Detection of multiple salient objects through the integration of estimated foreground clues

In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 54; pp. 31 - 44
Main Authors Oh, Kanghan, Lee, Myungeun, Kim, Gwangbok, Kim, Soohyung
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2016
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2016.07.007

Cover

Abstract In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-object-detection task; in particular, unlike a single-object-detection problem, a high inter-object dissimilarity causes new difficulties. By analyzing the limitations of the existing models, the following two main frameworks that are based on a multi-level foreground-segmentation strategy are proposed: non-parametric cluster-based saliency (NS) and parametric cluster-based saliency (PS). Each framework consists of a vector classification, a foreground estimation, an energy generation, and an integration process. In contrast to previous models, the proposed method is not dependent upon the contrast features, and is unaffected by the size, thickness, and shape of the objects. In the experiment results, a superior detection accuracy for the SED2 benchmark was achieved with the use of the proposed scheme; furthermore, the corresponding precision and recall are superior to those of the state-of-the-art approaches, and more effective performances were also achieved on the MSRA-ASD, SED2 and CSSD benchmarks. [Display omitted] •We address the problem of multiple salient region detection.•The method consists of the parametric and non-parametric cluster based streams.•The limitations of the existing models that are based on contrast are addressed.•A spatial objectness is only considered for the computation of saliency scores.
AbstractList In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-object-detection task; in particular, unlike a single-object-detection problem, a high inter-object dissimilarity causes new difficulties. By analyzing the limitations of the existing models, the following two main frameworks that are based on a multi-level foreground-segmentation strategy are proposed: non-parametric cluster-based saliency (NS) and parametric cluster-based saliency (PS). Each framework consists of a vector classification, a foreground estimation, an energy generation, and an integration process. In contrast to previous models, the proposed method is not dependent upon the contrast features, and is unaffected by the size, thickness, and shape of the objects. In the experiment results, a superior detection accuracy for the SED2 benchmark was achieved with the use of the proposed scheme; furthermore, the corresponding precision and recall are superior to those of the state-of-the-art approaches, and more effective performances were also achieved on the MSRA-ASD, SED2 and CSSD benchmarks. [Display omitted] •We address the problem of multiple salient region detection.•The method consists of the parametric and non-parametric cluster based streams.•The limitations of the existing models that are based on contrast are addressed.•A spatial objectness is only considered for the computation of saliency scores.
Author Oh, Kanghan
Lee, Myungeun
Kim, Soohyung
Kim, Gwangbok
Author_xml – sequence: 1
  givenname: Kanghan
  surname: Oh
  fullname: Oh, Kanghan
  email: blastps@naver.com
  organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea
– sequence: 2
  givenname: Myungeun
  surname: Lee
  fullname: Lee, Myungeun
  email: melee@snu.ac.kr
  organization: Advanced Institutes of Convergence Technology, Seoul National University, 145 Gwanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do 443 270, Republic of Korea
– sequence: 3
  givenname: Gwangbok
  surname: Kim
  fullname: Kim, Gwangbok
  email: loopaz63@gmail.com
  organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea
– sequence: 4
  givenname: Soohyung
  surname: Kim
  fullname: Kim, Soohyung
  email: shkim@jnu.ac.kr
  organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea
BookMark eNqFkM9OAyEQh4mpiW31DTzwArsCu2VZDyam_k2aeNGTB0LZoWWzXRpgm_j2UlcvHvQ0kN98M_DN0KR3PSB0SUlOCeVXbW536mBDztItJ1VOSHWCplRULBO0EBM0JYyns1jwMzQLoSWpg1T1FL3fQQQdreuxM3g3dNHuO8BBdRb6iN26TWnAcevdsNmmCtj2ETZe_TAQYtoeocHG-RS4oW-w7gYI5-jUqC7AxXedo7eH-9flU7Z6eXxe3q4yXRAeM8XKii4EIYWuTUmoqtbA1gVjjBooTG1oU2tRKpVywU3JGV8IqDnnRWMUN8UcXY9ztXcheDBS2_j1vuiV7SQl8qhJtnLUJI-aJKlkkpDg8he896nNf_yH3YwYpI8dLHgZdDKmobE-GZONs38P-ARw64hW
CitedBy_id crossref_primary_10_1007_s11042_020_08644_9
crossref_primary_10_3390_rs10040652
crossref_primary_10_1007_s11042_018_5731_0
crossref_primary_10_1016_j_jvcir_2021_103165
crossref_primary_10_1007_s11042_020_09875_6
crossref_primary_10_1016_j_ins_2017_01_019
crossref_primary_10_1016_j_imavis_2019_02_005
crossref_primary_10_1007_s10851_019_00882_3
crossref_primary_10_1007_s11045_018_0610_4
crossref_primary_10_1016_j_imavis_2019_03_005
Cites_doi 10.1109/34.1000236
10.1016/j.ins.2013.12.043
10.1109/TPAMI.2006.249
10.1109/TPAMI.2011.146
10.1109/TPAMI.2014.2366154
10.1109/TPAMI.2015.2465960
10.1109/TIP.2015.2487833
10.1109/TPAMI.2014.2345401
10.1016/j.imavis.2010.07.001
10.1109/TPAMI.2012.28
10.1016/j.patcog.2009.04.021
10.1007/s11263-014-0733-5
10.1016/0146-664X(80)90054-4
10.1007/s12559-010-9089-5
10.1016/j.visres.2015.01.010
10.1016/j.patcog.2013.11.015
10.1038/224318a0
10.1109/34.730558
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2016.07.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 44
ExternalDocumentID 10_1016_j_imavis_2016_07_007
S0262885616301238
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-a247158003c9f401a7be2b32221fe3f9f1d9c84aa3c986f462658e96663dfa6f3
IEDL.DBID .~1
ISSN 0262-8856
IngestDate Wed Oct 01 01:31:37 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Fri Feb 23 02:23:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Saliency map
Multiple-salient-region detection
Object segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a247158003c9f401a7be2b32221fe3f9f1d9c84aa3c986f462658e96663dfa6f3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2016_07_007
crossref_primary_10_1016_j_imavis_2016_07_007
elsevier_sciencedirect_doi_10_1016_j_imavis_2016_07_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kootstra, de Boer, Schomaker (bb0040) 2011; 3
Perazzi, Krhenbl, Pritch, Hornung (bb0150) 2012
Alexe, Deselears, Ferrari (bb0225) 2010
Shi, Yan, Xu, Jia (bb0125) 2015; 38
Achanta, Hemami, Estrada, Susstrunk (bb0055) 2009
Rahtu, Kannala, Salo (bb0070) 2010
Klein, Frintrop (bb0075) 2011
Martin, Fowlkes, Tal, Malik (bb0160) 2001
Comaniciu, Meer (bb0115) 2002; 24
Nian, Han, Zhang, Wen, Liu (bb0175) 2015
Bruce, Wloka, Frosst, Rahman, Tsotsos (bb0200) 2015; 116
Ye, Yuan Jun (bb0015) 2013
Frederick (bb0195) 2012
Alexe, Deselears, Ferrari (bb0135) 2012; 34
Harel, Koch, Perona (bb0130) 2006
Li, Yu (bb0180) 2016
Bruce, Tsotsos (bb0050) 2005
Ming-Yu, Ming, Oncel, Rama (bb0080) 2011
Bernd (bb0170) 2005
He, Lau, Liu, Huang, Yang (bb0185) 2015; 115
Cheng, Zhang, Mitra, Huang, Hu, J. (bb0095) 2015; 37
Borji, Cheng, Jiang, Li (bb0205) 2015; 24
Bonaiuto, Itti (bb0025) 2005
Ziman (bb0210) 1969; 224
Khuwuthyakorn, Robles-Kelly, Zhou (bb0020) 2010
Danielsson (bb0190) 1980; 14
Kang-Han, Soo-Hyung, In-Seop (bb0085) 2014
Yongdong, Zhendong, Jintao, Qi (bb0105) 2014; 281
Ma, Zhang (bb0120) 2003
Achanta, Susstrunk (bb0035) 2010
Hou, Zhang (bb0060) 2008
Judd, Ehinger, Durand, Torralba (bb0215) 2009
Liu, Sun, Zheng, Tang, Shum (bb0110) 2007; 33
HsinHo, KengHao, ChuSong (bb0090) 2014; 47
Achanta, Estrada, Wils, Susstrunk (bb0145) 2008
Itti, Koch, Niebur (bb0140) 1998; 20
Mathe, Sminchisescu (bb0220) 2015; 37
Hou, Harel, Koch (bb0065) 2012; 34
Everingham, Van Gool, Williams, Winn, Zisserman (bb0165) 2015; 111
Rosin (bb0045) 2009; 42
Qiong, Li, Jianping, Jiaya (bb0155) 2013
Berengolts, Lindenbaum (bb0005) 2006; 28
Koch, Ullman (bb0010) 1985; 4
Li, Qin, Itti (bb0030) 2011; 29
Huaizu Jiang, Jingdong, Zejian, Yang, Nanning, Shipeng (bb0100) 2013
Comaniciu (10.1016/j.imavis.2016.07.007_bb0115) 2002; 24
Borji (10.1016/j.imavis.2016.07.007_bb0205) 2015; 24
Nian (10.1016/j.imavis.2016.07.007_bb0175) 2015
Cheng (10.1016/j.imavis.2016.07.007_bb0095) 2015; 37
Yongdong (10.1016/j.imavis.2016.07.007_bb0105) 2014; 281
Kootstra (10.1016/j.imavis.2016.07.007_bb0040) 2011; 3
Alexe (10.1016/j.imavis.2016.07.007_bb0225) 2010
Li (10.1016/j.imavis.2016.07.007_bb0030) 2011; 29
Ye (10.1016/j.imavis.2016.07.007_bb0015) 2013
Harel (10.1016/j.imavis.2016.07.007_bb0130) 2006
Li (10.1016/j.imavis.2016.07.007_bb0180) 2016
Liu (10.1016/j.imavis.2016.07.007_bb0110) 2007; 33
He (10.1016/j.imavis.2016.07.007_bb0185) 2015; 115
Bernd (10.1016/j.imavis.2016.07.007_bb0170) 2005
Shi (10.1016/j.imavis.2016.07.007_bb0125) 2015; 38
Itti (10.1016/j.imavis.2016.07.007_bb0140) 1998; 20
Qiong (10.1016/j.imavis.2016.07.007_bb0155) 2013
Khuwuthyakorn (10.1016/j.imavis.2016.07.007_bb0020) 2010
Alexe (10.1016/j.imavis.2016.07.007_bb0135) 2012; 34
Judd (10.1016/j.imavis.2016.07.007_bb0215) 2009
Bruce (10.1016/j.imavis.2016.07.007_bb0200) 2015; 116
Koch (10.1016/j.imavis.2016.07.007_bb0010) 1985; 4
Mathe (10.1016/j.imavis.2016.07.007_bb0220) 2015; 37
Rahtu (10.1016/j.imavis.2016.07.007_bb0070) 2010
Everingham (10.1016/j.imavis.2016.07.007_bb0165) 2015; 111
Achanta (10.1016/j.imavis.2016.07.007_bb0035) 2010
Frederick (10.1016/j.imavis.2016.07.007_bb0195) 2012
Ziman (10.1016/j.imavis.2016.07.007_bb0210) 1969; 224
Martin (10.1016/j.imavis.2016.07.007_bb0160) 2001
Hou (10.1016/j.imavis.2016.07.007_bb0065) 2012; 34
HsinHo (10.1016/j.imavis.2016.07.007_bb0090) 2014; 47
Huaizu Jiang (10.1016/j.imavis.2016.07.007_bb0100) 2013
Danielsson (10.1016/j.imavis.2016.07.007_bb0190) 1980; 14
Bonaiuto (10.1016/j.imavis.2016.07.007_bb0025) 2005
Ming-Yu (10.1016/j.imavis.2016.07.007_bb0080) 2011
Ma (10.1016/j.imavis.2016.07.007_bb0120) 2003
Klein (10.1016/j.imavis.2016.07.007_bb0075) 2011
Kang-Han (10.1016/j.imavis.2016.07.007_bb0085) 2014
Bruce (10.1016/j.imavis.2016.07.007_bb0050) 2005
Achanta (10.1016/j.imavis.2016.07.007_bb0145) 2008
Perazzi (10.1016/j.imavis.2016.07.007_bb0150) 2012
Rosin (10.1016/j.imavis.2016.07.007_bb0045) 2009; 42
Achanta (10.1016/j.imavis.2016.07.007_bb0055) 2009
Hou (10.1016/j.imavis.2016.07.007_bb0060) 2008
Berengolts (10.1016/j.imavis.2016.07.007_bb0005) 2006; 28
References_xml – start-page: 73
  year: 2010
  end-page: 80
  ident: bb0225
  article-title: What is an object
  publication-title: CVPR
– start-page: 681
  year: 2008
  end-page: 688
  ident: bb0060
  article-title: Dynamic visual attention: searching for coding length increments
  publication-title: NIPS
– start-page: 2106
  year: 2009
  end-page: 2113
  ident: bb0215
  article-title: Learning to predict where people look
  publication-title: ICCV
– volume: 47
  start-page: 1740
  year: 2014
  end-page: 1750
  ident: bb0090
  article-title: Salient object detection via local saliency estimation and global homogeneity refinement
  publication-title: J. Pattern Recognit.
– start-page: 2083
  year: 2013
  end-page: 2090
  ident: bb0100
  article-title: Salient object detection: a discriminative regional feature integration approach
  publication-title: CVPR
– start-page: 374
  year: 2003
  end-page: 381
  ident: bb0120
  article-title: Contrast-based image attention analysis by using fuzzy growing
  publication-title: ACM MM
– volume: 34
  start-page: 2189
  year: 2012
  end-page: 2202
  ident: bb0135
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2214
  year: 2011
  end-page: 2219
  ident: bb0075
  article-title: Center-surround divergence of features tatistics for salient object detection
  publication-title: ICCV
– volume: 115
  start-page: 1
  year: 2015
  end-page: 15
  ident: bb0185
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vis.
– volume: 116
  start-page: 95
  year: 2015
  end-page: 112
  ident: bb0200
  article-title: On computational modeling of visual saliency: examining what's right, and what's left
  publication-title: Vis. Res.
– year: 2014
  ident: bb0085
  article-title: Saliency detection using centroid weight map
  publication-title: ICUIMC
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: bb0165
  article-title: The PASCAL visual object classes challenge
  publication-title: Int. J. Comput. Vis.
– volume: 29
  start-page: 1
  year: 2011
  end-page: 14
  ident: bb0030
  article-title: Visual attention guided bit allocation in video compression
  publication-title: Image Vis. Comput.
– start-page: 366
  year: 2010
  end-page: 379
  ident: bb0070
  article-title: Segmenting salient objects from images and videos
  publication-title: ECCV
– start-page: 155
  year: 2005
  end-page: 162
  ident: bb0050
  article-title: Saliency based on information maximization
  publication-title: NIPS
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: bb0115
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 416
  year: 2001
  end-page: 423
  ident: bb0160
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
  publication-title: ICCV
– volume: 28
  start-page: 1973
  year: 2006
  end-page: 1990
  ident: bb0005
  article-title: On the distribution of saliency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1597
  year: 2009
  end-page: 1604
  ident: bb0055
  article-title: Frequency-tuned salient region detection
  publication-title: CVPR
– volume: 37
  start-page: 569
  year: 2015
  end-page: 582
  ident: bb0095
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 4
  start-page: 219
  year: 1985
  end-page: 227
  ident: bb0010
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
  publication-title: Hum. Neurobiol.
– volume: 42
  start-page: 2363
  year: 2009
  end-page: 2371
  ident: bb0045
  article-title: A simple method for detecting salient regions
  publication-title: J. Pattern Recognit.
– start-page: 545
  year: 2006
  end-page: 552
  ident: bb0130
  article-title: Graph-based visual saliency
  publication-title: NIPS
– start-page: 733
  year: 2012
  end-page: 740
  ident: bb0150
  article-title: Saliency filters, contrast based filtering for salient region detection
  publication-title: CVPR
– volume: 281
  start-page: 586
  year: 2014
  end-page: 600
  ident: bb0105
  article-title: Salient region detection for complex background images using integrated features
  publication-title: J. Inf. Sci.
– start-page: 66
  year: 2008
  end-page: 75
  ident: bb0145
  article-title: Salient region detection and segmentation
  publication-title: ICVS
– start-page: 1155
  year: 2013
  end-page: 1162
  ident: bb0155
  article-title: Hierarchical saliency detection
  publication-title: CVPR
– volume: 24
  start-page: 5706
  year: 2015
  end-page: 5722
  ident: bb0205
  article-title: Salient object detection: a benchmark
  publication-title: IEEE Trans. Image Process.
– volume: 34
  start-page: 194
  year: 2012
  end-page: 201
  ident: bb0065
  article-title: Image signature: highlighting sparse salient regions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 509
  year: 2013
  end-page: 512
  ident: bb0015
  article-title: Salient object detection in video by optimal spatiotemporal path discovery
  publication-title: ACM MM
– volume: 20
  start-page: 1254
  year: 1998
  end-page: 1259
  ident: bb0140
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2653
  year: 2010
  end-page: 2656
  ident: bb0035
  article-title: Saliency detection using maximum symmetric surround
  publication-title: ICIP
– volume: 3
  start-page: 223
  year: 2011
  end-page: 240
  ident: bb0040
  article-title: Predicting eyes on complex visual stimuli using local symmetry
  publication-title: Cogn. Comput.
– year: 2005
  ident: bb0170
  article-title: Digital Image Processing
– start-page: 2097
  year: 2011
  end-page: 2104
  ident: bb0080
  article-title: Entropy rate superpixel segmentation
  publication-title: CVPR
– year: 2012
  ident: bb0195
  article-title: Statistics: A Gentle Introduction
– volume: 37
  start-page: 1408
  year: 2015
  end-page: 1424
  ident: bb0220
  article-title: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 1
  year: 2007
  end-page: 8
  ident: bb0110
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 717
  year: 2015
  end-page: 729
  ident: bb0125
  article-title: Hierarchical Image Saliency Detection on Extended CSSD
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
– year: 2016
  ident: bb0180
  article-title: Deep contrast learning for salient object detection
  publication-title: CVPR
– start-page: 362
  year: 2015
  end-page: 370
  ident: bb0175
  article-title: Predicting eye fixations using convolutional neural networks
  publication-title: CVPR
– volume: 14
  start-page: 227
  year: 1980
  end-page: 248
  ident: bb0190
  article-title: Euclidean distance mapping
  publication-title: Comput. Graphics Image Process.
– start-page: 636
  year: 2010
  end-page: 649
  ident: bb0020
  article-title: Object of interest detection by saliency learning
  publication-title: ECCV
– start-page: 90
  year: 2005
  end-page: 97
  ident: bb0025
  article-title: Combining attention and recognition for rapid scene analysis
  publication-title: CVPR
– volume: 224
  start-page: 318
  year: 1969
  end-page: 324
  ident: bb0210
  article-title: Information, communication, knowledge
  publication-title: Nature
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 10.1016/j.imavis.2016.07.007_bb0115
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– volume: 281
  start-page: 586
  year: 2014
  ident: 10.1016/j.imavis.2016.07.007_bb0105
  article-title: Salient region detection for complex background images using integrated features
  publication-title: J. Inf. Sci.
  doi: 10.1016/j.ins.2013.12.043
– start-page: 2106
  year: 2009
  ident: 10.1016/j.imavis.2016.07.007_bb0215
  article-title: Learning to predict where people look
– volume: 28
  start-page: 1973
  issue: 12
  year: 2006
  ident: 10.1016/j.imavis.2016.07.007_bb0005
  article-title: On the distribution of saliency
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.249
– volume: 34
  start-page: 194
  issue: 1
  year: 2012
  ident: 10.1016/j.imavis.2016.07.007_bb0065
  article-title: Image signature: highlighting sparse salient regions
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.146
– start-page: 66
  year: 2008
  ident: 10.1016/j.imavis.2016.07.007_bb0145
  article-title: Salient region detection and segmentation
– volume: 115
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0185
  article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vis.
– start-page: 155
  year: 2005
  ident: 10.1016/j.imavis.2016.07.007_bb0050
  article-title: Saliency based on information maximization
– year: 2016
  ident: 10.1016/j.imavis.2016.07.007_bb0180
  article-title: Deep contrast learning for salient object detection
– volume: 37
  start-page: 1408
  issue: 7
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0220
  article-title: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2366154
– volume: 38
  start-page: 717
  issue: 4
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0125
  article-title: Hierarchical Image Saliency Detection on Extended CSSD
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2015.2465960
– start-page: 416
  year: 2001
  ident: 10.1016/j.imavis.2016.07.007_bb0160
  article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
– start-page: 362
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0175
  article-title: Predicting eye fixations using convolutional neural networks
– volume: 24
  start-page: 5706
  issue: 12
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0205
  article-title: Salient object detection: a benchmark
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2487833
– start-page: 2653
  year: 2010
  ident: 10.1016/j.imavis.2016.07.007_bb0035
  article-title: Saliency detection using maximum symmetric surround
– volume: 37
  start-page: 569
  issue: 3
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0095
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345401
– volume: 29
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.imavis.2016.07.007_bb0030
  article-title: Visual attention guided bit allocation in video compression
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2010.07.001
– start-page: 2097
  year: 2011
  ident: 10.1016/j.imavis.2016.07.007_bb0080
  article-title: Entropy rate superpixel segmentation
– start-page: 545
  year: 2006
  ident: 10.1016/j.imavis.2016.07.007_bb0130
  article-title: Graph-based visual saliency
– volume: 34
  start-page: 2189
  issue: 11
  year: 2012
  ident: 10.1016/j.imavis.2016.07.007_bb0135
  article-title: Measuring the objectness of image windows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.28
– start-page: 90
  year: 2005
  ident: 10.1016/j.imavis.2016.07.007_bb0025
  article-title: Combining attention and recognition for rapid scene analysis
– year: 2005
  ident: 10.1016/j.imavis.2016.07.007_bb0170
– year: 2014
  ident: 10.1016/j.imavis.2016.07.007_bb0085
  article-title: Saliency detection using centroid weight map
– start-page: 73
  year: 2010
  ident: 10.1016/j.imavis.2016.07.007_bb0225
  article-title: What is an object
– start-page: 636
  year: 2010
  ident: 10.1016/j.imavis.2016.07.007_bb0020
  article-title: Object of interest detection by saliency learning
– start-page: 2214
  year: 2011
  ident: 10.1016/j.imavis.2016.07.007_bb0075
  article-title: Center-surround divergence of features tatistics for salient object detection
– start-page: 1597
  year: 2009
  ident: 10.1016/j.imavis.2016.07.007_bb0055
  article-title: Frequency-tuned salient region detection
– volume: 4
  start-page: 219
  year: 1985
  ident: 10.1016/j.imavis.2016.07.007_bb0010
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
  publication-title: Hum. Neurobiol.
– volume: 42
  start-page: 2363
  issue: 11
  year: 2009
  ident: 10.1016/j.imavis.2016.07.007_bb0045
  article-title: A simple method for detecting salient regions
  publication-title: J. Pattern Recognit.
  doi: 10.1016/j.patcog.2009.04.021
– start-page: 374
  year: 2003
  ident: 10.1016/j.imavis.2016.07.007_bb0120
  article-title: Contrast-based image attention analysis by using fuzzy growing
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0165
  article-title: The PASCAL visual object classes challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0733-5
– volume: 14
  start-page: 227
  year: 1980
  ident: 10.1016/j.imavis.2016.07.007_bb0190
  article-title: Euclidean distance mapping
  publication-title: Comput. Graphics Image Process.
  doi: 10.1016/0146-664X(80)90054-4
– start-page: 509
  year: 2013
  ident: 10.1016/j.imavis.2016.07.007_bb0015
  article-title: Salient object detection in video by optimal spatiotemporal path discovery
– volume: 3
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.imavis.2016.07.007_bb0040
  article-title: Predicting eyes on complex visual stimuli using local symmetry
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-010-9089-5
– start-page: 1155
  year: 2013
  ident: 10.1016/j.imavis.2016.07.007_bb0155
  article-title: Hierarchical saliency detection
– volume: 33
  start-page: 1
  issue: 2
  year: 2007
  ident: 10.1016/j.imavis.2016.07.007_bb0110
  article-title: Learning to detect a salient object
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 366
  year: 2010
  ident: 10.1016/j.imavis.2016.07.007_bb0070
  article-title: Segmenting salient objects from images and videos
– start-page: 2083
  year: 2013
  ident: 10.1016/j.imavis.2016.07.007_bb0100
  article-title: Salient object detection: a discriminative regional feature integration approach
– year: 2012
  ident: 10.1016/j.imavis.2016.07.007_bb0195
– volume: 116
  start-page: 95
  year: 2015
  ident: 10.1016/j.imavis.2016.07.007_bb0200
  article-title: On computational modeling of visual saliency: examining what's right, and what's left
  publication-title: Vis. Res.
  doi: 10.1016/j.visres.2015.01.010
– volume: 47
  start-page: 1740
  issue: 4
  year: 2014
  ident: 10.1016/j.imavis.2016.07.007_bb0090
  article-title: Salient object detection via local saliency estimation and global homogeneity refinement
  publication-title: J. Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.015
– volume: 224
  start-page: 318
  year: 1969
  ident: 10.1016/j.imavis.2016.07.007_bb0210
  article-title: Information, communication, knowledge
  publication-title: Nature
  doi: 10.1038/224318a0
– start-page: 681
  year: 2008
  ident: 10.1016/j.imavis.2016.07.007_bb0060
  article-title: Dynamic visual attention: searching for coding length increments
– volume: 20
  start-page: 1254
  issue: 11
  year: 1998
  ident: 10.1016/j.imavis.2016.07.007_bb0140
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.730558
– start-page: 733
  year: 2012
  ident: 10.1016/j.imavis.2016.07.007_bb0150
  article-title: Saliency filters, contrast based filtering for salient region detection
SSID ssj0007079
Score 2.264625
Snippet In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Multiple-salient-region detection
Object segmentation
Saliency map
Title Detection of multiple salient objects through the integration of estimated foreground clues
URI https://dx.doi.org/10.1016/j.imavis.2016.07.007
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvejBR1WsL_bgdW2T3SSbY6mWqtiLFgoeQvYFlZoWW6_-dmeSjVYQBU8hyQ4Js4_5ZnfmG0IuuAwTHeaKAbZPmBDKMBXkETNgfAzABcDwuDVwP4qHY3E7iSYN0q9zYTCs0q_91Zpertb-Scdrs7OYTjsP4D2EUoL9jzkCA0z4RfYvGNOX719hHsgAV-2zwMyH1nX6XBnjNX3BVH4M8KooPLGo7E_mac3kDHbJtseKtFf9zh5p2KJFdjxupH5WLltka41UcJ88XdlVGV9V0LmjdcAgXQLgBgND5wp3XpbUF-iBq6U1Z4SXQeINALLwDUC0FvM-CkP1DAzIARkPrh_7Q-ZLKDANvsCK5dADQQSgkOvUgSuVJ8qGCk9XAme5S11gUi1FnsN7GTsB7k0kLbhAMTcujx0_JM1iXtgjQk2ijIySwPIYOWZ4yl1opBTO6VSLrmgTXmsu055fHMtczLI6kOw5q_Sdob6zLh58J23CPqUWFb_GH-2TulOyb-MkAxPwq-TxvyVPyCbeVSF8p6S5en2zZwBFVuq8HGvnZKN3czccfQBsit6n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOPAaI8cyBa7S1Sdv0OA2mjT0ubNIkDlXbJNLQ6CZW_j_Omk5DQiBxqtTWauUk9ufE_gzwwIQbpG6cUMT2AeU8kTRxYo9KdD4S4QJieLM1MBr7vSl_nnmzCnTKWhiTVmltf2HTN9ba3mlabTZX83nzBaMHVwj0_z4zwEDsQY17aJOrUGv3B73x1iAbErhiqwUXPwqUFXSbNK_5u6nmNzleBYun6Sv7k4fa8TrdEziycJG0iz86hYrK6nBsoSOxC3Ndh8MdXsEzeH1U-SbFKiNLTcqcQbJGzI0-hiwTs_myJrZHD14VKWkjrIzh3kAsi99AUKtM6UcmSbpAH3IO0-7TpNOjtosCTTEcyGmMg-B4iAtZGmqMpuIgUW5iDlgcrZgOtSPDVPA4xufC1xwjHE8ojIJ8JnXsa3YB1WyZqUsgMkik8AJHMd_QzLCQaVcKwbVOw5S3eANYqbkotRTjptPFIipzyd6iQt-R0XfUMmffQQPoVmpVUGz88X5QDkr0bapE6AV-lbz6t-Q97Pcmo2E07I8H13BgnhQZfTdQzT8-1S0ikzy5szPvCwVZ4VI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+multiple+salient+objects+through+the+integration+of+estimated+foreground+clues&rft.jtitle=Image+and+vision+computing&rft.au=Oh%2C+Kanghan&rft.au=Lee%2C+Myungeun&rft.au=Kim%2C+Gwangbok&rft.au=Kim%2C+Soohyung&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=54&rft.spage=31&rft.epage=44&rft_id=info:doi/10.1016%2Fj.imavis.2016.07.007&rft.externalDocID=S0262885616301238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon