Weak convergence and optimal tuning of the reversible jump algorithm
The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a...
        Saved in:
      
    
          | Published in | Mathematics and computers in simulation Vol. 161; pp. 32 - 51 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.07.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-4754 1872-7166  | 
| DOI | 10.1016/j.matcom.2018.06.007 | 
Cover
| Abstract | The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?” | 
    
|---|---|
| AbstractList | The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?” | 
    
| Author | Gagnon, Philippe Bédard, Mylène Desgagné, Alain  | 
    
| Author_xml | – sequence: 1 givenname: Philippe surname: Gagnon fullname: Gagnon, Philippe email: philippe.gagnon@stats.ox.ac.uk organization: Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom – sequence: 2 givenname: Mylène surname: Bédard fullname: Bédard, Mylène email: mylene.bedard@umontreal.ca organization: Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada – sequence: 3 givenname: Alain surname: Desgagné fullname: Desgagné, Alain email: desgagne.alain@uqam.ca organization: Département de mathématiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada  | 
    
| BookMark | eNqFkL1OwzAYRS1UJFrgDRj8Agl2HDsJAxIqv1IlFhCj5difW4fErhy3Em9PqjIxwHSXe650zwLNfPCA0BUlOSVUXHf5oJIOQ14QWudE5IRUJ2hO66rIKirEDM0Jq-qsrHh5hhbj2JGpwUs-R_cfoD6xDn4PcQ1eA1be4LBNblA9Tjvv_BoHi9MGcISpNLq2B9zthi1W_TpElzbDBTq1qh_h8ifP0fvjw9vyOVu9Pr0s71aZZkSkTDWstoIWmjTG6KLmNStUK0xleUWtBVUKTXjLDDSFBl5SwppaMNXSsjCcW3aObo67OoZxjGCldkklF3yKyvWSEnnwITt59CEPPiQRcno7weUveBunk_HrP-z2iMF0bO8gylG7gyjjIugkTXB_D3wDK_B_Tg | 
    
| CitedBy_id | crossref_primary_10_1080_02664763_2019_1710478 crossref_primary_10_1109_TSP_2023_3278867 crossref_primary_10_1177_14727978251321731 crossref_primary_10_1080_10618600_2020_1826955  | 
    
| Cites_doi | 10.1111/1467-9868.03711 10.1016/j.spl.2004.06.025 10.1016/j.spa.2007.12.005 10.1214/aoap/1027961031 10.1093/biomet/82.4.711 10.1111/1467-9868.00095 10.1093/biomet/60.3.607 10.3150/12-BEJ414 10.1214/ss/1015346320 10.1080/10618600.2013.805651 10.1214/105051607000000096 10.1214/10-AAP754 10.1063/1.1699114 10.1214/105051605000000791 10.1093/biomet/57.1.97 10.1016/j.spa.2011.11.004 10.1214/08-AAP563  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 | 
    
| Copyright_xml | – notice: 2018 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.matcom.2018.06.007 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-7166 | 
    
| EndPage | 51 | 
    
| ExternalDocumentID | 10_1016_j_matcom_2018_06_007 S0378475418301526  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-a938f612c09ddc285832ab6d7f571ffea46c05b3de92ce541039863ab142d55f3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-4754 | 
    
| IngestDate | Thu Oct 16 04:27:42 EDT 2025 Thu Apr 24 22:50:40 EDT 2025 Fri Feb 23 02:25:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Optimal scaling Metropolis–Hastings algorithms Markov chain Monte Carlo methods Model selection Random walk Metropolis algorithms  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-a938f612c09ddc285832ab6d7f571ffea46c05b3de92ce541039863ab142d55f3 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2018_06_007 crossref_primary_10_1016_j_matcom_2018_06_007 elsevier_sciencedirect_doi_10_1016_j_matcom_2018_06_007  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2019 2019-07-00  | 
    
| PublicationDateYYYYMMDD | 2019-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Mathematics and computers in simulation | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Ethier, Kurtz (b9) 1986 Bibby, Skovgaard, Sørensen (b7) 2005; 11 Karagiannis, Andrieu (b15) 2013; 22 Peskun (b19) 1973; 60 Bédard (b2) 2007; 17 Hastings (b14) 1970; 57 Gagnon (b10) 2017 Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b17) 1953; 21 Beskos, Pillai, Roberts, Sanz-Serna, Jesus-Maria, Stuart (b5) 2013; 19 Robert, Casella (b21) 2004 Tierney (b24) 1998; 8 P. Gagnon, M. Bédard, A. Desgagné, (2017) An Efficient Bayesian Robust Principal Component Regression, preprint Roberts, Gelman, Gilks (b22) 1997; 7 Bédard (b3) 2008; 118 Al-Awadhi, Hurn, Jennison (b1) 2004; 69 Beskos, Roberts, Stuart (b6) 2009; 19 Richardson, Green (b20) 1997; 59 Bédard, Douc, Moulines (b4) 2012; 122 Neal, Roberts (b18) 2006; 16 . Green (b12) 1995; 82 Brooks, Giudici, Roberts (b8) 2003; 65 Hastie (b13) 2005 Mattingly, Pillai, Stuart (b16) 2012; 22 Roberts, Rosenthal (b23) 2001; 16 Brooks (10.1016/j.matcom.2018.06.007_b8) 2003; 65 Roberts (10.1016/j.matcom.2018.06.007_b22) 1997; 7 Green (10.1016/j.matcom.2018.06.007_b12) 1995; 82 Neal (10.1016/j.matcom.2018.06.007_b18) 2006; 16 Peskun (10.1016/j.matcom.2018.06.007_b19) 1973; 60 Bédard (10.1016/j.matcom.2018.06.007_b3) 2008; 118 Metropolis (10.1016/j.matcom.2018.06.007_b17) 1953; 21 10.1016/j.matcom.2018.06.007_b11 Bédard (10.1016/j.matcom.2018.06.007_b4) 2012; 122 Tierney (10.1016/j.matcom.2018.06.007_b24) 1998; 8 Al-Awadhi (10.1016/j.matcom.2018.06.007_b1) 2004; 69 Mattingly (10.1016/j.matcom.2018.06.007_b16) 2012; 22 Beskos (10.1016/j.matcom.2018.06.007_b5) 2013; 19 Bibby (10.1016/j.matcom.2018.06.007_b7) 2005; 11 Robert (10.1016/j.matcom.2018.06.007_b21) 2004 Hastings (10.1016/j.matcom.2018.06.007_b14) 1970; 57 Karagiannis (10.1016/j.matcom.2018.06.007_b15) 2013; 22 Bédard (10.1016/j.matcom.2018.06.007_b2) 2007; 17 Beskos (10.1016/j.matcom.2018.06.007_b6) 2009; 19 Hastie (10.1016/j.matcom.2018.06.007_b13) 2005 Gagnon (10.1016/j.matcom.2018.06.007_b10) 2017 Ethier (10.1016/j.matcom.2018.06.007_b9) 1986 Richardson (10.1016/j.matcom.2018.06.007_b20) 1997; 59 Roberts (10.1016/j.matcom.2018.06.007_b23) 2001; 16  | 
    
| References_xml | – year: 1986 ident: b9 article-title: Markov Processes: Characterization and Convergence – volume: 7 start-page: 110 year: 1997 end-page: 120 ident: b22 article-title: Weak convergence and optimal scaling of random walk Metropolis algorithms publication-title: Ann. Appl. Probab. – volume: 22 start-page: 881 year: 2012 end-page: 930 ident: b16 article-title: Diffusion limits of the random walk Metropolis algorithm in high dimensions publication-title: Ann. Appl. Probab. – volume: 8 start-page: 1 year: 1998 end-page: 9 ident: b24 article-title: A note on Metropolis-Hastings kernels for general state spaces publication-title: Ann. Appl. Probab. – volume: 122 start-page: 758 year: 2012 end-page: 786 ident: b4 article-title: Scaling analysis of multiple-try MCMC methods publication-title: Stochastic Process. Appl. – volume: 60 start-page: 607 year: 1973 end-page: 612 ident: b19 article-title: Optimum Monte-Carlo sampling using Markov chains publication-title: Biometrika – volume: 118 start-page: 2198 year: 2008 end-page: 2222 ident: b3 article-title: Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 publication-title: Stochastic Process. Appl. – volume: 65 start-page: 3 year: 2003 end-page: 39 ident: b8 article-title: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: b14 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 82 start-page: 711 year: 1995 end-page: 732 ident: b12 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika – year: 2017 ident: b10 article-title: Robust model selection: Linear regression and reversible jump algorithm. – volume: 11 start-page: 191 year: 2005 end-page: 220 ident: b7 article-title: Diffusion-type models with given marginal distribution and autocorrelation function publication-title: Bernoulli – year: 2004 ident: b21 article-title: Monte Carlo Statistical Methods – volume: 69 start-page: 189 year: 2004 end-page: 198 ident: b1 article-title: Improving the acceptance rate of reversible jump MCMC proposals publication-title: Statist. Probab. Lett. – volume: 59 start-page: 731 year: 1997 end-page: 792 ident: b20 article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion) publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. – volume: 19 start-page: 863 year: 2009 end-page: 898 ident: b6 article-title: Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions publication-title: Ann. Appl. Probab. – reference: . – volume: 19 start-page: 1501 year: 2013 end-page: 1534 ident: b5 article-title: Optimal tuning of the hybrid Monte Carlo algorithm publication-title: Bernoulli – volume: 17 start-page: 1222 year: 2007 end-page: 1244 ident: b2 article-title: Weak Convergence of Metropolis algorithms for non-i.i.d. target distributions publication-title: Ann. Appl. Probab. – volume: 21 start-page: 1087 year: 1953 ident: b17 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. – volume: 16 start-page: 351 year: 2001 end-page: 367 ident: b23 article-title: Optimal scaling for various Metropolis-Hastings algorithms publication-title: Statist. Sci. – year: 2005 ident: b13 article-title: Towards Automatic Reversible Jump Markov Chain Monte Carlo – volume: 16 start-page: 475 year: 2006 end-page: 515 ident: b18 article-title: Optimal scaling for partially updating MCMC algorithms publication-title: Ann. Appl. Probab. – reference: P. Gagnon, M. Bédard, A. Desgagné, (2017) An Efficient Bayesian Robust Principal Component Regression, preprint, – volume: 22 start-page: 623 year: 2013 end-page: 648 ident: b15 article-title: Annealed importance sampling reversible jump MCMC algorithms publication-title: J. Comput. Graph. Statist. – volume: 65 start-page: 3 issue: 1 year: 2003 ident: 10.1016/j.matcom.2018.06.007_b8 article-title: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.03711 – volume: 69 start-page: 189 issue: 2 year: 2004 ident: 10.1016/j.matcom.2018.06.007_b1 article-title: Improving the acceptance rate of reversible jump MCMC proposals publication-title: Statist. Probab. Lett. doi: 10.1016/j.spl.2004.06.025 – volume: 118 start-page: 2198 issue: 12 year: 2008 ident: 10.1016/j.matcom.2018.06.007_b3 article-title: Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234 publication-title: Stochastic Process. Appl. doi: 10.1016/j.spa.2007.12.005 – volume: 8 start-page: 1 year: 1998 ident: 10.1016/j.matcom.2018.06.007_b24 article-title: A note on Metropolis-Hastings kernels for general state spaces publication-title: Ann. Appl. Probab. doi: 10.1214/aoap/1027961031 – volume: 82 start-page: 711 issue: 4 year: 1995 ident: 10.1016/j.matcom.2018.06.007_b12 article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination publication-title: Biometrika doi: 10.1093/biomet/82.4.711 – volume: 59 start-page: 731 issue: 4 year: 1997 ident: 10.1016/j.matcom.2018.06.007_b20 article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion) publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00095 – volume: 7 start-page: 110 issue: 1 year: 1997 ident: 10.1016/j.matcom.2018.06.007_b22 article-title: Weak convergence and optimal scaling of random walk Metropolis algorithms publication-title: Ann. Appl. Probab. – volume: 60 start-page: 607 issue: 3 year: 1973 ident: 10.1016/j.matcom.2018.06.007_b19 article-title: Optimum Monte-Carlo sampling using Markov chains publication-title: Biometrika doi: 10.1093/biomet/60.3.607 – volume: 19 start-page: 1501 issue: 5A year: 2013 ident: 10.1016/j.matcom.2018.06.007_b5 article-title: Optimal tuning of the hybrid Monte Carlo algorithm publication-title: Bernoulli doi: 10.3150/12-BEJ414 – volume: 16 start-page: 351 issue: 4 year: 2001 ident: 10.1016/j.matcom.2018.06.007_b23 article-title: Optimal scaling for various Metropolis-Hastings algorithms publication-title: Statist. Sci. doi: 10.1214/ss/1015346320 – volume: 22 start-page: 623 issue: 3 year: 2013 ident: 10.1016/j.matcom.2018.06.007_b15 article-title: Annealed importance sampling reversible jump MCMC algorithms publication-title: J. Comput. Graph. Statist. doi: 10.1080/10618600.2013.805651 – year: 2004 ident: 10.1016/j.matcom.2018.06.007_b21 – volume: 17 start-page: 1222 year: 2007 ident: 10.1016/j.matcom.2018.06.007_b2 article-title: Weak Convergence of Metropolis algorithms for non-i.i.d. target distributions publication-title: Ann. Appl. Probab. doi: 10.1214/105051607000000096 – volume: 22 start-page: 881 issue: 3 year: 2012 ident: 10.1016/j.matcom.2018.06.007_b16 article-title: Diffusion limits of the random walk Metropolis algorithm in high dimensions publication-title: Ann. Appl. Probab. doi: 10.1214/10-AAP754 – volume: 21 start-page: 1087 year: 1953 ident: 10.1016/j.matcom.2018.06.007_b17 article-title: Equation of state calculations by fast computing machines publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 16 start-page: 475 issue: 2 year: 2006 ident: 10.1016/j.matcom.2018.06.007_b18 article-title: Optimal scaling for partially updating MCMC algorithms publication-title: Ann. Appl. Probab. doi: 10.1214/105051605000000791 – volume: 11 start-page: 191 issue: 2 year: 2005 ident: 10.1016/j.matcom.2018.06.007_b7 article-title: Diffusion-type models with given marginal distribution and autocorrelation function publication-title: Bernoulli – year: 1986 ident: 10.1016/j.matcom.2018.06.007_b9 – volume: 57 start-page: 97 issue: 1 year: 1970 ident: 10.1016/j.matcom.2018.06.007_b14 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 – volume: 122 start-page: 758 issue: 3 year: 2012 ident: 10.1016/j.matcom.2018.06.007_b4 article-title: Scaling analysis of multiple-try MCMC methods publication-title: Stochastic Process. Appl. doi: 10.1016/j.spa.2011.11.004 – year: 2017 ident: 10.1016/j.matcom.2018.06.007_b10 – volume: 19 start-page: 863 issue: 3 year: 2009 ident: 10.1016/j.matcom.2018.06.007_b6 article-title: Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions publication-title: Ann. Appl. Probab. doi: 10.1214/08-AAP563 – ident: 10.1016/j.matcom.2018.06.007_b11 – year: 2005 ident: 10.1016/j.matcom.2018.06.007_b13  | 
    
| SSID | ssj0007545 | 
    
| Score | 2.2641761 | 
    
| Snippet | The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 32 | 
    
| SubjectTerms | Markov chain Monte Carlo methods Metropolis–Hastings algorithms Model selection Optimal scaling Random walk Metropolis algorithms  | 
    
| Title | Weak convergence and optimal tuning of the reversible jump algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.matcom.2018.06.007 | 
    
| Volume | 161 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7166 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007545 issn: 0378-4754 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamceHCGzEeUw5cw0rzao_TYBogdoGJ3aq0TWFja6equ_LbcfrgISGQuLWVLVWOY3-JPtsA5wmCZE8zQxE8MMqlh0-OUtRITO5CKO37thr5fixHE347FdMWDJpaGEurrGN_FdPLaF1_6dXW7K1ms96DwxSGVsHRKTGnubbtNufKTjG4ePukeaBASWNEYWqlm_K5kuOFoNByRjAJVl087VDZn9LTl5Qz3IGtGiuSfvU7u9Ay6R5sN3MYSL0t9-HqyehXUvLHy1JKQ3QakwyDwRLVi7W9-iBZQhDrEduxKcdtsDBkjitJ9OI5y2fFy_IAJsPrx8GI1tMRaIQwv6DaZ16C-CRy_DiOXE_g3tShjFUi1GWSGM1l5IiQxcZ3I4NmcpjvSabtrU8sRMIOoZ1mqTkCwhnDU4PB1fEcHrkSz0zCDbV0jTa2mWQHWGOUIKpbh9sJFoug4YjNg8qUgTVlUFLlVAfoh9aqap3xh7xq7B18c4EAo_uvmsf_1jyBTXzzK_7tKbSLfG3OEGUUYbd0oy5s9G_uRuN3M5_QVg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOMCFN2I8c-AaVpomaY9ogAZsu7CJ3aKsTWFja6epu_LbcfrgISGQuFWtLVWOY3-JPtsA5zGCZF8zQxE8MOoJH58cKakRmNw5lzoIbDVytyfaA-9-yIc1aFW1MJZWWcb-Iqbn0bp80yyt2ZyPx81Hh0kMrdxDp8Sc5ooVWPW4K-0J7OLtk-eBEjmPEaWpFa_q53KSF6JCSxrBLFi08bRTZX_KT19yzu0WbJRgkVwV_7MNNZPswGY1iIGU-3IXrp-MfiU5gTyvpTREJxFJMRrMUD1b2rsPksYEwR6xLZsWuA-mhkxwKYmePqeLcfYy24PB7U2_1ableAQaIs7PqA6YHyNACZ0gikLX57g59UhEMubyMo6N9kTo8BGLTOCGBu3ksMAXTNtrn4jzmO1DPUkTcwDEYwyPDQaXx3e80BV4aOLuSAvXaGO7STaAVUZRYdk73I6wmKqKJDZRhSmVNaXKuXKyAfRDa170zvhDXlb2Vt98QGF4_1Xz8N-aZ7DW7nc7qnPXeziCdfwSFGTcY6hni6U5QciRjU5zl3oHM5LR6w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+convergence+and+optimal+tuning+of+the+reversible+jump+algorithm&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Gagnon%2C+Philippe&rft.au=B%C3%A9dard%2C+Myl%C3%A8ne&rft.au=Desgagn%C3%A9%2C+Alain&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=161&rft.spage=32&rft.epage=51&rft_id=info:doi/10.1016%2Fj.matcom.2018.06.007&rft.externalDocID=S0378475418301526 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |