A novel approach for classification of mental tasks using multiview ensemble learning (MEL)

Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emer...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 417; pp. 558 - 584
Main Authors Gupta, A., Khan, R.U., Singh, V.K., Tanveer, M., Kumar, D., Chakraborti, A., Pachori, R.B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.12.2020
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2020.07.050

Cover

Abstract Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emerging way in machine learning to improve the generalized performance by considering the knowledge with multiple views. Multiview learning has made rapid progress and development in recent years and is also facing many new challenges. This method can be used in the BCI domain, as the meaningful representation of the EEG signal in plenty of ways. This study utilized the multiview ensemble learning (MEL) approach for the binary classification of five mental tasks on the six subjects individually. In this study, we used a well-known EEG database (Keirn and Aunon database). The EEG signal has been decomposed using by methods i.e wavelet transform (WT), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and fuzzy C-means followed by EWT (FEWT). After that, the feature coding technique is applied using parametric feature formation from the decomposed signal. Hence, we had four views to learn four same type of independent base classifiers and predictions are made in an ensemble manner. The study is performed independently with three types of base classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels The performance validation of the ten combinations of mental tasks was performed by three MEL based classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels. For reliability of the obtained results of the classifiers, 10-fold cross-validation was used. The proposed algorithm shows a promising accuracy of 80% to 100% for binary pair-wise classification of mental tasks.
AbstractList Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal, called electroencephalography (EEG) signal. Multiview learning or data integration or data fusion from a different set of features is an emerging way in machine learning to improve the generalized performance by considering the knowledge with multiple views. Multiview learning has made rapid progress and development in recent years and is also facing many new challenges. This method can be used in the BCI domain, as the meaningful representation of the EEG signal in plenty of ways. This study utilized the multiview ensemble learning (MEL) approach for the binary classification of five mental tasks on the six subjects individually. In this study, we used a well-known EEG database (Keirn and Aunon database). The EEG signal has been decomposed using by methods i.e wavelet transform (WT), empirical mode decomposition (EMD), empirical wavelet transform (EWT), and fuzzy C-means followed by EWT (FEWT). After that, the feature coding technique is applied using parametric feature formation from the decomposed signal. Hence, we had four views to learn four same type of independent base classifiers and predictions are made in an ensemble manner. The study is performed independently with three types of base classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels The performance validation of the ten combinations of mental tasks was performed by three MEL based classifiers, i.e., K-nearest neighbor (KNN), support vector machine (SVM) with linear and non-linear kernels. For reliability of the obtained results of the classifiers, 10-fold cross-validation was used. The proposed algorithm shows a promising accuracy of 80% to 100% for binary pair-wise classification of mental tasks.
Author Singh, V.K.
Tanveer, M.
Gupta, A.
Pachori, R.B.
Kumar, D.
Chakraborti, A.
Khan, R.U.
Author_xml – sequence: 1
  givenname: A.
  surname: Gupta
  fullname: Gupta, A.
  email: akshanshgupta@jnu.ac.in
  organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
– sequence: 2
  givenname: R.U.
  surname: Khan
  fullname: Khan, R.U.
  email: riyaz@iiti.ac.in
  organization: Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
– sequence: 3
  givenname: V.K.
  surname: Singh
  fullname: Singh, V.K.
  email: vinod.acear@gmail.com
  organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
– sequence: 4
  givenname: M.
  surname: Tanveer
  fullname: Tanveer, M.
  email: mtanveer@iiti.ac.in
  organization: Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
– sequence: 5
  givenname: D.
  surname: Kumar
  fullname: Kumar, D.
  email: dhirendrabhu08@gmail.com
  organization: Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India
– sequence: 6
  givenname: A.
  surname: Chakraborti
  fullname: Chakraborti, A.
  email: anirban@jnu.ac.in
  organization: School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
– sequence: 7
  givenname: R.B.
  surname: Pachori
  fullname: Pachori, R.B.
  email: pachori@iiti.ac.in
  organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
BookMark eNqFkD1PwzAURS1UJNrCP2DwCEPCs9PGCQNShcqHVMTSjcF6cV_AJbErOy3i35NSJgaY3nB1ru47IzZw3hFj5wJSASK_WqeOtsa3qQQJKagUpnDEhqJQMilkkQ_YEEo5TWQm5AkbxbgGEErIcsheZtz5HTUcN5vg0bzx2gduGozR1tZgZ73jvuYtuQ4b3mF8j3wbrXvl7bbp7M7SBycXqa0a4g1hcPvs4mm-uDxlxzU2kc5-7pgt7-bL24dk8Xz_eDtbJCaDvEuwoEKVSomsrBVJygVBBROZlQonRV5iBWYKqCoyNFGqrCTmUzSVgXqFGWVjdn2oNcHHGKjWxnbfw7uAttEC9N6SXuuDJb23pEHp3lIPT37Bm2BbDJ__YTcHjPq_egdBR2PJGVrZQKbTK2__LvgCyveHVg
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3349142
crossref_primary_10_1016_j_engappai_2022_105210
crossref_primary_10_1109_JSEN_2023_3337519
crossref_primary_10_1016_j_knosys_2021_107285
crossref_primary_10_1016_j_neucom_2024_128814
crossref_primary_10_1016_j_patrec_2023_11_015
crossref_primary_10_1016_j_neunet_2023_07_021
crossref_primary_10_1016_j_iswa_2023_200204
crossref_primary_10_1016_j_inffus_2023_101959
crossref_primary_10_1016_j_jksuci_2021_08_029
crossref_primary_10_1016_j_inffus_2023_102145
crossref_primary_10_1016_j_bspc_2021_103070
crossref_primary_10_1016_j_iswa_2023_200272
crossref_primary_10_3390_math11051261
crossref_primary_10_1109_THMS_2021_3138677
crossref_primary_10_3390_brainsci11111525
crossref_primary_10_1109_JBHI_2022_3159031
crossref_primary_10_1016_j_neucom_2022_10_078
crossref_primary_10_1049_el_2020_2632
crossref_primary_10_1007_s10489_023_05260_6
crossref_primary_10_1007_s11042_023_15900_1
crossref_primary_10_1016_j_ipm_2025_104133
crossref_primary_10_1155_2021_5556992
crossref_primary_10_3389_fonc_2023_1152020
crossref_primary_10_1016_j_eswa_2024_123480
crossref_primary_10_1007_s11277_023_10514_0
crossref_primary_10_1007_s10489_021_03101_y
crossref_primary_10_1016_j_inffus_2024_102718
Cites_doi 10.1109/10.64464
10.1007/s10115-015-0875-y
10.3233/IDA-150740
10.1007/s11063-011-9195-8
10.1016/j.eswa.2018.03.053
10.1109/ICDSP.1997.627975
10.1109/CNE.2003.1196897
10.1109/JSEN.2020.2966766
10.1109/IEMBS.1995.579248
10.1142/S0218001411008981
10.1007/s10916-008-9215-z
10.1109/TNSRE.2003.814441
10.1109/ICDM.2014.29
10.1023/A:1009715923555
10.1613/jair.2005
10.3389/fncom.2017.00103
10.1109/TSP.2013.2265222
10.1613/jair.4190
10.3390/app7040385
10.1145/354756.354805
10.1109/JSEN.2020.2976519
10.1016/0098-3004(84)90020-7
10.1109/IEMBS.2009.5335278
10.1007/BF01797193
10.1007/s00521-012-1324-4
10.1109/ICEMI.2007.4351064
10.1016/j.biosystems.2017.12.005
10.1098/rspa.1998.0193
10.1109/TIT.1976.1055501
10.1007/978-3-642-40991-2_23
10.1109/ICCV.2015.185
10.1109/FG.2015.7163131
10.1109/TCYB.2015.2502248
10.1145/2345396.2345541
10.1109/CVPR.2015.7298657
10.1016/0022-247X(78)90045-8
10.1007/978-3-642-25856-5_16
10.1145/279943.279962
10.1109/TNSRE.2006.881539
10.1109/ICBME.2015.7404109
10.7551/mitpress/1120.003.0025
10.1109/SSCI.2018.8628733
10.1007/s10489-014-0563-8
10.1016/j.patrec.2005.10.010
10.1007/s00500-014-1443-1
10.1007/s00521-017-2919-6
10.1109/SSCI.2018.8628651
10.1016/j.compeleceng.2014.01.010
10.1145/1390156.1390279
10.1109/IEMBS.2005.1615860
10.1109/34.192463
10.1109/TNSRE.2012.2184838
10.1137/1.9781611972832.27
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.07.050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 584
ExternalDocumentID 10_1016_j_neucom_2020_07_050
S0925231220311589
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-a8e87977139f7e2e61e0b042397a4869ab0c50a7bece4779b2a65acbc0fda3e3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Oct 16 04:44:17 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Fri Feb 23 02:45:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machine (SVM)
Multiview learning
Electroencephalography (EEG)
Empirical mode decomposition (EMD)
Fuzzy C-means
Wavelet transform (WT)
Mental tasks classification
Brain computer interface (BCI)
Feature coding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a8e87977139f7e2e61e0b042397a4869ab0c50a7bece4779b2a65acbc0fda3e3
PageCount 27
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_07_050
crossref_primary_10_1016_j_neucom_2020_07_050
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_07_050
PublicationCentury 2000
PublicationDate 2020-12-05
PublicationDateYYYYMMDD 2020-12-05
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M. Gönen, G.B. Gönen, F.S. Gürgen, Bayesian multiview dimensionality reduction for learning predictive subspaces., in: ECAI, pp. 387–392.
Mallat (b0255) 1989; 11
Sun, Shawe-Taylor (b0125) 2010; 11
Sun, Xie, Yang (b0185) 2016; 46
A. Gupta, R. Agrawal, B. Kaur, A three phase approach for mental task classification using EEG, in: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ACM, pp. 898–904.
B.V. Dasarathy, Nearest neighbor (NN) norms:NN pattern classification techniques(1991).
Garrett, Peterson, Anderson, Thaut (b0010) 2003; 11
H. Kadri, S. Ayache, C. Capponi, S. Koço, F.-X. Dupé, E. Morvant, The multi-task learning view of multimodal data, in: Asian Conference on Machine Learning, pp. 261–276.
C. Zhang, H. Fu, S. Liu, G. Liu, X. Cao, Low-rank tensor constrained multiview subspace clustering, in: Proceedings of the IEEE international conference on computer vision, pp. 1582–1590.
S. Sun, Multi-view Laplacian support vector machines, in: International Conference on Advanced Data Mining and Applications, Springer, pp. 209–222.
P.F. Diez, V. Mut, E. Laciar, A. Torres, E. Avila, Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp. 2579–2582.
Z. Ding, Y. Fu, Low-rank common subspace for multi-view learning, in: Data Mining (ICDM), 2014 IEEE International Conference on, IEEE, pp. 110–119.
Richhariya, Tanveer (b0030) 2018; 106
I. Muslea, S. Minton, C.A. Knoblock, Active + semi-supervised learning = robust multi-view learning, in: ICML, volume 2, Citeseer, pp. 435–442.
H. Yanga, J. Heb, Notam
Xie, Sun (b0135) 2014; 41
Kumar, Minz (b0250) 2016; 49
Muslea, Minton, Knoblock (b0110) 2006; 27
T. Jaakkola, M. Meila, T. Jebara, Maximum entropy discrimination, in: Advances in neural information processing systems, pp. 470–476.
G.N. Garcia, T. Ebrahimi, J.-M. Vesin, Support vector EEG classification in the fourier and time-frequency correlation domains, in: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, IEEE, pp. 591–594.
Bhattacharyya, Pachori, Upadhyay, Acharya (b0210) 2017; 7
L. Zhiwei, S. Minfen, Classification of mental task EEG signals using wavelet packet entropy and SVM, in: 2007 8th International Conference on Electronic Measurement and Instruments, IEEE, pp. 3–906.
Singh, Kumar, Krishnamachari (b0240) 2018; 163
S. Rezaei, K. Tavakolian, K. Naziripour, Comparison of five different classifiers for classification of mental tasks, in: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, pp. 6007–6010.
Lerman (b0245) 1980; 29
Imandoust, Bolandraftar (b0345) 2013; 3
Gupta, Agrawal, Kaur (b0055) 2015; 19
Xie, Sun (b0130) 2015; 19
Sun, Zhang (b0230) 2011; 34
X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 586–594.
Nonparametric bayes multi-task multi-view learning, in: Proceedings of World Statistics Conference, pp. 2351–2356.
Bayram, Kızrak, Bolat (b0005) 2013
Aljazaery, Ali, Abdulridha (b0020) 2011; 4
N. Hazarika, J.Z. Chen, A.C. Tsoi, A. Sergejew, Classification of EEG signals using the wavelet transform, in: Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, volume 1, IEEE, pp. 89–92.
Keirn, Aunon (b0365) 1990; 37
Nguyen (b0310) 1978; 64
N. Kerkeni, F. Alexandre, M.H. Bedoui, L. Bougrain, M. Dogui, Automatic classification of sleep stages on a EEG signal by artificial neural networks, in: 5th WSEAS International Conference on SIGNAL, SPEECH and IMAGE PROCESSING-WSEAS SSIP’05.
Sun, Jin (b0105) 2011; 25
Anuragi, Sisodia, Pachori (b0200) 2020; 20
Palaniappan (b0035) 2006; 14
Sharma, Pachori, Upadhyay (b0215) 2017; 28
M. Tanveer, R.B. Pachori, N. Angami, Classification of seizure and seizure-free EEG signals using hjorth parameters, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 2180–2185.
Tiwari, Srivastava (b0315) 2014; 9
R. Ameri, A. Pouyan, V. Abolghasemi, Eeg signal classification based on sparse representation in brain computer interface applications, in: Biomedical Engineering (ICBME), 2015 22nd Iranian Conference on, IEEE, pp. 21–24.
C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint arXiv:1304.5634 (2013).
Y. Makihara, A. Mansur, D. Muramatsu, Z. Uddin, Y. Yagi, Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition, in: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, volume 1, IEEE, pp. 1–8.
B. Blankertz, G. Curio, K.-R. Müller, Classifying single trial EEG: Towards brain computer interfacing, in: Advances in neural information processing systems, pp. 157–164.
Gupta, Agrawal, Kirar, Andreu-Perez, Ding, Lin, Prasad (b0050) 2019
K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-training, in: Proceedings of the ninth international conference on Information and knowledge management, ACM, pp. 86–93.
Pachori (b0265) 2008; 2008
N.-J. Huan, R. Palaniappan, Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals, in: Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, IEEE, pp. 633–636.
N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998) 903–995.
Siuly, Li (b0075) 2012; 20
C.W. Anderson, E.A. Stolz, S. Shamsunder, Discriminating mental tasks using EEG represented by AR models, in: Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference, volume 2, IEEE, pp. 875–876.
Hariharan, Vijean, Sindhu, Divakar, Saidatul, Yaacob (b0070) 2014; 40
Amin, Mumtaz, Subhani, Saad, Malik (b0225) 2017; 11
Nandish, Stafford, Kumar, Ahmed (b0025) 2012; 2
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp. 92–100.
Yang, Gao (b0170) 2014; 49
Zhang, He, He, Wang (b0040) 2010; 34
Berger (b0270) 1929; 87
Burges (b0325) 1998; 2
Kumari, Jose (b0340) 2011; 41
P. Dhillon, D.P. Foster, L.H. Ungar, Multi-view learning of word embeddings via cca, in: Advances in neural information processing systems, pp. 199–207.
Lempel, Ziv (b0320) 1976; 22
M. Tanveer, R.B. Pachori, N. Angami, Entropy based features in fawt framework for automated detection of epileptic seizure EEG signals, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1946–1952.
J.A. de la O Serna, M.R.A. Paternina, A. Zamora-Méndez, R.K. Tripathy, R.B. Pachori, Eeg-rhythm specific taylor-fourier filter bank implemented with o-splines for the detection of epilepsy using eeg signals, IEEE Sensors Journal(2020).
Gilles (b0290) 2013; 61
Rokach (b0235) 2010; vol. 75
V. Sindhwani, D.S. Rosenberg, An RKHS for multi-view learning and manifold co-regularization, in: Proceedings of the 25th international conference on Machine learning, ACM, pp. 976–983.
Zadeh (b0305) 1976
Sani, Norhazman, Omar, Zaini, Ghani (b0205) 2014
B. Tan, E. Zhong, E.W. Xiang, Q. Yang, Multi-transfer: Transfer learning with multiple views and multiple sources, in: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, pp. 243–251.
Daubechies (b0295) 1992; 61
X. Jin, F. Zhuang, S. Wang, Q. He, Z. Shi, Shared structure learning for multiple tasks with multiple views, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 353–368.
Azar, El-Said (b0360) 2014; 24
Fawcett (b0355) 2006; 27
Bezdek, Ehrlich, Full (b0300) 1984; 10
Yang (10.1016/j.neucom.2020.07.050_b0170) 2014; 49
Keirn (10.1016/j.neucom.2020.07.050_b0365) 1990; 37
Garrett (10.1016/j.neucom.2020.07.050_b0010) 2003; 11
Amin (10.1016/j.neucom.2020.07.050_b0225) 2017; 11
Richhariya (10.1016/j.neucom.2020.07.050_b0030) 2018; 106
10.1016/j.neucom.2020.07.050_b0145
10.1016/j.neucom.2020.07.050_b0065
Xie (10.1016/j.neucom.2020.07.050_b0130) 2015; 19
10.1016/j.neucom.2020.07.050_b0100
10.1016/j.neucom.2020.07.050_b0220
10.1016/j.neucom.2020.07.050_b0385
10.1016/j.neucom.2020.07.050_b0380
10.1016/j.neucom.2020.07.050_b0060
10.1016/j.neucom.2020.07.050_b0140
10.1016/j.neucom.2020.07.050_b0260
Siuly (10.1016/j.neucom.2020.07.050_b0075) 2012; 20
10.1016/j.neucom.2020.07.050_b0180
Singh (10.1016/j.neucom.2020.07.050_b0240) 2018; 163
Kumari (10.1016/j.neucom.2020.07.050_b0340) 2011; 41
Sun (10.1016/j.neucom.2020.07.050_b0125) 2010; 11
Lempel (10.1016/j.neucom.2020.07.050_b0320) 1976; 22
Muslea (10.1016/j.neucom.2020.07.050_b0110) 2006; 27
Imandoust (10.1016/j.neucom.2020.07.050_b0345) 2013; 3
Gupta (10.1016/j.neucom.2020.07.050_b0055) 2015; 19
Berger (10.1016/j.neucom.2020.07.050_b0270) 1929; 87
10.1016/j.neucom.2020.07.050_b0115
Xie (10.1016/j.neucom.2020.07.050_b0135) 2014; 41
Sharma (10.1016/j.neucom.2020.07.050_b0215) 2017; 28
Gilles (10.1016/j.neucom.2020.07.050_b0290) 2013; 61
10.1016/j.neucom.2020.07.050_b0350
Aljazaery (10.1016/j.neucom.2020.07.050_b0020) 2011; 4
10.1016/j.neucom.2020.07.050_b0155
Zadeh (10.1016/j.neucom.2020.07.050_b0305) 1976
10.1016/j.neucom.2020.07.050_b0275
Lerman (10.1016/j.neucom.2020.07.050_b0245) 1980; 29
Palaniappan (10.1016/j.neucom.2020.07.050_b0035) 2006; 14
10.1016/j.neucom.2020.07.050_b0195
10.1016/j.neucom.2020.07.050_b0150
Anuragi (10.1016/j.neucom.2020.07.050_b0200) 2020; 20
10.1016/j.neucom.2020.07.050_b0190
Pachori (10.1016/j.neucom.2020.07.050_b0265) 2008; 2008
Nandish (10.1016/j.neucom.2020.07.050_b0025) 2012; 2
Bezdek (10.1016/j.neucom.2020.07.050_b0300) 1984; 10
Kumar (10.1016/j.neucom.2020.07.050_b0250) 2016; 49
10.1016/j.neucom.2020.07.050_b0120
10.1016/j.neucom.2020.07.050_b0285
10.1016/j.neucom.2020.07.050_b0045
10.1016/j.neucom.2020.07.050_b0165
10.1016/j.neucom.2020.07.050_b0160
Gupta (10.1016/j.neucom.2020.07.050_b0050) 2019
10.1016/j.neucom.2020.07.050_b0280
10.1016/j.neucom.2020.07.050_b0085
10.1016/j.neucom.2020.07.050_b0080
Bhattacharyya (10.1016/j.neucom.2020.07.050_b0210) 2017; 7
Mallat (10.1016/j.neucom.2020.07.050_b0255) 1989; 11
Sani (10.1016/j.neucom.2020.07.050_b0205) 2014
Zhang (10.1016/j.neucom.2020.07.050_b0040) 2010; 34
Burges (10.1016/j.neucom.2020.07.050_b0325) 1998; 2
Sun (10.1016/j.neucom.2020.07.050_b0105) 2011; 25
Rokach (10.1016/j.neucom.2020.07.050_b0235) 2010; vol. 75
Fawcett (10.1016/j.neucom.2020.07.050_b0355) 2006; 27
10.1016/j.neucom.2020.07.050_b0335
10.1016/j.neucom.2020.07.050_b0015
10.1016/j.neucom.2020.07.050_b0175
10.1016/j.neucom.2020.07.050_b0375
Hariharan (10.1016/j.neucom.2020.07.050_b0070) 2014; 40
10.1016/j.neucom.2020.07.050_b0330
Sun (10.1016/j.neucom.2020.07.050_b0185) 2016; 46
Daubechies (10.1016/j.neucom.2020.07.050_b0295) 1992; 61
Tiwari (10.1016/j.neucom.2020.07.050_b0315) 2014; 9
10.1016/j.neucom.2020.07.050_b0095
10.1016/j.neucom.2020.07.050_b0370
10.1016/j.neucom.2020.07.050_b0090
Sun (10.1016/j.neucom.2020.07.050_b0230) 2011; 34
Azar (10.1016/j.neucom.2020.07.050_b0360) 2014; 24
Bayram (10.1016/j.neucom.2020.07.050_b0005) 2013
Nguyen (10.1016/j.neucom.2020.07.050_b0310) 1978; 64
References_xml – reference: Z. Ding, Y. Fu, Low-rank common subspace for multi-view learning, in: Data Mining (ICDM), 2014 IEEE International Conference on, IEEE, pp. 110–119.
– volume: 11
  start-page: 2423
  year: 2010
  end-page: 2455
  ident: b0125
  article-title: Sparse semi-supervised learning using conjugate functions
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: b0290
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Processing
– reference: S. Sun, Multi-view Laplacian support vector machines, in: International Conference on Advanced Data Mining and Applications, Springer, pp. 209–222.
– reference: M. Gönen, G.B. Gönen, F.S. Gürgen, Bayesian multiview dimensionality reduction for learning predictive subspaces., in: ECAI, pp. 387–392.
– volume: 46
  start-page: 3272
  year: 2016
  end-page: 3284
  ident: b0185
  article-title: Multiview uncorrelated discriminant analysis
  publication-title: IEEE transactions on cybernetics
– volume: 2008
  start-page: 14
  year: 2008
  ident: b0265
  article-title: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
  publication-title: Res. Lett. Signal Process.
– volume: 106
  start-page: 169
  year: 2018
  end-page: 182
  ident: b0030
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 674
  year: 1989
  end-page: 693
  ident: b0255
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 1
  year: 2012
  end-page: 5
  ident: b0025
  article-title: Feature extraction and classification of EEG signal using neural network based techniques
  publication-title: Int. J. Eng. Innovative Technol. (IJEIT)
– volume: 163
  start-page: 59
  year: 2018
  end-page: 69
  ident: b0240
  article-title: Prediction of replication sites in saccharomyces cerevisiae genome using dna segment properties: multi-view ensemble learning (MEL) approach
  publication-title: Biosystems
– reference: A. Gupta, R. Agrawal, B. Kaur, A three phase approach for mental task classification using EEG, in: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, ACM, pp. 898–904.
– reference: G.N. Garcia, T. Ebrahimi, J.-M. Vesin, Support vector EEG classification in the fourier and time-frequency correlation domains, in: Neural Engineering, 2003. Conference Proceedings. First International IEEE EMBS Conference on, IEEE, pp. 591–594.
– reference: B. Blankertz, G. Curio, K.-R. Müller, Classifying single trial EEG: Towards brain computer interfacing, in: Advances in neural information processing systems, pp. 157–164.
– volume: 20
  start-page: 4914
  year: 2020
  end-page: 4924
  ident: b0200
  article-title: Automated alcoholism detection using fourier-bessel series expansion based empirical wavelet transform
  publication-title: IEEE Sens. J.
– reference: M. Tanveer, R.B. Pachori, N. Angami, Classification of seizure and seizure-free EEG signals using hjorth parameters, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 2180–2185.
– volume: 34
  start-page: 229
  year: 2011
  ident: b0230
  article-title: Multiple-view multiple-learner semi-supervised learning
  publication-title: Neural Processing Lett.
– reference: N. Hazarika, J.Z. Chen, A.C. Tsoi, A. Sergejew, Classification of EEG signals using the wavelet transform, in: Digital Signal Processing Proceedings, 1997. DSP 97, 1997 13th International Conference on, volume 1, IEEE, pp. 89–92.
– volume: 34
  start-page: 51
  year: 2010
  end-page: 60
  ident: b0040
  article-title: Improving mental task classification by adding high frequency band information
  publication-title: J. Med. Syst.
– reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, arXiv preprint arXiv:1304.5634 (2013).
– start-page: 1
  year: 2013
  end-page: 3
  ident: b0005
  article-title: Classification of EEG signals by using support vector machines
  publication-title: IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)
– reference: Y. Makihara, A. Mansur, D. Muramatsu, Z. Uddin, Y. Yagi, Multi-view discriminant analysis with tensor representation and its application to cross-view gait recognition, in: Automatic Face and Gesture Recognition (FG), 2015 11th IEEE International Conference and Workshops on, volume 1, IEEE, pp. 1–8.
– volume: 29
  start-page: 77
  year: 1980
  end-page: 84
  ident: b0245
  article-title: Fitting segmented regression models by grid search
  publication-title: J. Roy. Stat. Soc.: Ser. C (Appl. Stat.)
– volume: 14
  start-page: 299
  year: 2006
  end-page: 303
  ident: b0035
  article-title: Utilizing gamma band to improve mental task based brain-computer interface design
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 49
  start-page: 1
  year: 2016
  end-page: 59
  ident: b0250
  article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification
  publication-title: Knowl. Inf. Syst.
– reference: P.F. Diez, V. Mut, E. Laciar, A. Torres, E. Avila, Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification, in: Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, IEEE, pp. 2579–2582.
– volume: 20
  start-page: 526
  year: 2012
  end-page: 538
  ident: b0075
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 24
  start-page: 1163
  year: 2014
  end-page: 1177
  ident: b0360
  article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition
  publication-title: Neural Comput. Appl.
– volume: 11
  start-page: 103
  year: 2017
  ident: b0225
  article-title: Classification of eeg signals based on pattern recognition approach
  publication-title: Front. Comput. Neurosci.
– reference: X. Jin, F. Zhuang, S. Wang, Q. He, Z. Shi, Shared structure learning for multiple tasks with multiple views, in: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp. 353–368.
– start-page: 202
  year: 1976
  end-page: 282
  ident: b0305
  article-title: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts
  publication-title: Systems Theory in the Social Sciences
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0300
  article-title: Fcm: The fuzzy c-means clustering algorithm
  publication-title: Computers Geosci.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b0355
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recog. Lett.
– volume: 64
  start-page: 369
  year: 1978
  end-page: 380
  ident: b0310
  article-title: A note on the extension principle for fuzzy sets
  publication-title: J. Math. Anal. Appl.
– reference: B. Tan, E. Zhong, E.W. Xiang, Q. Yang, Multi-transfer: Transfer learning with multiple views and multiple sources, in: Proceedings of the 2013 SIAM International Conference on Data Mining, SIAM, pp. 243–251.
– reference: N.-J. Huan, R. Palaniappan, Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals, in: Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on, IEEE, pp. 633–636.
– volume: 27
  start-page: 203
  year: 2006
  end-page: 233
  ident: b0110
  article-title: Active learning with multiple views
  publication-title: J. Artif. Intell. Res.
– reference: C. Zhang, H. Fu, S. Liu, G. Liu, X. Cao, Low-rank tensor constrained multiview subspace clustering, in: Proceedings of the IEEE international conference on computer vision, pp. 1582–1590.
– volume: 19
  start-page: 2799
  year: 2015
  end-page: 2812
  ident: b0055
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft. Comput.
– volume: 7
  start-page: 385
  year: 2017
  ident: b0210
  article-title: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic eeg signals
  publication-title: Appl. Sci.
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: b0345
  article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background
  publication-title: Int. J. Eng. Res. Appl.
– volume: 37
  start-page: 1209
  year: 1990
  end-page: 1214
  ident: b0365
  article-title: A new mode of communication between man and his surroundings
  publication-title: IEEE Trans. Biomed. Eng.
– reference: L. Zhiwei, S. Minfen, Classification of mental task EEG signals using wavelet packet entropy and SVM, in: 2007 8th International Conference on Electronic Measurement and Instruments, IEEE, pp. 3–906.
– reference: A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the eleventh annual conference on Computational learning theory, ACM, pp. 92–100.
– volume: 28
  start-page: 2959
  year: 2017
  end-page: 2978
  ident: b0215
  article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals
  publication-title: Neural Comput. Appl.
– reference: N. Kerkeni, F. Alexandre, M.H. Bedoui, L. Bougrain, M. Dogui, Automatic classification of sleep stages on a EEG signal by artificial neural networks, in: 5th WSEAS International Conference on SIGNAL, SPEECH and IMAGE PROCESSING-WSEAS SSIP’05.
– reference: I. Muslea, S. Minton, C.A. Knoblock, Active + semi-supervised learning = robust multi-view learning, in: ICML, volume 2, Citeseer, pp. 435–442.
– reference: S. Rezaei, K. Tavakolian, K. Naziripour, Comparison of five different classifiers for classification of mental tasks, in: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE, pp. 6007–6010.
– volume: 11
  start-page: 141
  year: 2003
  end-page: 144
  ident: b0010
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
– volume: 41
  start-page: 5766
  year: 2011
  end-page: 5770
  ident: b0340
  article-title: Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier
  publication-title: Elixir Hum. Physiol
– reference: J.A. de la O Serna, M.R.A. Paternina, A. Zamora-Méndez, R.K. Tripathy, R.B. Pachori, Eeg-rhythm specific taylor-fourier filter bank implemented with o-splines for the detection of epilepsy using eeg signals, IEEE Sensors Journal(2020).
– reference: R. Ameri, A. Pouyan, V. Abolghasemi, Eeg signal classification based on sparse representation in brain computer interface applications, in: Biomedical Engineering (ICBME), 2015 22nd Iranian Conference on, IEEE, pp. 21–24.
– volume: 40
  start-page: 1741
  year: 2014
  end-page: 1749
  ident: b0070
  article-title: Classification of mental tasks using stockwell transform
  publication-title: Computers Electr. Eng.
– reference: K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-training, in: Proceedings of the ninth international conference on Information and knowledge management, ACM, pp. 86–93.
– start-page: 127
  year: 2014
  end-page: 131
  ident: b0205
  article-title: Support vector machine for classification of stress subjects using eeg signals
  publication-title: 2014 IEEE Conference on Systems, Process and Control (ICSPC 2014)
– volume: 49
  start-page: 501
  year: 2014
  end-page: 525
  ident: b0170
  article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study
  publication-title: J. Artif. Intell. Res.
– reference: X. Cao, C. Zhang, H. Fu, S. Liu, H. Zhang, Diversity-induced multi-view subspace clustering, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 586–594.
– reference: N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998) 903–995.
– reference: T. Jaakkola, M. Meila, T. Jebara, Maximum entropy discrimination, in: Advances in neural information processing systems, pp. 470–476.
– volume: 4
  start-page: 329
  year: 2011
  ident: b0020
  article-title: Classification of electroencephalograph (EEG) signals using quantum neural network
  publication-title: Signal Processing: An Int. J. (SPIJ)
– reference: C.W. Anderson, E.A. Stolz, S. Shamsunder, Discriminating mental tasks using EEG represented by AR models, in: Engineering in Medicine and Biology Society, 1995, IEEE 17th Annual Conference, volume 2, IEEE, pp. 875–876.
– year: 2019
  ident: b0050
  article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– volume: 25
  start-page: 1113
  year: 2011
  end-page: 1126
  ident: b0105
  article-title: Robust co-training
  publication-title: Int. J. Pattern Recognit Artif Intell.
– reference: B.V. Dasarathy, Nearest neighbor (NN) norms:NN pattern classification techniques(1991).
– volume: 87
  start-page: 527
  year: 1929
  end-page: 570
  ident: b0270
  article-title: Über das elektrenkephalogramm des menschen
  publication-title: Archiv für psychiatrie und nervenkrankheiten
– volume: 19
  start-page: 701
  year: 2015
  end-page: 712
  ident: b0130
  article-title: Multi-view twin support vector machines
  publication-title: Intell. Data Anal.
– reference: M. Tanveer, R.B. Pachori, N. Angami, Entropy based features in fawt framework for automated detection of epileptic seizure EEG signals, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1946–1952.
– reference: H. Kadri, S. Ayache, C. Capponi, S. Koço, F.-X. Dupé, E. Morvant, The multi-task learning view of multimodal data, in: Asian Conference on Machine Learning, pp. 261–276.
– reference: V. Sindhwani, D.S. Rosenberg, An RKHS for multi-view learning and manifold co-regularization, in: Proceedings of the 25th international conference on Machine learning, ACM, pp. 976–983.
– volume: vol. 75
  year: 2010
  ident: b0235
  publication-title: Pattern classification using ensemble methods
– reference: : Nonparametric bayes multi-task multi-view learning, in: Proceedings of World Statistics Conference, pp. 2351–2356.
– reference: H. Yanga, J. Heb, Notam
– reference: P. Dhillon, D.P. Foster, L.H. Ungar, Multi-view learning of word embeddings via cca, in: Advances in neural information processing systems, pp. 199–207.
– volume: 61
  year: 1992
  ident: b0295
  article-title: Ten lectures on wavelets
  publication-title: Siam
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: b0325
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discovery
– volume: 41
  start-page: 1059
  year: 2014
  end-page: 1068
  ident: b0135
  article-title: Multi-view Laplacian twin support vector machines
  publication-title: Appl. Intell.
– volume: 9
  start-page: 37
  year: 2014
  end-page: 41
  ident: b0315
  article-title: Zadeh extension principle: a note
  publication-title: Ann Fuzzy Math Inform
– volume: 22
  start-page: 75
  year: 1976
  end-page: 81
  ident: b0320
  article-title: On the complexity of finite sequences
  publication-title: IEEE Trans. Inform. Theory
– start-page: 202
  year: 1976
  ident: 10.1016/j.neucom.2020.07.050_b0305
  article-title: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts
– volume: 9
  start-page: 37
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0315
  article-title: Zadeh extension principle: a note
  publication-title: Ann Fuzzy Math Inform
– ident: 10.1016/j.neucom.2020.07.050_b0350
– volume: 37
  start-page: 1209
  year: 1990
  ident: 10.1016/j.neucom.2020.07.050_b0365
  article-title: A new mode of communication between man and his surroundings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.64464
– ident: 10.1016/j.neucom.2020.07.050_b0090
– ident: 10.1016/j.neucom.2020.07.050_b0145
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.07.050_b0250
  article-title: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-015-0875-y
– volume: 41
  start-page: 5766
  year: 2011
  ident: 10.1016/j.neucom.2020.07.050_b0340
  article-title: Seizure detection in EEG using biorthogonal wavelet and fuzzy KNN classifier
  publication-title: Elixir Hum. Physiol
– volume: 19
  start-page: 701
  year: 2015
  ident: 10.1016/j.neucom.2020.07.050_b0130
  article-title: Multi-view twin support vector machines
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-150740
– volume: 34
  start-page: 229
  year: 2011
  ident: 10.1016/j.neucom.2020.07.050_b0230
  article-title: Multiple-view multiple-learner semi-supervised learning
  publication-title: Neural Processing Lett.
  doi: 10.1007/s11063-011-9195-8
– volume: 106
  start-page: 169
  year: 2018
  ident: 10.1016/j.neucom.2020.07.050_b0030
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.053
– volume: 61
  year: 1992
  ident: 10.1016/j.neucom.2020.07.050_b0295
  article-title: Ten lectures on wavelets
  publication-title: Siam
– ident: 10.1016/j.neucom.2020.07.050_b0285
  doi: 10.1109/ICDSP.1997.627975
– ident: 10.1016/j.neucom.2020.07.050_b0330
  doi: 10.1109/CNE.2003.1196897
– volume: 20
  start-page: 4914
  year: 2020
  ident: 10.1016/j.neucom.2020.07.050_b0200
  article-title: Automated alcoholism detection using fourier-bessel series expansion based empirical wavelet transform
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2966766
– ident: 10.1016/j.neucom.2020.07.050_b0375
  doi: 10.1109/IEMBS.1995.579248
– volume: 25
  start-page: 1113
  year: 2011
  ident: 10.1016/j.neucom.2020.07.050_b0105
  article-title: Robust co-training
  publication-title: Int. J. Pattern Recognit Artif Intell.
  doi: 10.1142/S0218001411008981
– ident: 10.1016/j.neucom.2020.07.050_b0370
– volume: 34
  start-page: 51
  year: 2010
  ident: 10.1016/j.neucom.2020.07.050_b0040
  article-title: Improving mental task classification by adding high frequency band information
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9215-z
– volume: 11
  start-page: 141
  year: 2003
  ident: 10.1016/j.neucom.2020.07.050_b0010
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Trans. Neural Syst. Rehabilitation Eng.
  doi: 10.1109/TNSRE.2003.814441
– ident: 10.1016/j.neucom.2020.07.050_b0160
  doi: 10.1109/ICDM.2014.29
– volume: 2
  start-page: 121
  year: 1998
  ident: 10.1016/j.neucom.2020.07.050_b0325
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discovery
  doi: 10.1023/A:1009715923555
– volume: 27
  start-page: 203
  year: 2006
  ident: 10.1016/j.neucom.2020.07.050_b0110
  article-title: Active learning with multiple views
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2005
– ident: 10.1016/j.neucom.2020.07.050_b0165
– volume: 11
  start-page: 103
  year: 2017
  ident: 10.1016/j.neucom.2020.07.050_b0225
  article-title: Classification of eeg signals based on pattern recognition approach
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2017.00103
– volume: 61
  start-page: 3999
  year: 2013
  ident: 10.1016/j.neucom.2020.07.050_b0290
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Processing
  doi: 10.1109/TSP.2013.2265222
– volume: 4
  start-page: 329
  year: 2011
  ident: 10.1016/j.neucom.2020.07.050_b0020
  article-title: Classification of electroencephalograph (EEG) signals using quantum neural network
  publication-title: Signal Processing: An Int. J. (SPIJ)
– ident: 10.1016/j.neucom.2020.07.050_b0080
– volume: 49
  start-page: 501
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0170
  article-title: Information-theoretic multi-view domain adaptation: a theoretical and empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.4190
– volume: 7
  start-page: 385
  year: 2017
  ident: 10.1016/j.neucom.2020.07.050_b0210
  article-title: Tunable-q wavelet transform based multiscale entropy measure for automated classification of epileptic eeg signals
  publication-title: Appl. Sci.
  doi: 10.3390/app7040385
– ident: 10.1016/j.neucom.2020.07.050_b0100
  doi: 10.1145/354756.354805
– year: 2019
  ident: 10.1016/j.neucom.2020.07.050_b0050
  article-title: On the utility of power spectral techniques with feature selection techniques for effective mental task classification in noninvasive BCI
  publication-title: IEEE Trans. Syst., Man, Cybern.: Syst.
– ident: 10.1016/j.neucom.2020.07.050_b0220
  doi: 10.1109/JSEN.2020.2976519
– volume: 2
  start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2020.07.050_b0025
  article-title: Feature extraction and classification of EEG signal using neural network based techniques
  publication-title: Int. J. Eng. Innovative Technol. (IJEIT)
– volume: 10
  start-page: 191
  year: 1984
  ident: 10.1016/j.neucom.2020.07.050_b0300
  article-title: Fcm: The fuzzy c-means clustering algorithm
  publication-title: Computers Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– ident: 10.1016/j.neucom.2020.07.050_b0275
  doi: 10.1109/IEMBS.2009.5335278
– volume: vol. 75
  year: 2010
  ident: 10.1016/j.neucom.2020.07.050_b0235
– volume: 87
  start-page: 527
  year: 1929
  ident: 10.1016/j.neucom.2020.07.050_b0270
  article-title: Über das elektrenkephalogramm des menschen
  publication-title: Archiv für psychiatrie und nervenkrankheiten
  doi: 10.1007/BF01797193
– volume: 24
  start-page: 1163
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0360
  article-title: Performance analysis of support vector machines classifiers in breast cancer mammography recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1324-4
– ident: 10.1016/j.neucom.2020.07.050_b0385
  doi: 10.1109/ICEMI.2007.4351064
– volume: 163
  start-page: 59
  year: 2018
  ident: 10.1016/j.neucom.2020.07.050_b0240
  article-title: Prediction of replication sites in saccharomyces cerevisiae genome using dna segment properties: multi-view ensemble learning (MEL) approach
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.12.005
– ident: 10.1016/j.neucom.2020.07.050_b0260
  doi: 10.1098/rspa.1998.0193
– volume: 22
  start-page: 75
  year: 1976
  ident: 10.1016/j.neucom.2020.07.050_b0320
  article-title: On the complexity of finite sequences
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1976.1055501
– ident: 10.1016/j.neucom.2020.07.050_b0155
  doi: 10.1007/978-3-642-40991-2_23
– ident: 10.1016/j.neucom.2020.07.050_b0190
  doi: 10.1109/ICCV.2015.185
– ident: 10.1016/j.neucom.2020.07.050_b0180
  doi: 10.1109/FG.2015.7163131
– volume: 46
  start-page: 3272
  year: 2016
  ident: 10.1016/j.neucom.2020.07.050_b0185
  article-title: Multiview uncorrelated discriminant analysis
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2015.2502248
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.07.050_b0005
  article-title: Classification of EEG signals by using support vector machines
– ident: 10.1016/j.neucom.2020.07.050_b0015
– ident: 10.1016/j.neucom.2020.07.050_b0280
  doi: 10.1145/2345396.2345541
– ident: 10.1016/j.neucom.2020.07.050_b0195
  doi: 10.1109/CVPR.2015.7298657
– ident: 10.1016/j.neucom.2020.07.050_b0140
– volume: 64
  start-page: 369
  year: 1978
  ident: 10.1016/j.neucom.2020.07.050_b0310
  article-title: A note on the extension principle for fuzzy sets
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(78)90045-8
– ident: 10.1016/j.neucom.2020.07.050_b0120
  doi: 10.1007/978-3-642-25856-5_16
– ident: 10.1016/j.neucom.2020.07.050_b0085
  doi: 10.1145/279943.279962
– volume: 3
  start-page: 605
  year: 2013
  ident: 10.1016/j.neucom.2020.07.050_b0345
  article-title: Application of k-nearest neighbor (KNN) approach for predicting economic events: Theoretical background
  publication-title: Int. J. Eng. Res. Appl.
– volume: 14
  start-page: 299
  year: 2006
  ident: 10.1016/j.neucom.2020.07.050_b0035
  article-title: Utilizing gamma band to improve mental task based brain-computer interface design
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2006.881539
– volume: 11
  start-page: 2423
  year: 2010
  ident: 10.1016/j.neucom.2020.07.050_b0125
  article-title: Sparse semi-supervised learning using conjugate functions
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2020.07.050_b0045
  doi: 10.1109/ICBME.2015.7404109
– ident: 10.1016/j.neucom.2020.07.050_b0150
– ident: 10.1016/j.neucom.2020.07.050_b0335
  doi: 10.7551/mitpress/1120.003.0025
– ident: 10.1016/j.neucom.2020.07.050_b0065
  doi: 10.1109/SSCI.2018.8628733
– volume: 41
  start-page: 1059
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0135
  article-title: Multi-view Laplacian twin support vector machines
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0563-8
– volume: 27
  start-page: 861
  year: 2006
  ident: 10.1016/j.neucom.2020.07.050_b0355
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 19
  start-page: 2799
  year: 2015
  ident: 10.1016/j.neucom.2020.07.050_b0055
  article-title: Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-014-1443-1
– volume: 28
  start-page: 2959
  year: 2017
  ident: 10.1016/j.neucom.2020.07.050_b0215
  article-title: Automatic sleep stages classification based on iterative filtering of electroencephalogram signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2919-6
– start-page: 127
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0205
  article-title: Support vector machine for classification of stress subjects using eeg signals
– ident: 10.1016/j.neucom.2020.07.050_b0060
  doi: 10.1109/SSCI.2018.8628651
– volume: 29
  start-page: 77
  year: 1980
  ident: 10.1016/j.neucom.2020.07.050_b0245
  article-title: Fitting segmented regression models by grid search
  publication-title: J. Roy. Stat. Soc.: Ser. C (Appl. Stat.)
– volume: 40
  start-page: 1741
  year: 2014
  ident: 10.1016/j.neucom.2020.07.050_b0070
  article-title: Classification of mental tasks using stockwell transform
  publication-title: Computers Electr. Eng.
  doi: 10.1016/j.compeleceng.2014.01.010
– ident: 10.1016/j.neucom.2020.07.050_b0095
  doi: 10.1145/1390156.1390279
– ident: 10.1016/j.neucom.2020.07.050_b0115
– ident: 10.1016/j.neucom.2020.07.050_b0380
  doi: 10.1109/IEMBS.2005.1615860
– volume: 2008
  start-page: 14
  year: 2008
  ident: 10.1016/j.neucom.2020.07.050_b0265
  article-title: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
  publication-title: Res. Lett. Signal Process.
– volume: 11
  start-page: 674
  year: 1989
  ident: 10.1016/j.neucom.2020.07.050_b0255
  article-title: A theory for multiresolution signal decomposition: the wavelet representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.192463
– volume: 20
  start-page: 526
  year: 2012
  ident: 10.1016/j.neucom.2020.07.050_b0075
  article-title: Improving the separability of motor imagery EEG signals using a cross correlation-based least square support vector machine for brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2184838
– ident: 10.1016/j.neucom.2020.07.050_b0175
  doi: 10.1137/1.9781611972832.27
SSID ssj0017129
Score 2.462522
Snippet Brain-computer interface (BCI) is a domain, in which a person can send information without using any exterior nerve or muscles, just using their brain signal,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 558
SubjectTerms Brain computer interface (BCI)
Electroencephalography (EEG)
Empirical mode decomposition (EMD)
Feature coding
Fuzzy C-means
Mental tasks classification
Multiview learning
Support vector machine (SVM)
Wavelet transform (WT)
Title A novel approach for classification of mental tasks using multiview ensemble learning (MEL)
URI https://dx.doi.org/10.1016/j.neucom.2020.07.050
Volume 417
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL178FufHyMGDHury1aY5jrExP7aLEwYeQtKmYzq74TaP_naTNh0KouCxJYHyJH3fJ-3zPi8AF4RrrDEWgc1VPGBpFgdaJFmgYoxQSm2CUe7TQH8Q9R7Z7Sgc1UC7qoVxskof-8uYXkRrf6fp0WzOJ5PmAxLEnqIwIcg5xsSuiI8x7roYXH-sZR6YY1L67ZEwcKOr8rlC45WbldOMEMuZSgtP9HN6-pJyurtg23NF2CofZw_UTL4Pdqo-DNC_lgfgqQXz2buZwsogHFomChPHi50QqMAezjJY-vjDpVq8LKATvI9hoSd0fwegPc6aVz010PeRGMPLfuf-6hAMu51huxf4pglBYtn_0oJsYm5JnWV2GTfERNgg7cQvgisWR0JplIRIcbt2hnEuNFFRqBKdoCxV1NAjsJHPcnMMIHG90RUJqck005ESSCBjKE0ZS3GY0TqgFVQy8Ybirq_FVFbKsWdZAiwdwBJxaQGug2A9a14aavwxnlerIL9tDGlj_q8zT_498xRsuatCtRKegY3l28qcW-6x1I1iczXAZuvmrjf4BIJk2W0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPDwwwhPqVOB6rqlWBtgtFqsRg2YlTFUpa0ZaRb8fOowIJgcSa-ErRsXPvcXJ8LgCXhGusMRaerVXcY3ESelpEiadCjFBMbYFR7tNArx90Htnd0B9WQLM8C-NklUXuz3N6lq2LK_UCzfpsPK4_IEHsLgoTgpxjTCjWwDrzCXc7sJuPlc4Dc0xywz3ie254eX4uE3mlZulEI8SSptzDE_1cn77UnPYO2CrIImzkz7MLKibdA9tlIwZYvJf74KkB0-m7mcDSIRxaKgojR4ydEigDH04TmBv5w4Wav8yhU7yPYCYodL8HoN3Pmlc9MbBoJDGCV71W9_oADNqtQbPjFV0TvMjS_4VF2YTcsjpL7RJuiAmwQdqpXwRXLAyE0ijykeJ28gzjXGiiAl9FOkJJrKihh6CaTlNzBCBxzdEV8alJNNOBEkggYyiNGYuxn9AaoCVUMiocxV1ji4kspWPPMgdYOoAl4tICXAPeKmqWO2r8MZ6XsyC_rQxpk_6vkcf_jrwAG51Bryu7t_37E7Dp7mQSFv8UVBdvS3NmichCn2cL7ROsXdsC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+approach+for+classification+of+mental+tasks+using+multiview+ensemble+learning+%28MEL%29&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Gupta%2C+A.&rft.au=Khan%2C+R.U.&rft.au=Singh%2C+V.K.&rft.au=Tanveer%2C+M.&rft.date=2020-12-05&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=417&rft.spage=558&rft.epage=584&rft_id=info:doi/10.1016%2Fj.neucom.2020.07.050&rft.externalDocID=S0925231220311589
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon