhSyKAKZmEIh8BXvCbReD2_ctzYNwQr3eHk0j-3ZdPuc4XpXeWM4IBMGOVTsllP0cnr6EnOEh2g9YEff85xyhhq6O0UHdhwGHa3mCPnp4tVnaS7_SBTal_QGOfWtoDJgUO9JgtFBz79yw0U7NE69cDxwwDC4rPBjc49xCacsdcubCNsIVGB78ApCYh3OKZZAyccvf9cenaDocvPRHUWitEOWQI6wjpSSTqZEJYx2eK0W4ZCqzxUxxobnOmeTdHDI_nadccq2zjBvW1QqGCsmIYWdop1pU-hzhlBqAFBnlqgsOwAqXK50qQA0qBfQuZROxekdFHnTHbfuLV1ETzObC20FYO4g4E2CHJoq2s5Zed-OP93ltLPHt_AgIDb_OvPj3zEu0R22QdwSSK7Szftvoa4Aoa9VyZ7CFdnvjx9HkE0GM6G8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHvTi24jPHryu7La7lB6RgKDARUi4Ne1uN4GYhQhcTfznTh9LNDGaeNs022bTaWe-yX7zDUJ3SgMOUCkgt1DGQczhKioOQC4KVU5oHkdO7Hk4avQm8dM0mVZQu6yFMbRK7_udT7fe2o_U_W7Wl7NZ_SXkBLKoCDA1hUBkKth34oQwk4Hdv295HhGLiBPcI0lgXi_r5yzJq9AbQxqBKNgwcqcRoT_Hpy8xp3uI9j1YxC33PUeoootjdFA2YsD-Xp6gjxZebZbm1q90hvOZ-QOOXW9oDKAUW9ZgsFBz591wrq2cJ17ZJjhgGTwrcKfziFODpQ15yNoLmxCXYXhwC0Bm7g8qll7LxC7_0O6fokm3M273At9bIUghSVgHSkkqk1zGlDZYqlTEJFXcVDOFmWY6pZI1U0j9dJowybTmnOW0qRUMZZJGOT1D1WJR6HOEE5IDpuCEqSZ4AKNcrnSiADaoBOC7lDVEyx0VqRceN_0vXkXJMJsLZwdh7CBCLsAONRRsZy2d8MYf77PSWOLbARIQG36defHvmbdotzceDsSgP3q-RHvERHzLJrlC1fXbRl8DXlmrG3sePwGvheoE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+supervised+filter+method+for+multi-objective+feature+selection+in+EEG+classification+based+on+multi-resolution+analysis+for+BCI&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Mart%C3%ADn-Smith%2C+Pedro&rft.au=Ortega%2C+Julio&rft.au=Asensio-Cubero%2C+Javier&rft.au=Gan%2C+John+Q.&rft.date=2017-08-09&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=250&rft.spage=45&rft.epage=56&rft_id=info:doi/10.1016%2Fj.neucom.2016.09.123&rft.externalDocID=S0925231217302291 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |