Weak convergence and optimal tuning of the reversible jump algorithm

The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 161; pp. 32 - 51
Main Authors Gagnon, Philippe, Bédard, Mylène, Desgagné, Alain
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2018.06.007

Cover

Abstract The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?”
AbstractList The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing dimensionality, and therefore, model selection. Although this method is now increasingly used in key areas (e.g. biology and finance), it remains a challenge to implement it. In this paper, we focus on a simple sampling context in order to obtain theoretical results that lead to an optimal tuning procedure for the considered reversible jump algorithm, and consequently, to easy implementation. The key result is the weak convergence of the sequence of stochastic processes engendered by the algorithm. It represents the main contribution of this paper as it is, to our knowledge, the first weak convergence result for the reversible jump algorithm. The sampler updating the parameters according to a random walk, this result allows to retrieve the well-known 0.234 rule for finding the optimal scaling. It also leads to an answer to the question: “with what probability should a parameter update be proposed comparatively to a model switch at each iteration?”
Author Gagnon, Philippe
Bédard, Mylène
Desgagné, Alain
Author_xml – sequence: 1
  givenname: Philippe
  surname: Gagnon
  fullname: Gagnon, Philippe
  email: philippe.gagnon@stats.ox.ac.uk
  organization: Department of Statistics, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom
– sequence: 2
  givenname: Mylène
  surname: Bédard
  fullname: Bédard, Mylène
  email: mylene.bedard@umontreal.ca
  organization: Département de mathématiques et de statistique, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, H3C 3J7, Canada
– sequence: 3
  givenname: Alain
  surname: Desgagné
  fullname: Desgagné, Alain
  email: desgagne.alain@uqam.ca
  organization: Département de mathématiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
BookMark eNqFkL1OwzAYRS1UJFrgDRj8Agl2HDsJAxIqv1IlFhCj5difW4fErhy3Em9PqjIxwHSXe650zwLNfPCA0BUlOSVUXHf5oJIOQ14QWudE5IRUJ2hO66rIKirEDM0Jq-qsrHh5hhbj2JGpwUs-R_cfoD6xDn4PcQ1eA1be4LBNblA9Tjvv_BoHi9MGcISpNLq2B9zthi1W_TpElzbDBTq1qh_h8ifP0fvjw9vyOVu9Pr0s71aZZkSkTDWstoIWmjTG6KLmNStUK0xleUWtBVUKTXjLDDSFBl5SwppaMNXSsjCcW3aObo67OoZxjGCldkklF3yKyvWSEnnwITt59CEPPiQRcno7weUveBunk_HrP-z2iMF0bO8gylG7gyjjIugkTXB_D3wDK_B_Tg
CitedBy_id crossref_primary_10_1080_02664763_2019_1710478
crossref_primary_10_1109_TSP_2023_3278867
crossref_primary_10_1177_14727978251321731
crossref_primary_10_1080_10618600_2020_1826955
Cites_doi 10.1111/1467-9868.03711
10.1016/j.spl.2004.06.025
10.1016/j.spa.2007.12.005
10.1214/aoap/1027961031
10.1093/biomet/82.4.711
10.1111/1467-9868.00095
10.1093/biomet/60.3.607
10.3150/12-BEJ414
10.1214/ss/1015346320
10.1080/10618600.2013.805651
10.1214/105051607000000096
10.1214/10-AAP754
10.1063/1.1699114
10.1214/105051605000000791
10.1093/biomet/57.1.97
10.1016/j.spa.2011.11.004
10.1214/08-AAP563
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2018.06.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 51
ExternalDocumentID 10_1016_j_matcom_2018_06_007
S0378475418301526
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-a938f612c09ddc285832ab6d7f571ffea46c05b3de92ce541039863ab142d55f3
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Oct 16 04:27:42 EDT 2025
Thu Apr 24 22:50:40 EDT 2025
Fri Feb 23 02:25:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optimal scaling
Metropolis–Hastings algorithms
Markov chain Monte Carlo methods
Model selection
Random walk Metropolis algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a938f612c09ddc285832ab6d7f571ffea46c05b3de92ce541039863ab142d55f3
PageCount 20
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2018_06_007
crossref_primary_10_1016_j_matcom_2018_06_007
elsevier_sciencedirect_doi_10_1016_j_matcom_2018_06_007
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationTitle Mathematics and computers in simulation
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ethier, Kurtz (b9) 1986
Bibby, Skovgaard, Sørensen (b7) 2005; 11
Karagiannis, Andrieu (b15) 2013; 22
Peskun (b19) 1973; 60
Bédard (b2) 2007; 17
Hastings (b14) 1970; 57
Gagnon (b10) 2017
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b17) 1953; 21
Beskos, Pillai, Roberts, Sanz-Serna, Jesus-Maria, Stuart (b5) 2013; 19
Robert, Casella (b21) 2004
Tierney (b24) 1998; 8
P. Gagnon, M. Bédard, A. Desgagné, (2017) An Efficient Bayesian Robust Principal Component Regression, preprint
Roberts, Gelman, Gilks (b22) 1997; 7
Bédard (b3) 2008; 118
Al-Awadhi, Hurn, Jennison (b1) 2004; 69
Beskos, Roberts, Stuart (b6) 2009; 19
Richardson, Green (b20) 1997; 59
Bédard, Douc, Moulines (b4) 2012; 122
Neal, Roberts (b18) 2006; 16
.
Green (b12) 1995; 82
Brooks, Giudici, Roberts (b8) 2003; 65
Hastie (b13) 2005
Mattingly, Pillai, Stuart (b16) 2012; 22
Roberts, Rosenthal (b23) 2001; 16
Brooks (10.1016/j.matcom.2018.06.007_b8) 2003; 65
Roberts (10.1016/j.matcom.2018.06.007_b22) 1997; 7
Green (10.1016/j.matcom.2018.06.007_b12) 1995; 82
Neal (10.1016/j.matcom.2018.06.007_b18) 2006; 16
Peskun (10.1016/j.matcom.2018.06.007_b19) 1973; 60
Bédard (10.1016/j.matcom.2018.06.007_b3) 2008; 118
Metropolis (10.1016/j.matcom.2018.06.007_b17) 1953; 21
10.1016/j.matcom.2018.06.007_b11
Bédard (10.1016/j.matcom.2018.06.007_b4) 2012; 122
Tierney (10.1016/j.matcom.2018.06.007_b24) 1998; 8
Al-Awadhi (10.1016/j.matcom.2018.06.007_b1) 2004; 69
Mattingly (10.1016/j.matcom.2018.06.007_b16) 2012; 22
Beskos (10.1016/j.matcom.2018.06.007_b5) 2013; 19
Bibby (10.1016/j.matcom.2018.06.007_b7) 2005; 11
Robert (10.1016/j.matcom.2018.06.007_b21) 2004
Hastings (10.1016/j.matcom.2018.06.007_b14) 1970; 57
Karagiannis (10.1016/j.matcom.2018.06.007_b15) 2013; 22
Bédard (10.1016/j.matcom.2018.06.007_b2) 2007; 17
Beskos (10.1016/j.matcom.2018.06.007_b6) 2009; 19
Hastie (10.1016/j.matcom.2018.06.007_b13) 2005
Gagnon (10.1016/j.matcom.2018.06.007_b10) 2017
Ethier (10.1016/j.matcom.2018.06.007_b9) 1986
Richardson (10.1016/j.matcom.2018.06.007_b20) 1997; 59
Roberts (10.1016/j.matcom.2018.06.007_b23) 2001; 16
References_xml – year: 1986
  ident: b9
  article-title: Markov Processes: Characterization and Convergence
– volume: 7
  start-page: 110
  year: 1997
  end-page: 120
  ident: b22
  article-title: Weak convergence and optimal scaling of random walk Metropolis algorithms
  publication-title: Ann. Appl. Probab.
– volume: 22
  start-page: 881
  year: 2012
  end-page: 930
  ident: b16
  article-title: Diffusion limits of the random walk Metropolis algorithm in high dimensions
  publication-title: Ann. Appl. Probab.
– volume: 8
  start-page: 1
  year: 1998
  end-page: 9
  ident: b24
  article-title: A note on Metropolis-Hastings kernels for general state spaces
  publication-title: Ann. Appl. Probab.
– volume: 122
  start-page: 758
  year: 2012
  end-page: 786
  ident: b4
  article-title: Scaling analysis of multiple-try MCMC methods
  publication-title: Stochastic Process. Appl.
– volume: 60
  start-page: 607
  year: 1973
  end-page: 612
  ident: b19
  article-title: Optimum Monte-Carlo sampling using Markov chains
  publication-title: Biometrika
– volume: 118
  start-page: 2198
  year: 2008
  end-page: 2222
  ident: b3
  article-title: Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234
  publication-title: Stochastic Process. Appl.
– volume: 65
  start-page: 3
  year: 2003
  end-page: 39
  ident: b8
  article-title: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: b14
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 82
  start-page: 711
  year: 1995
  end-page: 732
  ident: b12
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
– year: 2017
  ident: b10
  article-title: Robust model selection: Linear regression and reversible jump algorithm.
– volume: 11
  start-page: 191
  year: 2005
  end-page: 220
  ident: b7
  article-title: Diffusion-type models with given marginal distribution and autocorrelation function
  publication-title: Bernoulli
– year: 2004
  ident: b21
  article-title: Monte Carlo Statistical Methods
– volume: 69
  start-page: 189
  year: 2004
  end-page: 198
  ident: b1
  article-title: Improving the acceptance rate of reversible jump MCMC proposals
  publication-title: Statist. Probab. Lett.
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  ident: b20
  article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 19
  start-page: 863
  year: 2009
  end-page: 898
  ident: b6
  article-title: Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions
  publication-title: Ann. Appl. Probab.
– reference: .
– volume: 19
  start-page: 1501
  year: 2013
  end-page: 1534
  ident: b5
  article-title: Optimal tuning of the hybrid Monte Carlo algorithm
  publication-title: Bernoulli
– volume: 17
  start-page: 1222
  year: 2007
  end-page: 1244
  ident: b2
  article-title: Weak Convergence of Metropolis algorithms for non-i.i.d. target distributions
  publication-title: Ann. Appl. Probab.
– volume: 21
  start-page: 1087
  year: 1953
  ident: b17
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 351
  year: 2001
  end-page: 367
  ident: b23
  article-title: Optimal scaling for various Metropolis-Hastings algorithms
  publication-title: Statist. Sci.
– year: 2005
  ident: b13
  article-title: Towards Automatic Reversible Jump Markov Chain Monte Carlo
– volume: 16
  start-page: 475
  year: 2006
  end-page: 515
  ident: b18
  article-title: Optimal scaling for partially updating MCMC algorithms
  publication-title: Ann. Appl. Probab.
– reference: P. Gagnon, M. Bédard, A. Desgagné, (2017) An Efficient Bayesian Robust Principal Component Regression, preprint,
– volume: 22
  start-page: 623
  year: 2013
  end-page: 648
  ident: b15
  article-title: Annealed importance sampling reversible jump MCMC algorithms
  publication-title: J. Comput. Graph. Statist.
– volume: 65
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.matcom.2018.06.007_b8
  article-title: Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.03711
– volume: 69
  start-page: 189
  issue: 2
  year: 2004
  ident: 10.1016/j.matcom.2018.06.007_b1
  article-title: Improving the acceptance rate of reversible jump MCMC proposals
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2004.06.025
– volume: 118
  start-page: 2198
  issue: 12
  year: 2008
  ident: 10.1016/j.matcom.2018.06.007_b3
  article-title: Optimal acceptance rates for Metropolis algorithms: Moving beyond 0.234
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2007.12.005
– volume: 8
  start-page: 1
  year: 1998
  ident: 10.1016/j.matcom.2018.06.007_b24
  article-title: A note on Metropolis-Hastings kernels for general state spaces
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/aoap/1027961031
– volume: 82
  start-page: 711
  issue: 4
  year: 1995
  ident: 10.1016/j.matcom.2018.06.007_b12
  article-title: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
  publication-title: Biometrika
  doi: 10.1093/biomet/82.4.711
– volume: 59
  start-page: 731
  issue: 4
  year: 1997
  ident: 10.1016/j.matcom.2018.06.007_b20
  article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00095
– volume: 7
  start-page: 110
  issue: 1
  year: 1997
  ident: 10.1016/j.matcom.2018.06.007_b22
  article-title: Weak convergence and optimal scaling of random walk Metropolis algorithms
  publication-title: Ann. Appl. Probab.
– volume: 60
  start-page: 607
  issue: 3
  year: 1973
  ident: 10.1016/j.matcom.2018.06.007_b19
  article-title: Optimum Monte-Carlo sampling using Markov chains
  publication-title: Biometrika
  doi: 10.1093/biomet/60.3.607
– volume: 19
  start-page: 1501
  issue: 5A
  year: 2013
  ident: 10.1016/j.matcom.2018.06.007_b5
  article-title: Optimal tuning of the hybrid Monte Carlo algorithm
  publication-title: Bernoulli
  doi: 10.3150/12-BEJ414
– volume: 16
  start-page: 351
  issue: 4
  year: 2001
  ident: 10.1016/j.matcom.2018.06.007_b23
  article-title: Optimal scaling for various Metropolis-Hastings algorithms
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1015346320
– volume: 22
  start-page: 623
  issue: 3
  year: 2013
  ident: 10.1016/j.matcom.2018.06.007_b15
  article-title: Annealed importance sampling reversible jump MCMC algorithms
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1080/10618600.2013.805651
– year: 2004
  ident: 10.1016/j.matcom.2018.06.007_b21
– volume: 17
  start-page: 1222
  year: 2007
  ident: 10.1016/j.matcom.2018.06.007_b2
  article-title: Weak Convergence of Metropolis algorithms for non-i.i.d. target distributions
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051607000000096
– volume: 22
  start-page: 881
  issue: 3
  year: 2012
  ident: 10.1016/j.matcom.2018.06.007_b16
  article-title: Diffusion limits of the random walk Metropolis algorithm in high dimensions
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/10-AAP754
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.matcom.2018.06.007_b17
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 16
  start-page: 475
  issue: 2
  year: 2006
  ident: 10.1016/j.matcom.2018.06.007_b18
  article-title: Optimal scaling for partially updating MCMC algorithms
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/105051605000000791
– volume: 11
  start-page: 191
  issue: 2
  year: 2005
  ident: 10.1016/j.matcom.2018.06.007_b7
  article-title: Diffusion-type models with given marginal distribution and autocorrelation function
  publication-title: Bernoulli
– year: 1986
  ident: 10.1016/j.matcom.2018.06.007_b9
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.matcom.2018.06.007_b14
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 122
  start-page: 758
  issue: 3
  year: 2012
  ident: 10.1016/j.matcom.2018.06.007_b4
  article-title: Scaling analysis of multiple-try MCMC methods
  publication-title: Stochastic Process. Appl.
  doi: 10.1016/j.spa.2011.11.004
– year: 2017
  ident: 10.1016/j.matcom.2018.06.007_b10
– volume: 19
  start-page: 863
  issue: 3
  year: 2009
  ident: 10.1016/j.matcom.2018.06.007_b6
  article-title: Optimal scalings for local Metropolis-Hastings chains on nonproduct targets in high dimensions
  publication-title: Ann. Appl. Probab.
  doi: 10.1214/08-AAP563
– ident: 10.1016/j.matcom.2018.06.007_b11
– year: 2005
  ident: 10.1016/j.matcom.2018.06.007_b13
SSID ssj0007545
Score 2.2641761
Snippet The reversible jump algorithm is a useful Markov chain Monte Carlo method introduced by Green (1995) that allows switches between subspaces of differing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms Markov chain Monte Carlo methods
Metropolis–Hastings algorithms
Model selection
Optimal scaling
Random walk Metropolis algorithms
Title Weak convergence and optimal tuning of the reversible jump algorithm
URI https://dx.doi.org/10.1016/j.matcom.2018.06.007
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamceHCGzEeUw5cw0rzao_TYBogdoGJ3aq0TWFja6equ_LbcfrgISGQuLWVLVWOY3-JPtsA5wmCZE8zQxE8MMqlh0-OUtRITO5CKO37thr5fixHE347FdMWDJpaGEurrGN_FdPLaF1_6dXW7K1ms96DwxSGVsHRKTGnubbtNufKTjG4ePukeaBASWNEYWqlm_K5kuOFoNByRjAJVl087VDZn9LTl5Qz3IGtGiuSfvU7u9Ay6R5sN3MYSL0t9-HqyehXUvLHy1JKQ3QakwyDwRLVi7W9-iBZQhDrEduxKcdtsDBkjitJ9OI5y2fFy_IAJsPrx8GI1tMRaIQwv6DaZ16C-CRy_DiOXE_g3tShjFUi1GWSGM1l5IiQxcZ3I4NmcpjvSabtrU8sRMIOoZ1mqTkCwhnDU4PB1fEcHrkSz0zCDbV0jTa2mWQHWGOUIKpbh9sJFoug4YjNg8qUgTVlUFLlVAfoh9aqap3xh7xq7B18c4EAo_uvmsf_1jyBTXzzK_7tKbSLfG3OEGUUYbd0oy5s9G_uRuN3M5_QVg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOMCFN2I8c-AaVpomaY9ogAZsu7CJ3aKsTWFja6epu_LbcfrgISGQuFWtLVWOY3-JPtsA5zGCZF8zQxE8MOoJH58cKakRmNw5lzoIbDVytyfaA-9-yIc1aFW1MJZWWcb-Iqbn0bp80yyt2ZyPx81Hh0kMrdxDp8Sc5ooVWPW4K-0J7OLtk-eBEjmPEaWpFa_q53KSF6JCSxrBLFi08bRTZX_KT19yzu0WbJRgkVwV_7MNNZPswGY1iIGU-3IXrp-MfiU5gTyvpTREJxFJMRrMUD1b2rsPksYEwR6xLZsWuA-mhkxwKYmePqeLcfYy24PB7U2_1ableAQaIs7PqA6YHyNACZ0gikLX57g59UhEMubyMo6N9kTo8BGLTOCGBu3ksMAXTNtrn4jzmO1DPUkTcwDEYwyPDQaXx3e80BV4aOLuSAvXaGO7STaAVUZRYdk73I6wmKqKJDZRhSmVNaXKuXKyAfRDa170zvhDXlb2Vt98QGF4_1Xz8N-aZ7DW7nc7qnPXeziCdfwSFGTcY6hni6U5QciRjU5zl3oHM5LR6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weak+convergence+and+optimal+tuning+of+the+reversible+jump+algorithm&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Gagnon%2C+Philippe&rft.au=B%C3%A9dard%2C+Myl%C3%A8ne&rft.au=Desgagn%C3%A9%2C+Alain&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=161&rft.spage=32&rft.epage=51&rft_id=info:doi/10.1016%2Fj.matcom.2018.06.007&rft.externalDocID=S0378475418301526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon