Detection of multiple salient objects through the integration of estimated foreground clues
In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-...
Saved in:
Published in | Image and vision computing Vol. 54; pp. 31 - 44 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0262-8856 1872-8138 |
DOI | 10.1016/j.imavis.2016.07.007 |
Cover
Abstract | In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-object-detection task; in particular, unlike a single-object-detection problem, a high inter-object dissimilarity causes new difficulties. By analyzing the limitations of the existing models, the following two main frameworks that are based on a multi-level foreground-segmentation strategy are proposed: non-parametric cluster-based saliency (NS) and parametric cluster-based saliency (PS). Each framework consists of a vector classification, a foreground estimation, an energy generation, and an integration process. In contrast to previous models, the proposed method is not dependent upon the contrast features, and is unaffected by the size, thickness, and shape of the objects. In the experiment results, a superior detection accuracy for the SED2 benchmark was achieved with the use of the proposed scheme; furthermore, the corresponding precision and recall are superior to those of the state-of-the-art approaches, and more effective performances were also achieved on the MSRA-ASD, SED2 and CSSD benchmarks.
[Display omitted]
•We address the problem of multiple salient region detection.•The method consists of the parametric and non-parametric cluster based streams.•The limitations of the existing models that are based on contrast are addressed.•A spatial objectness is only considered for the computation of saliency scores. |
---|---|
AbstractList | In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed. Although this subject has been very well studied for the detection of salient objects, many technical challenges still exist regarding the multiple-object-detection task; in particular, unlike a single-object-detection problem, a high inter-object dissimilarity causes new difficulties. By analyzing the limitations of the existing models, the following two main frameworks that are based on a multi-level foreground-segmentation strategy are proposed: non-parametric cluster-based saliency (NS) and parametric cluster-based saliency (PS). Each framework consists of a vector classification, a foreground estimation, an energy generation, and an integration process. In contrast to previous models, the proposed method is not dependent upon the contrast features, and is unaffected by the size, thickness, and shape of the objects. In the experiment results, a superior detection accuracy for the SED2 benchmark was achieved with the use of the proposed scheme; furthermore, the corresponding precision and recall are superior to those of the state-of-the-art approaches, and more effective performances were also achieved on the MSRA-ASD, SED2 and CSSD benchmarks.
[Display omitted]
•We address the problem of multiple salient region detection.•The method consists of the parametric and non-parametric cluster based streams.•The limitations of the existing models that are based on contrast are addressed.•A spatial objectness is only considered for the computation of saliency scores. |
Author | Oh, Kanghan Lee, Myungeun Kim, Soohyung Kim, Gwangbok |
Author_xml | – sequence: 1 givenname: Kanghan surname: Oh fullname: Oh, Kanghan email: blastps@naver.com organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea – sequence: 2 givenname: Myungeun surname: Lee fullname: Lee, Myungeun email: melee@snu.ac.kr organization: Advanced Institutes of Convergence Technology, Seoul National University, 145 Gwanggyo ro, Yeongtong gu, Suwon si, Gyeonggi do 443 270, Republic of Korea – sequence: 3 givenname: Gwangbok surname: Kim fullname: Kim, Gwangbok email: loopaz63@gmail.com organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea – sequence: 4 givenname: Soohyung surname: Kim fullname: Kim, Soohyung email: shkim@jnu.ac.kr organization: School of Electronics and Computer Engineering, Chonnam National University, 77 Yongbong ro, Buk gu, Gwangju 500757, Republic of Korea |
BookMark | eNqFkM9OAyEQh4mpiW31DTzwArsCu2VZDyam_k2aeNGTB0LZoWWzXRpgm_j2UlcvHvQ0kN98M_DN0KR3PSB0SUlOCeVXbW536mBDztItJ1VOSHWCplRULBO0EBM0JYyns1jwMzQLoSWpg1T1FL3fQQQdreuxM3g3dNHuO8BBdRb6iN26TWnAcevdsNmmCtj2ETZe_TAQYtoeocHG-RS4oW-w7gYI5-jUqC7AxXedo7eH-9flU7Z6eXxe3q4yXRAeM8XKii4EIYWuTUmoqtbA1gVjjBooTG1oU2tRKpVywU3JGV8IqDnnRWMUN8UcXY9ztXcheDBS2_j1vuiV7SQl8qhJtnLUJI-aJKlkkpDg8he896nNf_yH3YwYpI8dLHgZdDKmobE-GZONs38P-ARw64hW |
CitedBy_id | crossref_primary_10_1007_s11042_020_08644_9 crossref_primary_10_3390_rs10040652 crossref_primary_10_1007_s11042_018_5731_0 crossref_primary_10_1016_j_jvcir_2021_103165 crossref_primary_10_1007_s11042_020_09875_6 crossref_primary_10_1016_j_ins_2017_01_019 crossref_primary_10_1016_j_imavis_2019_02_005 crossref_primary_10_1007_s10851_019_00882_3 crossref_primary_10_1007_s11045_018_0610_4 crossref_primary_10_1016_j_imavis_2019_03_005 |
Cites_doi | 10.1109/34.1000236 10.1016/j.ins.2013.12.043 10.1109/TPAMI.2006.249 10.1109/TPAMI.2011.146 10.1109/TPAMI.2014.2366154 10.1109/TPAMI.2015.2465960 10.1109/TIP.2015.2487833 10.1109/TPAMI.2014.2345401 10.1016/j.imavis.2010.07.001 10.1109/TPAMI.2012.28 10.1016/j.patcog.2009.04.021 10.1007/s11263-014-0733-5 10.1016/0146-664X(80)90054-4 10.1007/s12559-010-9089-5 10.1016/j.visres.2015.01.010 10.1016/j.patcog.2013.11.015 10.1038/224318a0 10.1109/34.730558 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.imavis.2016.07.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-8138 |
EndPage | 44 |
ExternalDocumentID | 10_1016_j_imavis_2016_07_007 S0262885616301238 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABOCM ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS UNMZH VOH WUQ XFK XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c306t-a247158003c9f401a7be2b32221fe3f9f1d9c84aa3c986f462658e96663dfa6f3 |
IEDL.DBID | .~1 |
ISSN | 0262-8856 |
IngestDate | Wed Oct 01 01:31:37 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Fri Feb 23 02:23:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Saliency map Multiple-salient-region detection Object segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-a247158003c9f401a7be2b32221fe3f9f1d9c84aa3c986f462658e96663dfa6f3 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1016_j_imavis_2016_07_007 crossref_primary_10_1016_j_imavis_2016_07_007 elsevier_sciencedirect_doi_10_1016_j_imavis_2016_07_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Image and vision computing |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kootstra, de Boer, Schomaker (bb0040) 2011; 3 Perazzi, Krhenbl, Pritch, Hornung (bb0150) 2012 Alexe, Deselears, Ferrari (bb0225) 2010 Shi, Yan, Xu, Jia (bb0125) 2015; 38 Achanta, Hemami, Estrada, Susstrunk (bb0055) 2009 Rahtu, Kannala, Salo (bb0070) 2010 Klein, Frintrop (bb0075) 2011 Martin, Fowlkes, Tal, Malik (bb0160) 2001 Comaniciu, Meer (bb0115) 2002; 24 Nian, Han, Zhang, Wen, Liu (bb0175) 2015 Bruce, Wloka, Frosst, Rahman, Tsotsos (bb0200) 2015; 116 Ye, Yuan Jun (bb0015) 2013 Frederick (bb0195) 2012 Alexe, Deselears, Ferrari (bb0135) 2012; 34 Harel, Koch, Perona (bb0130) 2006 Li, Yu (bb0180) 2016 Bruce, Tsotsos (bb0050) 2005 Ming-Yu, Ming, Oncel, Rama (bb0080) 2011 Bernd (bb0170) 2005 He, Lau, Liu, Huang, Yang (bb0185) 2015; 115 Cheng, Zhang, Mitra, Huang, Hu, J. (bb0095) 2015; 37 Borji, Cheng, Jiang, Li (bb0205) 2015; 24 Bonaiuto, Itti (bb0025) 2005 Ziman (bb0210) 1969; 224 Khuwuthyakorn, Robles-Kelly, Zhou (bb0020) 2010 Danielsson (bb0190) 1980; 14 Kang-Han, Soo-Hyung, In-Seop (bb0085) 2014 Yongdong, Zhendong, Jintao, Qi (bb0105) 2014; 281 Ma, Zhang (bb0120) 2003 Achanta, Susstrunk (bb0035) 2010 Hou, Zhang (bb0060) 2008 Judd, Ehinger, Durand, Torralba (bb0215) 2009 Liu, Sun, Zheng, Tang, Shum (bb0110) 2007; 33 HsinHo, KengHao, ChuSong (bb0090) 2014; 47 Achanta, Estrada, Wils, Susstrunk (bb0145) 2008 Itti, Koch, Niebur (bb0140) 1998; 20 Mathe, Sminchisescu (bb0220) 2015; 37 Hou, Harel, Koch (bb0065) 2012; 34 Everingham, Van Gool, Williams, Winn, Zisserman (bb0165) 2015; 111 Rosin (bb0045) 2009; 42 Qiong, Li, Jianping, Jiaya (bb0155) 2013 Berengolts, Lindenbaum (bb0005) 2006; 28 Koch, Ullman (bb0010) 1985; 4 Li, Qin, Itti (bb0030) 2011; 29 Huaizu Jiang, Jingdong, Zejian, Yang, Nanning, Shipeng (bb0100) 2013 Comaniciu (10.1016/j.imavis.2016.07.007_bb0115) 2002; 24 Borji (10.1016/j.imavis.2016.07.007_bb0205) 2015; 24 Nian (10.1016/j.imavis.2016.07.007_bb0175) 2015 Cheng (10.1016/j.imavis.2016.07.007_bb0095) 2015; 37 Yongdong (10.1016/j.imavis.2016.07.007_bb0105) 2014; 281 Kootstra (10.1016/j.imavis.2016.07.007_bb0040) 2011; 3 Alexe (10.1016/j.imavis.2016.07.007_bb0225) 2010 Li (10.1016/j.imavis.2016.07.007_bb0030) 2011; 29 Ye (10.1016/j.imavis.2016.07.007_bb0015) 2013 Harel (10.1016/j.imavis.2016.07.007_bb0130) 2006 Li (10.1016/j.imavis.2016.07.007_bb0180) 2016 Liu (10.1016/j.imavis.2016.07.007_bb0110) 2007; 33 He (10.1016/j.imavis.2016.07.007_bb0185) 2015; 115 Bernd (10.1016/j.imavis.2016.07.007_bb0170) 2005 Shi (10.1016/j.imavis.2016.07.007_bb0125) 2015; 38 Itti (10.1016/j.imavis.2016.07.007_bb0140) 1998; 20 Qiong (10.1016/j.imavis.2016.07.007_bb0155) 2013 Khuwuthyakorn (10.1016/j.imavis.2016.07.007_bb0020) 2010 Alexe (10.1016/j.imavis.2016.07.007_bb0135) 2012; 34 Judd (10.1016/j.imavis.2016.07.007_bb0215) 2009 Bruce (10.1016/j.imavis.2016.07.007_bb0200) 2015; 116 Koch (10.1016/j.imavis.2016.07.007_bb0010) 1985; 4 Mathe (10.1016/j.imavis.2016.07.007_bb0220) 2015; 37 Rahtu (10.1016/j.imavis.2016.07.007_bb0070) 2010 Everingham (10.1016/j.imavis.2016.07.007_bb0165) 2015; 111 Achanta (10.1016/j.imavis.2016.07.007_bb0035) 2010 Frederick (10.1016/j.imavis.2016.07.007_bb0195) 2012 Ziman (10.1016/j.imavis.2016.07.007_bb0210) 1969; 224 Martin (10.1016/j.imavis.2016.07.007_bb0160) 2001 Hou (10.1016/j.imavis.2016.07.007_bb0065) 2012; 34 HsinHo (10.1016/j.imavis.2016.07.007_bb0090) 2014; 47 Huaizu Jiang (10.1016/j.imavis.2016.07.007_bb0100) 2013 Danielsson (10.1016/j.imavis.2016.07.007_bb0190) 1980; 14 Bonaiuto (10.1016/j.imavis.2016.07.007_bb0025) 2005 Ming-Yu (10.1016/j.imavis.2016.07.007_bb0080) 2011 Ma (10.1016/j.imavis.2016.07.007_bb0120) 2003 Klein (10.1016/j.imavis.2016.07.007_bb0075) 2011 Kang-Han (10.1016/j.imavis.2016.07.007_bb0085) 2014 Bruce (10.1016/j.imavis.2016.07.007_bb0050) 2005 Achanta (10.1016/j.imavis.2016.07.007_bb0145) 2008 Perazzi (10.1016/j.imavis.2016.07.007_bb0150) 2012 Rosin (10.1016/j.imavis.2016.07.007_bb0045) 2009; 42 Achanta (10.1016/j.imavis.2016.07.007_bb0055) 2009 Hou (10.1016/j.imavis.2016.07.007_bb0060) 2008 Berengolts (10.1016/j.imavis.2016.07.007_bb0005) 2006; 28 |
References_xml | – start-page: 73 year: 2010 end-page: 80 ident: bb0225 article-title: What is an object publication-title: CVPR – start-page: 681 year: 2008 end-page: 688 ident: bb0060 article-title: Dynamic visual attention: searching for coding length increments publication-title: NIPS – start-page: 2106 year: 2009 end-page: 2113 ident: bb0215 article-title: Learning to predict where people look publication-title: ICCV – volume: 47 start-page: 1740 year: 2014 end-page: 1750 ident: bb0090 article-title: Salient object detection via local saliency estimation and global homogeneity refinement publication-title: J. Pattern Recognit. – start-page: 2083 year: 2013 end-page: 2090 ident: bb0100 article-title: Salient object detection: a discriminative regional feature integration approach publication-title: CVPR – start-page: 374 year: 2003 end-page: 381 ident: bb0120 article-title: Contrast-based image attention analysis by using fuzzy growing publication-title: ACM MM – volume: 34 start-page: 2189 year: 2012 end-page: 2202 ident: bb0135 article-title: Measuring the objectness of image windows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2214 year: 2011 end-page: 2219 ident: bb0075 article-title: Center-surround divergence of features tatistics for salient object detection publication-title: ICCV – volume: 115 start-page: 1 year: 2015 end-page: 15 ident: bb0185 article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection publication-title: Int. J. Comput. Vis. – volume: 116 start-page: 95 year: 2015 end-page: 112 ident: bb0200 article-title: On computational modeling of visual saliency: examining what's right, and what's left publication-title: Vis. Res. – year: 2014 ident: bb0085 article-title: Saliency detection using centroid weight map publication-title: ICUIMC – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: bb0165 article-title: The PASCAL visual object classes challenge publication-title: Int. J. Comput. Vis. – volume: 29 start-page: 1 year: 2011 end-page: 14 ident: bb0030 article-title: Visual attention guided bit allocation in video compression publication-title: Image Vis. Comput. – start-page: 366 year: 2010 end-page: 379 ident: bb0070 article-title: Segmenting salient objects from images and videos publication-title: ECCV – start-page: 155 year: 2005 end-page: 162 ident: bb0050 article-title: Saliency based on information maximization publication-title: NIPS – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: bb0115 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 416 year: 2001 end-page: 423 ident: bb0160 article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics publication-title: ICCV – volume: 28 start-page: 1973 year: 2006 end-page: 1990 ident: bb0005 article-title: On the distribution of saliency publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1597 year: 2009 end-page: 1604 ident: bb0055 article-title: Frequency-tuned salient region detection publication-title: CVPR – volume: 37 start-page: 569 year: 2015 end-page: 582 ident: bb0095 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 4 start-page: 219 year: 1985 end-page: 227 ident: bb0010 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Hum. Neurobiol. – volume: 42 start-page: 2363 year: 2009 end-page: 2371 ident: bb0045 article-title: A simple method for detecting salient regions publication-title: J. Pattern Recognit. – start-page: 545 year: 2006 end-page: 552 ident: bb0130 article-title: Graph-based visual saliency publication-title: NIPS – start-page: 733 year: 2012 end-page: 740 ident: bb0150 article-title: Saliency filters, contrast based filtering for salient region detection publication-title: CVPR – volume: 281 start-page: 586 year: 2014 end-page: 600 ident: bb0105 article-title: Salient region detection for complex background images using integrated features publication-title: J. Inf. Sci. – start-page: 66 year: 2008 end-page: 75 ident: bb0145 article-title: Salient region detection and segmentation publication-title: ICVS – start-page: 1155 year: 2013 end-page: 1162 ident: bb0155 article-title: Hierarchical saliency detection publication-title: CVPR – volume: 24 start-page: 5706 year: 2015 end-page: 5722 ident: bb0205 article-title: Salient object detection: a benchmark publication-title: IEEE Trans. Image Process. – volume: 34 start-page: 194 year: 2012 end-page: 201 ident: bb0065 article-title: Image signature: highlighting sparse salient regions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 509 year: 2013 end-page: 512 ident: bb0015 article-title: Salient object detection in video by optimal spatiotemporal path discovery publication-title: ACM MM – volume: 20 start-page: 1254 year: 1998 end-page: 1259 ident: bb0140 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2653 year: 2010 end-page: 2656 ident: bb0035 article-title: Saliency detection using maximum symmetric surround publication-title: ICIP – volume: 3 start-page: 223 year: 2011 end-page: 240 ident: bb0040 article-title: Predicting eyes on complex visual stimuli using local symmetry publication-title: Cogn. Comput. – year: 2005 ident: bb0170 article-title: Digital Image Processing – start-page: 2097 year: 2011 end-page: 2104 ident: bb0080 article-title: Entropy rate superpixel segmentation publication-title: CVPR – year: 2012 ident: bb0195 article-title: Statistics: A Gentle Introduction – volume: 37 start-page: 1408 year: 2015 end-page: 1424 ident: bb0220 article-title: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 33 start-page: 1 year: 2007 end-page: 8 ident: bb0110 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 38 start-page: 717 year: 2015 end-page: 729 ident: bb0125 article-title: Hierarchical Image Saliency Detection on Extended CSSD publication-title: IEEE Trans. Pattern Anal. Mach. Intell – year: 2016 ident: bb0180 article-title: Deep contrast learning for salient object detection publication-title: CVPR – start-page: 362 year: 2015 end-page: 370 ident: bb0175 article-title: Predicting eye fixations using convolutional neural networks publication-title: CVPR – volume: 14 start-page: 227 year: 1980 end-page: 248 ident: bb0190 article-title: Euclidean distance mapping publication-title: Comput. Graphics Image Process. – start-page: 636 year: 2010 end-page: 649 ident: bb0020 article-title: Object of interest detection by saliency learning publication-title: ECCV – start-page: 90 year: 2005 end-page: 97 ident: bb0025 article-title: Combining attention and recognition for rapid scene analysis publication-title: CVPR – volume: 224 start-page: 318 year: 1969 end-page: 324 ident: bb0210 article-title: Information, communication, knowledge publication-title: Nature – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.imavis.2016.07.007_bb0115 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – volume: 281 start-page: 586 year: 2014 ident: 10.1016/j.imavis.2016.07.007_bb0105 article-title: Salient region detection for complex background images using integrated features publication-title: J. Inf. Sci. doi: 10.1016/j.ins.2013.12.043 – start-page: 2106 year: 2009 ident: 10.1016/j.imavis.2016.07.007_bb0215 article-title: Learning to predict where people look – volume: 28 start-page: 1973 issue: 12 year: 2006 ident: 10.1016/j.imavis.2016.07.007_bb0005 article-title: On the distribution of saliency publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.249 – volume: 34 start-page: 194 issue: 1 year: 2012 ident: 10.1016/j.imavis.2016.07.007_bb0065 article-title: Image signature: highlighting sparse salient regions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.146 – start-page: 66 year: 2008 ident: 10.1016/j.imavis.2016.07.007_bb0145 article-title: Salient region detection and segmentation – volume: 115 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0185 article-title: Supercnn: a superpixelwise convolutional neural network for salient object detection publication-title: Int. J. Comput. Vis. – start-page: 155 year: 2005 ident: 10.1016/j.imavis.2016.07.007_bb0050 article-title: Saliency based on information maximization – year: 2016 ident: 10.1016/j.imavis.2016.07.007_bb0180 article-title: Deep contrast learning for salient object detection – volume: 37 start-page: 1408 issue: 7 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0220 article-title: Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2366154 – volume: 38 start-page: 717 issue: 4 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0125 article-title: Hierarchical Image Saliency Detection on Extended CSSD publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2015.2465960 – start-page: 416 year: 2001 ident: 10.1016/j.imavis.2016.07.007_bb0160 article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics – start-page: 362 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0175 article-title: Predicting eye fixations using convolutional neural networks – volume: 24 start-page: 5706 issue: 12 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0205 article-title: Salient object detection: a benchmark publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2487833 – start-page: 2653 year: 2010 ident: 10.1016/j.imavis.2016.07.007_bb0035 article-title: Saliency detection using maximum symmetric surround – volume: 37 start-page: 569 issue: 3 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0095 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345401 – volume: 29 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.imavis.2016.07.007_bb0030 article-title: Visual attention guided bit allocation in video compression publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2010.07.001 – start-page: 2097 year: 2011 ident: 10.1016/j.imavis.2016.07.007_bb0080 article-title: Entropy rate superpixel segmentation – start-page: 545 year: 2006 ident: 10.1016/j.imavis.2016.07.007_bb0130 article-title: Graph-based visual saliency – volume: 34 start-page: 2189 issue: 11 year: 2012 ident: 10.1016/j.imavis.2016.07.007_bb0135 article-title: Measuring the objectness of image windows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.28 – start-page: 90 year: 2005 ident: 10.1016/j.imavis.2016.07.007_bb0025 article-title: Combining attention and recognition for rapid scene analysis – year: 2005 ident: 10.1016/j.imavis.2016.07.007_bb0170 – year: 2014 ident: 10.1016/j.imavis.2016.07.007_bb0085 article-title: Saliency detection using centroid weight map – start-page: 73 year: 2010 ident: 10.1016/j.imavis.2016.07.007_bb0225 article-title: What is an object – start-page: 636 year: 2010 ident: 10.1016/j.imavis.2016.07.007_bb0020 article-title: Object of interest detection by saliency learning – start-page: 2214 year: 2011 ident: 10.1016/j.imavis.2016.07.007_bb0075 article-title: Center-surround divergence of features tatistics for salient object detection – start-page: 1597 year: 2009 ident: 10.1016/j.imavis.2016.07.007_bb0055 article-title: Frequency-tuned salient region detection – volume: 4 start-page: 219 year: 1985 ident: 10.1016/j.imavis.2016.07.007_bb0010 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Hum. Neurobiol. – volume: 42 start-page: 2363 issue: 11 year: 2009 ident: 10.1016/j.imavis.2016.07.007_bb0045 article-title: A simple method for detecting salient regions publication-title: J. Pattern Recognit. doi: 10.1016/j.patcog.2009.04.021 – start-page: 374 year: 2003 ident: 10.1016/j.imavis.2016.07.007_bb0120 article-title: Contrast-based image attention analysis by using fuzzy growing – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0165 article-title: The PASCAL visual object classes challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-014-0733-5 – volume: 14 start-page: 227 year: 1980 ident: 10.1016/j.imavis.2016.07.007_bb0190 article-title: Euclidean distance mapping publication-title: Comput. Graphics Image Process. doi: 10.1016/0146-664X(80)90054-4 – start-page: 509 year: 2013 ident: 10.1016/j.imavis.2016.07.007_bb0015 article-title: Salient object detection in video by optimal spatiotemporal path discovery – volume: 3 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.imavis.2016.07.007_bb0040 article-title: Predicting eyes on complex visual stimuli using local symmetry publication-title: Cogn. Comput. doi: 10.1007/s12559-010-9089-5 – start-page: 1155 year: 2013 ident: 10.1016/j.imavis.2016.07.007_bb0155 article-title: Hierarchical saliency detection – volume: 33 start-page: 1 issue: 2 year: 2007 ident: 10.1016/j.imavis.2016.07.007_bb0110 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 366 year: 2010 ident: 10.1016/j.imavis.2016.07.007_bb0070 article-title: Segmenting salient objects from images and videos – start-page: 2083 year: 2013 ident: 10.1016/j.imavis.2016.07.007_bb0100 article-title: Salient object detection: a discriminative regional feature integration approach – year: 2012 ident: 10.1016/j.imavis.2016.07.007_bb0195 – volume: 116 start-page: 95 year: 2015 ident: 10.1016/j.imavis.2016.07.007_bb0200 article-title: On computational modeling of visual saliency: examining what's right, and what's left publication-title: Vis. Res. doi: 10.1016/j.visres.2015.01.010 – volume: 47 start-page: 1740 issue: 4 year: 2014 ident: 10.1016/j.imavis.2016.07.007_bb0090 article-title: Salient object detection via local saliency estimation and global homogeneity refinement publication-title: J. Pattern Recognit. doi: 10.1016/j.patcog.2013.11.015 – volume: 224 start-page: 318 year: 1969 ident: 10.1016/j.imavis.2016.07.007_bb0210 article-title: Information, communication, knowledge publication-title: Nature doi: 10.1038/224318a0 – start-page: 681 year: 2008 ident: 10.1016/j.imavis.2016.07.007_bb0060 article-title: Dynamic visual attention: searching for coding length increments – volume: 20 start-page: 1254 issue: 11 year: 1998 ident: 10.1016/j.imavis.2016.07.007_bb0140 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – start-page: 733 year: 2012 ident: 10.1016/j.imavis.2016.07.007_bb0150 article-title: Saliency filters, contrast based filtering for salient region detection |
SSID | ssj0007079 |
Score | 2.264625 |
Snippet | In this paper, a novel method for the detection of multiple salient regions that is based on the integration of estimated foreground clues is proposed.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 31 |
SubjectTerms | Multiple-salient-region detection Object segmentation Saliency map |
Title | Detection of multiple salient objects through the integration of estimated foreground clues |
URI | https://dx.doi.org/10.1016/j.imavis.2016.07.007 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007079 issn: 0262-8856 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvejBR1WsL_bgdW2T3SSbY6mWqtiLFgoeQvYFlZoWW6_-dmeSjVYQBU8hyQ4Js4_5ZnfmG0IuuAwTHeaKAbZPmBDKMBXkETNgfAzABcDwuDVwP4qHY3E7iSYN0q9zYTCs0q_91Zpertb-Scdrs7OYTjsP4D2EUoL9jzkCA0z4RfYvGNOX719hHsgAV-2zwMyH1nX6XBnjNX3BVH4M8KooPLGo7E_mac3kDHbJtseKtFf9zh5p2KJFdjxupH5WLltka41UcJ88XdlVGV9V0LmjdcAgXQLgBgND5wp3XpbUF-iBq6U1Z4SXQeINALLwDUC0FvM-CkP1DAzIARkPrh_7Q-ZLKDANvsCK5dADQQSgkOvUgSuVJ8qGCk9XAme5S11gUi1FnsN7GTsB7k0kLbhAMTcujx0_JM1iXtgjQk2ijIySwPIYOWZ4yl1opBTO6VSLrmgTXmsu055fHMtczLI6kOw5q_Sdob6zLh58J23CPqUWFb_GH-2TulOyb-MkAxPwq-TxvyVPyCbeVSF8p6S5en2zZwBFVuq8HGvnZKN3czccfQBsit6n |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOPAaI8cyBa7S1Sdv0OA2mjT0ubNIkDlXbJNLQ6CZW_j_Omk5DQiBxqtTWauUk9ufE_gzwwIQbpG6cUMT2AeU8kTRxYo9KdD4S4QJieLM1MBr7vSl_nnmzCnTKWhiTVmltf2HTN9ba3mlabTZX83nzBaMHVwj0_z4zwEDsQY17aJOrUGv3B73x1iAbErhiqwUXPwqUFXSbNK_5u6nmNzleBYun6Sv7k4fa8TrdEziycJG0iz86hYrK6nBsoSOxC3Ndh8MdXsEzeH1U-SbFKiNLTcqcQbJGzI0-hiwTs_myJrZHD14VKWkjrIzh3kAsi99AUKtM6UcmSbpAH3IO0-7TpNOjtosCTTEcyGmMg-B4iAtZGmqMpuIgUW5iDlgcrZgOtSPDVPA4xufC1xwjHE8ojIJ8JnXsa3YB1WyZqUsgMkik8AJHMd_QzLCQaVcKwbVOw5S3eANYqbkotRTjptPFIipzyd6iQt-R0XfUMmffQQPoVmpVUGz88X5QDkr0bapE6AV-lbz6t-Q97Pcmo2E07I8H13BgnhQZfTdQzT8-1S0ikzy5szPvCwVZ4VI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+multiple+salient+objects+through+the+integration+of+estimated+foreground+clues&rft.jtitle=Image+and+vision+computing&rft.au=Oh%2C+Kanghan&rft.au=Lee%2C+Myungeun&rft.au=Kim%2C+Gwangbok&rft.au=Kim%2C+Soohyung&rft.date=2016-10-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=54&rft.spage=31&rft.epage=44&rft_id=info:doi/10.1016%2Fj.imavis.2016.07.007&rft.externalDocID=S0262885616301238 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon |