A novel approach for classification of mental tasks using multiview ensemble learning (MEL)
Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emer...
        Saved in:
      
    
          | Published in | Neurocomputing (Amsterdam) Vol. 417; pp. 558 - 584 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        05.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0925-2312 1872-8286  | 
| DOI | 10.1016/j.neucom.2020.07.050 | 
Cover
| Abstract | Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emerging way in machine learning to improve the generalized performance by considering the knowledge with multiple views. Multiview learning has made rapid progress and development in recent years and is also facing many new challenges. This method can be used in the BCI domain, as the meaningful representation of the EEG signal in plenty of ways. This study utilized the multiview ensemble learning (MEL) approach for the binary classification of five mental tasks on the six subjects individually. In this study, we used a well-known EEG database (Keirn and Aunon database). The EEG signal has been decomposed using by methods i.e wavelet transform (WT), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and fuzzy C-means followed by EWT (FEWT). After that, the feature coding technique is applied using parametric feature formation from the decomposed signal. Hence, we had four views to learn four same type of independent base classifiers and predictions are made in an ensemble manner. The study is performed independently with three types of base classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels The performance validation of the ten combinations of mental tasks was performed by three MEL based classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels. For reliability of the obtained results of the classifiers, 10-fold cross-validation was used. The proposed algorithm shows a promising accuracy of 80% to 100% for binary pair-wise classification of mental tasks. | 
    
|---|---|
| AbstractList | Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emerging way in machine learning to improve the generalized performance by considering the knowledge with multiple views. Multiview learning has made rapid progress and development in recent years and is also facing many new challenges. This method can be used in the BCI domain, as the meaningful representation of the EEG signal in plenty of ways. This study utilized the multiview ensemble learning (MEL) approach for the binary classification of five mental tasks on the six subjects individually. In this study, we used a well-known EEG database (Keirn and Aunon database). The EEG signal has been decomposed using by methods i.e wavelet transform (WT), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and fuzzy C-means followed by EWT (FEWT). After that, the feature coding technique is applied using parametric feature formation from the decomposed signal. Hence, we had four views to learn four same type of independent base classifiers and predictions are made in an ensemble manner. The study is performed independently with three types of base classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels The performance validation of the ten combinations of mental tasks was performed by three MEL based classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels. For reliability of the obtained results of the classifiers, 10-fold cross-validation was used. The proposed algorithm shows a promising accuracy of 80% to 100% for binary pair-wise classification of mental tasks. | 
    
| Author | Singh, V.K. Tanveer, M. Gupta, A. Pachori, R.B. Kumar, D. Chakraborti, A. Khan, R.U.  | 
    
| Author_xml | – sequence: 1 givenname: A. surname: Gupta fullname: Gupta, A. email: akshanshgupta@jnu.ac.in organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India – sequence: 2 givenname: R.U. surname: Khan fullname: Khan, R.U. email: riyaz@iiti.ac.in organization: Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India – sequence: 3 givenname: V.K. surname: Singh fullname: Singh, V.K. email: vinod.acear@gmail.com organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India – sequence: 4 givenname: M. surname: Tanveer fullname: Tanveer, M. email: mtanveer@iiti.ac.in organization: Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India – sequence: 5 givenname: D. surname: Kumar fullname: Kumar, D. email: dhirendrabhu08@gmail.com organization: Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India – sequence: 6 givenname: A. surname: Chakraborti fullname: Chakraborti, A. email: anirban@jnu.ac.in organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India – sequence: 7 givenname: R.B. surname: Pachori fullname: Pachori, R.B. email: pachori@iiti.ac.in organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India  | 
    
| BookMark | eNqFkD1PwzAURS1UJNrCP2DwCEPCs9PGCQNShcqHVMTSjcF6cV_AJbErOy3i35NSJgaY3nB1ru47IzZw3hFj5wJSASK_WqeOtsa3qQQJKagUpnDEhqJQMilkkQ_YEEo5TWQm5AkbxbgGEErIcsheZtz5HTUcN5vg0bzx2gduGozR1tZgZ73jvuYtuQ4b3mF8j3wbrXvl7bbp7M7SBycXqa0a4g1hcPvs4mm-uDxlxzU2kc5-7pgt7-bL24dk8Xz_eDtbJCaDvEuwoEKVSomsrBVJygVBBROZlQonRV5iBWYKqCoyNFGqrCTmUzSVgXqFGWVjdn2oNcHHGKjWxnbfw7uAttEC9N6SXuuDJb23pEHp3lIPT37Bm2BbDJ__YTcHjPq_egdBR2PJGVrZQKbTK2__LvgCyveHVg | 
    
| CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3349142 crossref_primary_10_1016_j_engappai_2022_105210 crossref_primary_10_1109_JSEN_2023_3337519 crossref_primary_10_1016_j_knosys_2021_107285 crossref_primary_10_1016_j_neucom_2024_128814 crossref_primary_10_1016_j_patrec_2023_11_015 crossref_primary_10_1016_j_neunet_2023_07_021 crossref_primary_10_1016_j_iswa_2023_200204 crossref_primary_10_1016_j_inffus_2023_101959 crossref_primary_10_1016_j_jksuci_2021_08_029 crossref_primary_10_1016_j_inffus_2023_102145 crossref_primary_10_1016_j_bspc_2021_103070 crossref_primary_10_1016_j_iswa_2023_200272 crossref_primary_10_3390_math11051261 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_3390_brainsci11111525 crossref_primary_10_1109_JBHI_2022_3159031 crossref_primary_10_1016_j_neucom_2022_10_078 crossref_primary_10_1049_el_2020_2632 crossref_primary_10_1007_s10489_023_05260_6 crossref_primary_10_1007_s11042_023_15900_1 crossref_primary_10_1016_j_ipm_2025_104133 crossref_primary_10_1155_2021_5556992 crossref_primary_10_3389_fonc_2023_1152020 crossref_primary_10_1016_j_eswa_2024_123480 crossref_primary_10_1007_s11277_023_10514_0 crossref_primary_10_1007_s10489_021_03101_y crossref_primary_10_1016_j_inffus_2024_102718  | 
    
| Cites_doi | 10.1109/10.64464 10.1007/s10115-015-0875-y 10.3233/IDA-150740 10.1007/s11063-011-9195-8 10.1016/j.eswa.2018.03.053 10.1109/ICDSP.1997.627975 10.1109/CNE.2003.1196897 10.1109/JSEN.2020.2966766 10.1109/IEMBS.1995.579248 10.1142/S0218001411008981 10.1007/s10916-008-9215-z 10.1109/TNSRE.2003.814441 10.1109/ICDM.2014.29 10.1023/A:1009715923555 10.1613/jair.2005 10.3389/fncom.2017.00103 10.1109/TSP.2013.2265222 10.1613/jair.4190 10.3390/app7040385 10.1145/354756.354805 10.1109/JSEN.2020.2976519 10.1016/0098-3004(84)90020-7 10.1109/IEMBS.2009.5335278 10.1007/BF01797193 10.1007/s00521-012-1324-4 10.1109/ICEMI.2007.4351064 10.1016/j.biosystems.2017.12.005 10.1098/rspa.1998.0193 10.1109/TIT.1976.1055501 10.1007/978-3-642-40991-2_23 10.1109/ICCV.2015.185 10.1109/FG.2015.7163131 10.1109/TCYB.2015.2502248 10.1145/2345396.2345541 10.1109/CVPR.2015.7298657 10.1016/0022-247X(78)90045-8 10.1007/978-3-642-25856-5_16 10.1145/279943.279962 10.1109/TNSRE.2006.881539 10.1109/ICBME.2015.7404109 10.7551/mitpress/1120.003.0025 10.1109/SSCI.2018.8628733 10.1007/s10489-014-0563-8 10.1016/j.patrec.2005.10.010 10.1007/s00500-014-1443-1 10.1007/s00521-017-2919-6 10.1109/SSCI.2018.8628651 10.1016/j.compeleceng.2014.01.010 10.1145/1390156.1390279 10.1109/IEMBS.2005.1615860 10.1109/34.192463 10.1109/TNSRE.2012.2184838 10.1137/1.9781611972832.27  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.neucom.2020.07.050 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-8286 | 
    
| EndPage | 584 | 
    
| ExternalDocumentID | 10_1016_j_neucom_2020_07_050 S0925231220311589  | 
    
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD  | 
    
| ID | FETCH-LOGICAL-c306t-a8e87977139f7e2e61e0b042397a4869ab0c50a7bece4779b2a65acbc0fda3e3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0925-2312 | 
    
| IngestDate | Thu Oct 16 04:44:17 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Fri Feb 23 02:45:57 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Support vector machine (SVM) Multiview learning Electroencephalography (EEG) Empirical mode decomposition (EMD) Fuzzy C-means Wavelet transform (WT) Mental tasks classification Brain computer interface (BCI) Feature coding  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c306t-a8e87977139f7e2e61e0b042397a4869ab0c50a7bece4779b2a65acbc0fda3e3 | 
    
| PageCount | 27 | 
    
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2020_07_050 crossref_primary_10_1016_j_neucom_2020_07_050 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_07_050  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-12-05 | 
    
| PublicationDateYYYYMMDD | 2020-12-05 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-05 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Neurocomputing (Amsterdam) | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | M. Gönen, G.B. Gönen, F.S. Gürgen, Bayesian multiview dimensionality reduction for learning predictive subspaces., in: ECAI, pp. 387–392. Mallat (b0255) 1989; 11 Sun, Shawe-Taylor (b0125) 2010; 11 Sun, Xie, Yang (b0185) 2016; 46 A. Gupta, R. Agrawal, B. Kaur, A three phase approach for mental task classification using EEG, in: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ACM, pp. 898–904. B.V. Dasarathy, Nearest neighbor (NN) norms:NN pattern classification techniques(1991). Garrett, Peterson, Anderson, Thaut (b0010) 2003; 11 H. Kadri, S. Ayache, C. Capponi, S. Koço, F.-X. Dupé, E. Morvant, The multi-task learning view of multimodal data, in: Asian Conference on Machine Learning, pp. 261–276. C. Zhang, H. Fu, S. Liu, G. Liu, X. Cao, Low-rank tensor constrained multiview subspace clustering, in: Proceedings of the IEEE international conference on computer vision, pp. 1582–1590. S. Sun, Multi-view Laplacian support vector machines, in: International Conference on Advanced Data Mining and Applications, Springer, pp. 209–222. P.F. Diez, V. Mut, E. Laciar, A. Torres, E. Avila, Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp. 2579–2582. Z. Ding, Y. Fu, Low-rank common subspace for multi-view learning, in: Data Mining (ICDM), 2014 IEEE International Conference on, IEEE, pp. 110–119. Richhariya, Tanveer (b0030) 2018; 106 I. Muslea, S. Minton, C.A. Knoblock, Active + semi-supervised learning = robust multi-view learning, in: ICML, volume 2, Citeseer, pp. 435–442. H. Yanga, J. Heb, Notam Xie, Sun (b0135) 2014; 41 Kumar, Minz (b0250) 2016; 49 Muslea, Minton, Knoblock (b0110) 2006; 27 T. Jaakkola, M. Meila, T. Jebara, Maximum entropy discrimination, in: Advances in neural information processing systems, pp. 470–476. G.N. Garcia, T. Ebrahimi, J.-M. Vesin, Support vector EEG classification in the fourier and time-frequency correlation domains, in: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, IEEE, pp. 591–594. Bhattacharyya, Pachori, Upadhyay, Acharya (b0210) 2017; 7 L. Zhiwei, S. Minfen, Classification of mental task EEG signals using wavelet packet entropy and SVM, in: 2007 8th International Conference on Electronic Measurement and Instruments, IEEE, pp. 3–906. Singh, Kumar, Krishnamachari (b0240) 2018; 163 S. Rezaei, K. Tavakolian, K. Naziripour, Comparison of five different classifiers for classification of mental tasks, in: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, pp. 6007–6010. Lerman (b0245) 1980; 29 Imandoust, Bolandraftar (b0345) 2013; 3 Gupta, Agrawal, Kaur (b0055) 2015; 19 Xie, Sun (b0130) 2015; 19 Sun, Zhang (b0230) 2011; 34 X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 586–594. Nonparametric bayes multi-task multi-view learning, in: Proceedings of World Statistics Conference, pp. 2351–2356. Bayram, Kızrak, Bolat (b0005) 2013 Aljazaery, Ali, Abdulridha (b0020) 2011; 4 N. Hazarika, J.Z. Chen, A.C. Tsoi, A. Sergejew, Classification of EEG signals using the wavelet transform, in: Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, volume 1, IEEE, pp. 89–92. Keirn, Aunon (b0365) 1990; 37 Nguyen (b0310) 1978; 64 N. Kerkeni, F. Alexandre, M.H. Bedoui, L. Bougrain, M. Dogui, Automatic classification of sleep stages on a EEG signal by artificial neural networks, in: 5th WSEAS International Conference on SIGNAL, SPEECH and IMAGE PROCESSING-WSEAS SSIP’05. Sun, Jin (b0105) 2011; 25 Anuragi, Sisodia, Pachori (b0200) 2020; 20 Palaniappan (b0035) 2006; 14 Sharma, Pachori, Upadhyay (b0215) 2017; 28 M. Tanveer, R.B. Pachori, N. Angami, Classification of seizure and seizure-free EEG signals using hjorth parameters, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 2180–2185. Tiwari, Srivastava (b0315) 2014; 9 R. Ameri, A. Pouyan, V. Abolghasemi, Eeg signal classification based on sparse representation in brain computer interface applications, in: Biomedical Engineering (ICBME), 2015 22nd Iranian Conference on, IEEE, pp. 21–24. C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint arXiv:1304.5634 (2013). Y. Makihara, A. Mansur, D. Muramatsu, Z. Uddin, Y. Yagi, Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition, in: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, volume 1, IEEE, pp. 1–8. B. Blankertz, G. Curio, K.-R. Müller, Classifying single trial EEG: Towards brain computer interfacing, in: Advances in neural information processing systems, pp. 157–164. Gupta, Agrawal, Kirar, Andreu-Perez, Ding, Lin, Prasad (b0050) 2019 K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-training, in: Proceedings of the ninth international conference on Information and knowledge management, ACM, pp. 86–93. Pachori (b0265) 2008; 2008 N.-J. Huan, R. Palaniappan, Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals, in: Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, IEEE, pp. 633–636. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998) 903–995. Siuly, Li (b0075) 2012; 20 C.W. Anderson, E.A. Stolz, S. Shamsunder, Discriminating mental tasks using EEG represented by AR models, in: Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference, volume 2, IEEE, pp. 875–876. Hariharan, Vijean, Sindhu, Divakar, Saidatul, Yaacob (b0070) 2014; 40 Amin, Mumtaz, Subhani, Saad, Malik (b0225) 2017; 11 Nandish, Stafford, Kumar, Ahmed (b0025) 2012; 2 A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp. 92–100. Yang, Gao (b0170) 2014; 49 Zhang, He, He, Wang (b0040) 2010; 34 Berger (b0270) 1929; 87 Burges (b0325) 1998; 2 Kumari, Jose (b0340) 2011; 41 P. Dhillon, D.P. Foster, L.H. Ungar, Multi-view learning of word embeddings via cca, in: Advances in neural information processing systems, pp. 199–207. Lempel, Ziv (b0320) 1976; 22 M. Tanveer, R.B. Pachori, N. Angami, Entropy based features in fawt framework for automated detection of epileptic seizure EEG signals, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1946–1952. J.A. de la O Serna, M.R.A. Paternina, A. Zamora-Méndez, R.K. Tripathy, R.B. Pachori, Eeg-rhythm specific taylor-fourier filter bank implemented with o-splines for the detection of epilepsy using eeg signals, IEEE Sensors Journal(2020). Gilles (b0290) 2013; 61 Rokach (b0235) 2010; vol. 75 V. Sindhwani, D.S. Rosenberg, An RKHS for multi-view learning and manifold co-regularization, in: Proceedings of the 25th international conference on Machine learning, ACM, pp. 976–983. Zadeh (b0305) 1976 Sani, Norhazman, Omar, Zaini, Ghani (b0205) 2014 B. Tan, E. Zhong, E.W. Xiang, Q. Yang, Multi-transfer: Transfer learning with multiple views and multiple sources, in: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, pp. 243–251. Daubechies (b0295) 1992; 61 X. Jin, F. Zhuang, S. Wang, Q. He, Z. Shi, Shared structure learning for multiple tasks with multiple views, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 353–368. Azar, El-Said (b0360) 2014; 24 Fawcett (b0355) 2006; 27 Bezdek, Ehrlich, Full (b0300) 1984; 10 Yang (10.1016/j.neucom.2020.07.050_b0170) 2014; 49 Keirn (10.1016/j.neucom.2020.07.050_b0365) 1990; 37 Garrett (10.1016/j.neucom.2020.07.050_b0010) 2003; 11 Amin (10.1016/j.neucom.2020.07.050_b0225) 2017; 11 Richhariya (10.1016/j.neucom.2020.07.050_b0030) 2018; 106 10.1016/j.neucom.2020.07.050_b0145 10.1016/j.neucom.2020.07.050_b0065 Xie (10.1016/j.neucom.2020.07.050_b0130) 2015; 19 10.1016/j.neucom.2020.07.050_b0100 10.1016/j.neucom.2020.07.050_b0220 10.1016/j.neucom.2020.07.050_b0385 10.1016/j.neucom.2020.07.050_b0380 10.1016/j.neucom.2020.07.050_b0060 10.1016/j.neucom.2020.07.050_b0140 10.1016/j.neucom.2020.07.050_b0260 Siuly (10.1016/j.neucom.2020.07.050_b0075) 2012; 20 10.1016/j.neucom.2020.07.050_b0180 Singh (10.1016/j.neucom.2020.07.050_b0240) 2018; 163 Kumari (10.1016/j.neucom.2020.07.050_b0340) 2011; 41 Sun (10.1016/j.neucom.2020.07.050_b0125) 2010; 11 Lempel (10.1016/j.neucom.2020.07.050_b0320) 1976; 22 Muslea (10.1016/j.neucom.2020.07.050_b0110) 2006; 27 Imandoust (10.1016/j.neucom.2020.07.050_b0345) 2013; 3 Gupta (10.1016/j.neucom.2020.07.050_b0055) 2015; 19 Berger (10.1016/j.neucom.2020.07.050_b0270) 1929; 87 10.1016/j.neucom.2020.07.050_b0115 Xie (10.1016/j.neucom.2020.07.050_b0135) 2014; 41 Sharma (10.1016/j.neucom.2020.07.050_b0215) 2017; 28 Gilles (10.1016/j.neucom.2020.07.050_b0290) 2013; 61 10.1016/j.neucom.2020.07.050_b0350 Aljazaery (10.1016/j.neucom.2020.07.050_b0020) 2011; 4 10.1016/j.neucom.2020.07.050_b0155 Zadeh (10.1016/j.neucom.2020.07.050_b0305) 1976 10.1016/j.neucom.2020.07.050_b0275 Lerman (10.1016/j.neucom.2020.07.050_b0245) 1980; 29 Palaniappan (10.1016/j.neucom.2020.07.050_b0035) 2006; 14 10.1016/j.neucom.2020.07.050_b0195 10.1016/j.neucom.2020.07.050_b0150 Anuragi (10.1016/j.neucom.2020.07.050_b0200) 2020; 20 10.1016/j.neucom.2020.07.050_b0190 Pachori (10.1016/j.neucom.2020.07.050_b0265) 2008; 2008 Nandish (10.1016/j.neucom.2020.07.050_b0025) 2012; 2 Bezdek (10.1016/j.neucom.2020.07.050_b0300) 1984; 10 Kumar (10.1016/j.neucom.2020.07.050_b0250) 2016; 49 10.1016/j.neucom.2020.07.050_b0120 10.1016/j.neucom.2020.07.050_b0285 10.1016/j.neucom.2020.07.050_b0045 10.1016/j.neucom.2020.07.050_b0165 10.1016/j.neucom.2020.07.050_b0160 Gupta (10.1016/j.neucom.2020.07.050_b0050) 2019 10.1016/j.neucom.2020.07.050_b0280 10.1016/j.neucom.2020.07.050_b0085 10.1016/j.neucom.2020.07.050_b0080 Bhattacharyya (10.1016/j.neucom.2020.07.050_b0210) 2017; 7 Mallat (10.1016/j.neucom.2020.07.050_b0255) 1989; 11 Sani (10.1016/j.neucom.2020.07.050_b0205) 2014 Zhang (10.1016/j.neucom.2020.07.050_b0040) 2010; 34 Burges (10.1016/j.neucom.2020.07.050_b0325) 1998; 2 Sun (10.1016/j.neucom.2020.07.050_b0105) 2011; 25 Rokach (10.1016/j.neucom.2020.07.050_b0235) 2010; vol. 75 Fawcett (10.1016/j.neucom.2020.07.050_b0355) 2006; 27 10.1016/j.neucom.2020.07.050_b0335 10.1016/j.neucom.2020.07.050_b0015 10.1016/j.neucom.2020.07.050_b0175 10.1016/j.neucom.2020.07.050_b0375 Hariharan (10.1016/j.neucom.2020.07.050_b0070) 2014; 40 10.1016/j.neucom.2020.07.050_b0330 Sun (10.1016/j.neucom.2020.07.050_b0185) 2016; 46 Daubechies (10.1016/j.neucom.2020.07.050_b0295) 1992; 61 Tiwari (10.1016/j.neucom.2020.07.050_b0315) 2014; 9 10.1016/j.neucom.2020.07.050_b0095 10.1016/j.neucom.2020.07.050_b0370 10.1016/j.neucom.2020.07.050_b0090 Sun (10.1016/j.neucom.2020.07.050_b0230) 2011; 34 Azar (10.1016/j.neucom.2020.07.050_b0360) 2014; 24 Bayram (10.1016/j.neucom.2020.07.050_b0005) 2013 Nguyen (10.1016/j.neucom.2020.07.050_b0310) 1978; 64  | 
    
| References_xml | – reference: Z. Ding, Y. Fu, Low-rank common subspace for multi-view learning, in: Data Mining (ICDM), 2014 IEEE International Conference on, IEEE, pp. 110–119. – volume: 11 start-page: 2423 year: 2010 end-page: 2455 ident: b0125 article-title: Sparse semi-supervised learning using conjugate functions publication-title: J. Mach. Learn. Res. – volume: 61 start-page: 3999 year: 2013 end-page: 4010 ident: b0290 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Processing – reference: S. Sun, Multi-view Laplacian support vector machines, in: International Conference on Advanced Data Mining and Applications, Springer, pp. 209–222. – reference: M. Gönen, G.B. Gönen, F.S. Gürgen, Bayesian multiview dimensionality reduction for learning predictive subspaces., in: ECAI, pp. 387–392. – volume: 46 start-page: 3272 year: 2016 end-page: 3284 ident: b0185 article-title: Multiview uncorrelated discriminant analysis publication-title: IEEE transactions on cybernetics – volume: 2008 start-page: 14 year: 2008 ident: b0265 article-title: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition publication-title: Res. Lett. Signal Process. – volume: 106 start-page: 169 year: 2018 end-page: 182 ident: b0030 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. – volume: 11 start-page: 674 year: 1989 end-page: 693 ident: b0255 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 1 year: 2012 end-page: 5 ident: b0025 article-title: Feature extraction and classification of EEG signal using neural network based techniques publication-title: Int. J. Eng. Innovative Technol. (IJEIT) – volume: 163 start-page: 59 year: 2018 end-page: 69 ident: b0240 article-title: Prediction of replication sites in saccharomyces cerevisiae genome using dna segment properties: multi-view ensemble learning (MEL) approach publication-title: Biosystems – reference: A. Gupta, R. Agrawal, B. Kaur, A three phase approach for mental task classification using EEG, in: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ACM, pp. 898–904. – reference: G.N. Garcia, T. Ebrahimi, J.-M. Vesin, Support vector EEG classification in the fourier and time-frequency correlation domains, in: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, IEEE, pp. 591–594. – reference: B. Blankertz, G. Curio, K.-R. Müller, Classifying single trial EEG: Towards brain computer interfacing, in: Advances in neural information processing systems, pp. 157–164. – volume: 20 start-page: 4914 year: 2020 end-page: 4924 ident: b0200 article-title: Automated alcoholism detection using fourier-bessel series expansion based empirical wavelet transform publication-title: IEEE Sens. J. – reference: M. Tanveer, R.B. Pachori, N. Angami, Classification of seizure and seizure-free EEG signals using hjorth parameters, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 2180–2185. – volume: 34 start-page: 229 year: 2011 ident: b0230 article-title: Multiple-view multiple-learner semi-supervised learning publication-title: Neural Processing Lett. – reference: N. Hazarika, J.Z. Chen, A.C. Tsoi, A. Sergejew, Classification of EEG signals using the wavelet transform, in: Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, volume 1, IEEE, pp. 89–92. – volume: 34 start-page: 51 year: 2010 end-page: 60 ident: b0040 article-title: Improving mental task classification by adding high frequency band information publication-title: J. Med. Syst. – reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint arXiv:1304.5634 (2013). – start-page: 1 year: 2013 end-page: 3 ident: b0005 article-title: Classification of EEG signals by using support vector machines publication-title: IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) – reference: Y. Makihara, A. Mansur, D. Muramatsu, Z. Uddin, Y. Yagi, Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition, in: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, volume 1, IEEE, pp. 1–8. – volume: 29 start-page: 77 year: 1980 end-page: 84 ident: b0245 article-title: Fitting segmented regression models by grid search publication-title: J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) – volume: 14 start-page: 299 year: 2006 end-page: 303 ident: b0035 article-title: Utilizing gamma band to improve mental task based brain-computer interface design publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 49 start-page: 1 year: 2016 end-page: 59 ident: b0250 article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification publication-title: Knowl. Inf. Syst. – reference: P.F. Diez, V. Mut, E. Laciar, A. Torres, E. Avila, Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp. 2579–2582. – volume: 20 start-page: 526 year: 2012 end-page: 538 ident: b0075 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 24 start-page: 1163 year: 2014 end-page: 1177 ident: b0360 article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition publication-title: Neural Comput. Appl. – volume: 11 start-page: 103 year: 2017 ident: b0225 article-title: Classification of eeg signals based on pattern recognition approach publication-title: Front. Comput. Neurosci. – reference: X. Jin, F. Zhuang, S. Wang, Q. He, Z. Shi, Shared structure learning for multiple tasks with multiple views, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 353–368. – start-page: 202 year: 1976 end-page: 282 ident: b0305 article-title: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts publication-title: Systems Theory in the Social Sciences – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0300 article-title: Fcm: The fuzzy c-means clustering algorithm publication-title: Computers Geosci. – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b0355 article-title: An introduction to ROC analysis publication-title: Pattern Recog. Lett. – volume: 64 start-page: 369 year: 1978 end-page: 380 ident: b0310 article-title: A note on the extension principle for fuzzy sets publication-title: J. Math. Anal. Appl. – reference: B. Tan, E. Zhong, E.W. Xiang, Q. Yang, Multi-transfer: Transfer learning with multiple views and multiple sources, in: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, pp. 243–251. – reference: N.-J. Huan, R. Palaniappan, Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals, in: Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, IEEE, pp. 633–636. – volume: 27 start-page: 203 year: 2006 end-page: 233 ident: b0110 article-title: Active learning with multiple views publication-title: J. Artif. Intell. Res. – reference: C. Zhang, H. Fu, S. Liu, G. Liu, X. Cao, Low-rank tensor constrained multiview subspace clustering, in: Proceedings of the IEEE international conference on computer vision, pp. 1582–1590. – volume: 19 start-page: 2799 year: 2015 end-page: 2812 ident: b0055 article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods publication-title: Soft. Comput. – volume: 7 start-page: 385 year: 2017 ident: b0210 article-title: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic eeg signals publication-title: Appl. Sci. – volume: 3 start-page: 605 year: 2013 end-page: 610 ident: b0345 article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background publication-title: Int. J. Eng. Res. Appl. – volume: 37 start-page: 1209 year: 1990 end-page: 1214 ident: b0365 article-title: A new mode of communication between man and his surroundings publication-title: IEEE Trans. Biomed. Eng. – reference: L. Zhiwei, S. Minfen, Classification of mental task EEG signals using wavelet packet entropy and SVM, in: 2007 8th International Conference on Electronic Measurement and Instruments, IEEE, pp. 3–906. – reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp. 92–100. – volume: 28 start-page: 2959 year: 2017 end-page: 2978 ident: b0215 article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals publication-title: Neural Comput. Appl. – reference: N. Kerkeni, F. Alexandre, M.H. Bedoui, L. Bougrain, M. Dogui, Automatic classification of sleep stages on a EEG signal by artificial neural networks, in: 5th WSEAS International Conference on SIGNAL, SPEECH and IMAGE PROCESSING-WSEAS SSIP’05. – reference: I. Muslea, S. Minton, C.A. Knoblock, Active + semi-supervised learning = robust multi-view learning, in: ICML, volume 2, Citeseer, pp. 435–442. – reference: S. Rezaei, K. Tavakolian, K. Naziripour, Comparison of five different classifiers for classification of mental tasks, in: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, pp. 6007–6010. – volume: 11 start-page: 141 year: 2003 end-page: 144 ident: b0010 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. – volume: 41 start-page: 5766 year: 2011 end-page: 5770 ident: b0340 article-title: Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier publication-title: Elixir Hum. Physiol – reference: J.A. de la O Serna, M.R.A. Paternina, A. Zamora-Méndez, R.K. Tripathy, R.B. Pachori, Eeg-rhythm specific taylor-fourier filter bank implemented with o-splines for the detection of epilepsy using eeg signals, IEEE Sensors Journal(2020). – reference: R. Ameri, A. Pouyan, V. Abolghasemi, Eeg signal classification based on sparse representation in brain computer interface applications, in: Biomedical Engineering (ICBME), 2015 22nd Iranian Conference on, IEEE, pp. 21–24. – volume: 40 start-page: 1741 year: 2014 end-page: 1749 ident: b0070 article-title: Classification of mental tasks using stockwell transform publication-title: Computers Electr. Eng. – reference: K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-training, in: Proceedings of the ninth international conference on Information and knowledge management, ACM, pp. 86–93. – start-page: 127 year: 2014 end-page: 131 ident: b0205 article-title: Support vector machine for classification of stress subjects using eeg signals publication-title: 2014 IEEE Conference on Systems, Process and Control (ICSPC 2014) – volume: 49 start-page: 501 year: 2014 end-page: 525 ident: b0170 article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study publication-title: J. Artif. Intell. Res. – reference: X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 586–594. – reference: N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998) 903–995. – reference: T. Jaakkola, M. Meila, T. Jebara, Maximum entropy discrimination, in: Advances in neural information processing systems, pp. 470–476. – volume: 4 start-page: 329 year: 2011 ident: b0020 article-title: Classification of electroencephalograph (EEG) signals using quantum neural network publication-title: Signal Processing: An Int. J. (SPIJ) – reference: C.W. Anderson, E.A. Stolz, S. Shamsunder, Discriminating mental tasks using EEG represented by AR models, in: Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference, volume 2, IEEE, pp. 875–876. – year: 2019 ident: b0050 article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – volume: 25 start-page: 1113 year: 2011 end-page: 1126 ident: b0105 article-title: Robust co-training publication-title: Int. J. Pattern Recognit Artif Intell. – reference: B.V. Dasarathy, Nearest neighbor (NN) norms:NN pattern classification techniques(1991). – volume: 87 start-page: 527 year: 1929 end-page: 570 ident: b0270 article-title: Über das elektrenkephalogramm des menschen publication-title: Archiv für psychiatrie und nervenkrankheiten – volume: 19 start-page: 701 year: 2015 end-page: 712 ident: b0130 article-title: Multi-view twin support vector machines publication-title: Intell. Data Anal. – reference: M. Tanveer, R.B. Pachori, N. Angami, Entropy based features in fawt framework for automated detection of epileptic seizure EEG signals, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1946–1952. – reference: H. Kadri, S. Ayache, C. Capponi, S. Koço, F.-X. Dupé, E. Morvant, The multi-task learning view of multimodal data, in: Asian Conference on Machine Learning, pp. 261–276. – reference: V. Sindhwani, D.S. Rosenberg, An RKHS for multi-view learning and manifold co-regularization, in: Proceedings of the 25th international conference on Machine learning, ACM, pp. 976–983. – volume: vol. 75 year: 2010 ident: b0235 publication-title: Pattern classification using ensemble methods – reference: : Nonparametric bayes multi-task multi-view learning, in: Proceedings of World Statistics Conference, pp. 2351–2356. – reference: H. Yanga, J. Heb, Notam – reference: P. Dhillon, D.P. Foster, L.H. Ungar, Multi-view learning of word embeddings via cca, in: Advances in neural information processing systems, pp. 199–207. – volume: 61 year: 1992 ident: b0295 article-title: Ten lectures on wavelets publication-title: Siam – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: b0325 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discovery – volume: 41 start-page: 1059 year: 2014 end-page: 1068 ident: b0135 article-title: Multi-view Laplacian twin support vector machines publication-title: Appl. Intell. – volume: 9 start-page: 37 year: 2014 end-page: 41 ident: b0315 article-title: Zadeh extension principle: a note publication-title: Ann Fuzzy Math Inform – volume: 22 start-page: 75 year: 1976 end-page: 81 ident: b0320 article-title: On the complexity of finite sequences publication-title: IEEE Trans. Inform. Theory – start-page: 202 year: 1976 ident: 10.1016/j.neucom.2020.07.050_b0305 article-title: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts – volume: 9 start-page: 37 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0315 article-title: Zadeh extension principle: a note publication-title: Ann Fuzzy Math Inform – ident: 10.1016/j.neucom.2020.07.050_b0350 – volume: 37 start-page: 1209 year: 1990 ident: 10.1016/j.neucom.2020.07.050_b0365 article-title: A new mode of communication between man and his surroundings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.64464 – ident: 10.1016/j.neucom.2020.07.050_b0090 – ident: 10.1016/j.neucom.2020.07.050_b0145 – volume: 49 start-page: 1 year: 2016 ident: 10.1016/j.neucom.2020.07.050_b0250 article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-015-0875-y – volume: 41 start-page: 5766 year: 2011 ident: 10.1016/j.neucom.2020.07.050_b0340 article-title: Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier publication-title: Elixir Hum. Physiol – volume: 19 start-page: 701 year: 2015 ident: 10.1016/j.neucom.2020.07.050_b0130 article-title: Multi-view twin support vector machines publication-title: Intell. Data Anal. doi: 10.3233/IDA-150740 – volume: 34 start-page: 229 year: 2011 ident: 10.1016/j.neucom.2020.07.050_b0230 article-title: Multiple-view multiple-learner semi-supervised learning publication-title: Neural Processing Lett. doi: 10.1007/s11063-011-9195-8 – volume: 106 start-page: 169 year: 2018 ident: 10.1016/j.neucom.2020.07.050_b0030 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.053 – volume: 61 year: 1992 ident: 10.1016/j.neucom.2020.07.050_b0295 article-title: Ten lectures on wavelets publication-title: Siam – ident: 10.1016/j.neucom.2020.07.050_b0285 doi: 10.1109/ICDSP.1997.627975 – ident: 10.1016/j.neucom.2020.07.050_b0330 doi: 10.1109/CNE.2003.1196897 – volume: 20 start-page: 4914 year: 2020 ident: 10.1016/j.neucom.2020.07.050_b0200 article-title: Automated alcoholism detection using fourier-bessel series expansion based empirical wavelet transform publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2966766 – ident: 10.1016/j.neucom.2020.07.050_b0375 doi: 10.1109/IEMBS.1995.579248 – volume: 25 start-page: 1113 year: 2011 ident: 10.1016/j.neucom.2020.07.050_b0105 article-title: Robust co-training publication-title: Int. J. Pattern Recognit Artif Intell. doi: 10.1142/S0218001411008981 – ident: 10.1016/j.neucom.2020.07.050_b0370 – volume: 34 start-page: 51 year: 2010 ident: 10.1016/j.neucom.2020.07.050_b0040 article-title: Improving mental task classification by adding high frequency band information publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9215-z – volume: 11 start-page: 141 year: 2003 ident: 10.1016/j.neucom.2020.07.050_b0010 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng. doi: 10.1109/TNSRE.2003.814441 – ident: 10.1016/j.neucom.2020.07.050_b0160 doi: 10.1109/ICDM.2014.29 – volume: 2 start-page: 121 year: 1998 ident: 10.1016/j.neucom.2020.07.050_b0325 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discovery doi: 10.1023/A:1009715923555 – volume: 27 start-page: 203 year: 2006 ident: 10.1016/j.neucom.2020.07.050_b0110 article-title: Active learning with multiple views publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2005 – ident: 10.1016/j.neucom.2020.07.050_b0165 – volume: 11 start-page: 103 year: 2017 ident: 10.1016/j.neucom.2020.07.050_b0225 article-title: Classification of eeg signals based on pattern recognition approach publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2017.00103 – volume: 61 start-page: 3999 year: 2013 ident: 10.1016/j.neucom.2020.07.050_b0290 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Processing doi: 10.1109/TSP.2013.2265222 – volume: 4 start-page: 329 year: 2011 ident: 10.1016/j.neucom.2020.07.050_b0020 article-title: Classification of electroencephalograph (EEG) signals using quantum neural network publication-title: Signal Processing: An Int. J. (SPIJ) – ident: 10.1016/j.neucom.2020.07.050_b0080 – volume: 49 start-page: 501 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0170 article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.4190 – volume: 7 start-page: 385 year: 2017 ident: 10.1016/j.neucom.2020.07.050_b0210 article-title: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic eeg signals publication-title: Appl. Sci. doi: 10.3390/app7040385 – ident: 10.1016/j.neucom.2020.07.050_b0100 doi: 10.1145/354756.354805 – year: 2019 ident: 10.1016/j.neucom.2020.07.050_b0050 article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – ident: 10.1016/j.neucom.2020.07.050_b0220 doi: 10.1109/JSEN.2020.2976519 – volume: 2 start-page: 1 year: 2012 ident: 10.1016/j.neucom.2020.07.050_b0025 article-title: Feature extraction and classification of EEG signal using neural network based techniques publication-title: Int. J. Eng. Innovative Technol. (IJEIT) – volume: 10 start-page: 191 year: 1984 ident: 10.1016/j.neucom.2020.07.050_b0300 article-title: Fcm: The fuzzy c-means clustering algorithm publication-title: Computers Geosci. doi: 10.1016/0098-3004(84)90020-7 – ident: 10.1016/j.neucom.2020.07.050_b0275 doi: 10.1109/IEMBS.2009.5335278 – volume: vol. 75 year: 2010 ident: 10.1016/j.neucom.2020.07.050_b0235 – volume: 87 start-page: 527 year: 1929 ident: 10.1016/j.neucom.2020.07.050_b0270 article-title: Über das elektrenkephalogramm des menschen publication-title: Archiv für psychiatrie und nervenkrankheiten doi: 10.1007/BF01797193 – volume: 24 start-page: 1163 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0360 article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1324-4 – ident: 10.1016/j.neucom.2020.07.050_b0385 doi: 10.1109/ICEMI.2007.4351064 – volume: 163 start-page: 59 year: 2018 ident: 10.1016/j.neucom.2020.07.050_b0240 article-title: Prediction of replication sites in saccharomyces cerevisiae genome using dna segment properties: multi-view ensemble learning (MEL) approach publication-title: Biosystems doi: 10.1016/j.biosystems.2017.12.005 – ident: 10.1016/j.neucom.2020.07.050_b0260 doi: 10.1098/rspa.1998.0193 – volume: 22 start-page: 75 year: 1976 ident: 10.1016/j.neucom.2020.07.050_b0320 article-title: On the complexity of finite sequences publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1976.1055501 – ident: 10.1016/j.neucom.2020.07.050_b0155 doi: 10.1007/978-3-642-40991-2_23 – ident: 10.1016/j.neucom.2020.07.050_b0190 doi: 10.1109/ICCV.2015.185 – ident: 10.1016/j.neucom.2020.07.050_b0180 doi: 10.1109/FG.2015.7163131 – volume: 46 start-page: 3272 year: 2016 ident: 10.1016/j.neucom.2020.07.050_b0185 article-title: Multiview uncorrelated discriminant analysis publication-title: IEEE transactions on cybernetics doi: 10.1109/TCYB.2015.2502248 – start-page: 1 year: 2013 ident: 10.1016/j.neucom.2020.07.050_b0005 article-title: Classification of EEG signals by using support vector machines – ident: 10.1016/j.neucom.2020.07.050_b0015 – ident: 10.1016/j.neucom.2020.07.050_b0280 doi: 10.1145/2345396.2345541 – ident: 10.1016/j.neucom.2020.07.050_b0195 doi: 10.1109/CVPR.2015.7298657 – ident: 10.1016/j.neucom.2020.07.050_b0140 – volume: 64 start-page: 369 year: 1978 ident: 10.1016/j.neucom.2020.07.050_b0310 article-title: A note on the extension principle for fuzzy sets publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(78)90045-8 – ident: 10.1016/j.neucom.2020.07.050_b0120 doi: 10.1007/978-3-642-25856-5_16 – ident: 10.1016/j.neucom.2020.07.050_b0085 doi: 10.1145/279943.279962 – volume: 3 start-page: 605 year: 2013 ident: 10.1016/j.neucom.2020.07.050_b0345 article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background publication-title: Int. J. Eng. Res. Appl. – volume: 14 start-page: 299 year: 2006 ident: 10.1016/j.neucom.2020.07.050_b0035 article-title: Utilizing gamma band to improve mental task based brain-computer interface design publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2006.881539 – volume: 11 start-page: 2423 year: 2010 ident: 10.1016/j.neucom.2020.07.050_b0125 article-title: Sparse semi-supervised learning using conjugate functions publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2020.07.050_b0045 doi: 10.1109/ICBME.2015.7404109 – ident: 10.1016/j.neucom.2020.07.050_b0150 – ident: 10.1016/j.neucom.2020.07.050_b0335 doi: 10.7551/mitpress/1120.003.0025 – ident: 10.1016/j.neucom.2020.07.050_b0065 doi: 10.1109/SSCI.2018.8628733 – volume: 41 start-page: 1059 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0135 article-title: Multi-view Laplacian twin support vector machines publication-title: Appl. Intell. doi: 10.1007/s10489-014-0563-8 – volume: 27 start-page: 861 year: 2006 ident: 10.1016/j.neucom.2020.07.050_b0355 article-title: An introduction to ROC analysis publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 19 start-page: 2799 year: 2015 ident: 10.1016/j.neucom.2020.07.050_b0055 article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods publication-title: Soft. Comput. doi: 10.1007/s00500-014-1443-1 – volume: 28 start-page: 2959 year: 2017 ident: 10.1016/j.neucom.2020.07.050_b0215 article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2919-6 – start-page: 127 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0205 article-title: Support vector machine for classification of stress subjects using eeg signals – ident: 10.1016/j.neucom.2020.07.050_b0060 doi: 10.1109/SSCI.2018.8628651 – volume: 29 start-page: 77 year: 1980 ident: 10.1016/j.neucom.2020.07.050_b0245 article-title: Fitting segmented regression models by grid search publication-title: J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) – volume: 40 start-page: 1741 year: 2014 ident: 10.1016/j.neucom.2020.07.050_b0070 article-title: Classification of mental tasks using stockwell transform publication-title: Computers Electr. Eng. doi: 10.1016/j.compeleceng.2014.01.010 – ident: 10.1016/j.neucom.2020.07.050_b0095 doi: 10.1145/1390156.1390279 – ident: 10.1016/j.neucom.2020.07.050_b0115 – ident: 10.1016/j.neucom.2020.07.050_b0380 doi: 10.1109/IEMBS.2005.1615860 – volume: 2008 start-page: 14 year: 2008 ident: 10.1016/j.neucom.2020.07.050_b0265 article-title: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition publication-title: Res. Lett. Signal Process. – volume: 11 start-page: 674 year: 1989 ident: 10.1016/j.neucom.2020.07.050_b0255 article-title: A theory for multiresolution signal decomposition: the wavelet representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.192463 – volume: 20 start-page: 526 year: 2012 ident: 10.1016/j.neucom.2020.07.050_b0075 article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2184838 – ident: 10.1016/j.neucom.2020.07.050_b0175 doi: 10.1137/1.9781611972832.27  | 
    
| SSID | ssj0017129 | 
    
| Score | 2.462522 | 
    
| Snippet | Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal,... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 558 | 
    
| SubjectTerms | Brain computer interface (BCI) Electroencephalography (EEG) Empirical mode decomposition (EMD) Feature coding Fuzzy C-means Mental tasks classification Multiview learning Support vector machine (SVM) Wavelet transform (WT)  | 
    
| Title | A novel approach for classification of mental tasks using multiview ensemble learning (MEL) | 
    
| URI | https://dx.doi.org/10.1016/j.neucom.2020.07.050 | 
    
| Volume | 417 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL178FufHyMGDHury1aY5jrExP7aLEwYeQtKmYzq74TaP_naTNh0KouCxJYHyJH3fJ-3zPi8AF4RrrDEWgc1VPGBpFgdaJFmgYoxQSm2CUe7TQH8Q9R7Z7Sgc1UC7qoVxskof-8uYXkRrf6fp0WzOJ5PmAxLEnqIwIcg5xsSuiI8x7roYXH-sZR6YY1L67ZEwcKOr8rlC45WbldOMEMuZSgtP9HN6-pJyurtg23NF2CofZw_UTL4Pdqo-DNC_lgfgqQXz2buZwsogHFomChPHi50QqMAezjJY-vjDpVq8LKATvI9hoSd0fwegPc6aVz010PeRGMPLfuf-6hAMu51huxf4pglBYtn_0oJsYm5JnWV2GTfERNgg7cQvgisWR0JplIRIcbt2hnEuNFFRqBKdoCxV1NAjsJHPcnMMIHG90RUJqck005ESSCBjKE0ZS3GY0TqgFVQy8Ybirq_FVFbKsWdZAiwdwBJxaQGug2A9a14aavwxnlerIL9tDGlj_q8zT_498xRsuatCtRKegY3l28qcW-6x1I1iczXAZuvmrjf4BIJk2W0 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPDwwwhPqVOB6rqlWBtgtFqsRg2YlTFUpa0ZaRb8fOowIJgcSa-ErRsXPvcXJ8LgCXhGusMRaerVXcY3ESelpEiadCjFBMbYFR7tNArx90Htnd0B9WQLM8C-NklUXuz3N6lq2LK_UCzfpsPK4_IEHsLgoTgpxjTCjWwDrzCXc7sJuPlc4Dc0xywz3ie254eX4uE3mlZulEI8SSptzDE_1cn77UnPYO2CrIImzkz7MLKibdA9tlIwZYvJf74KkB0-m7mcDSIRxaKgojR4ydEigDH04TmBv5w4Wav8yhU7yPYCYodL8HoN3Pmlc9MbBoJDGCV71W9_oADNqtQbPjFV0TvMjS_4VF2YTcsjpL7RJuiAmwQdqpXwRXLAyE0ijykeJ28gzjXGiiAl9FOkJJrKihh6CaTlNzBCBxzdEV8alJNNOBEkggYyiNGYuxn9AaoCVUMiocxV1ji4kspWPPMgdYOoAl4tICXAPeKmqWO2r8MZ6XsyC_rQxpk_6vkcf_jrwAG51Bryu7t_37E7Dp7mQSFv8UVBdvS3NmichCn2cL7ROsXdsC | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+classification+of+mental+tasks+using+multiview+ensemble+learning+%28MEL%29&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gupta%2C+A.&rft.au=Khan%2C+R.U.&rft.au=Singh%2C+V.K.&rft.au=Tanveer%2C+M.&rft.date=2020-12-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=417&rft.spage=558&rft.epage=584&rft_id=info:doi/10.1016%2Fj.neucom.2020.07.050&rft.externalDocID=S0925231220311589 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |