Seismic inverse modeling method based on generative adversarial networks
Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this pape...
Saved in:
| Published in | Journal of petroleum science & engineering Vol. 215; p. 110652 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4105 1873-4715 |
| DOI | 10.1016/j.petrol.2022.110652 |
Cover
| Abstract | Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this paper, an inversion modeling method based on a wasserstein generative adversarial networks with gradient penalty (WGAN-GP) is introduced to integrate geology, well data and seismic data. A WGAN-GP is a generation model algorithm based on generative adversarial networks (GANs) that extracts spatial structure and abstract features of a training image. A gradient penalty function is added to an original loss function of GANs to improve the robustness. After assessment of the loss function, variograms and connectivity functions, the trained network is applied to seismic inversion simulation. In inversion, an optimal model is selected by the Metropolis with Markov chain Monte Carlo algorithm. Results show that the trained network can reproduce a thousand models containing millions of grid cells with a specific mode similar to a training image in 1 s. The inversion models conform to well data with 100% accuracy and have an efficient correspondence with prior seismic data. A whole inversion process completes 360,000 iterations in 4 h. The optimal inversion model has a subequal Root Mean Square Error (RMSE) with the true model and visually resembles a channel. With the proposed method, geological knowledge has a stable characterization in model realizations.
•An inversion workflow is proposed to bridge a gap between geophysics data and geological knowledge.•The workflow is composed of a machine learning algorithm and a post-stack seismic inversion.•The WGAN-GP algorithm has a stable characterization on geological patterns.•Markov chain Monte Carlo (MCMC) sampling with GPUs speeds up the inversion.•The approach provides a way to decrease uncertainty and deal with the high-dimensional problem. |
|---|---|
| AbstractList | Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this paper, an inversion modeling method based on a wasserstein generative adversarial networks with gradient penalty (WGAN-GP) is introduced to integrate geology, well data and seismic data. A WGAN-GP is a generation model algorithm based on generative adversarial networks (GANs) that extracts spatial structure and abstract features of a training image. A gradient penalty function is added to an original loss function of GANs to improve the robustness. After assessment of the loss function, variograms and connectivity functions, the trained network is applied to seismic inversion simulation. In inversion, an optimal model is selected by the Metropolis with Markov chain Monte Carlo algorithm. Results show that the trained network can reproduce a thousand models containing millions of grid cells with a specific mode similar to a training image in 1 s. The inversion models conform to well data with 100% accuracy and have an efficient correspondence with prior seismic data. A whole inversion process completes 360,000 iterations in 4 h. The optimal inversion model has a subequal Root Mean Square Error (RMSE) with the true model and visually resembles a channel. With the proposed method, geological knowledge has a stable characterization in model realizations.
•An inversion workflow is proposed to bridge a gap between geophysics data and geological knowledge.•The workflow is composed of a machine learning algorithm and a post-stack seismic inversion.•The WGAN-GP algorithm has a stable characterization on geological patterns.•Markov chain Monte Carlo (MCMC) sampling with GPUs speeds up the inversion.•The approach provides a way to decrease uncertainty and deal with the high-dimensional problem. |
| ArticleNumber | 110652 |
| Author | Hou, Jiagen Yin, Yanshu Wang, Lixin Chen, Zhangxin Chen, Mei Xie, Pengfei |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Xie fullname: Xie, Pengfei organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China – sequence: 2 givenname: Jiagen surname: Hou fullname: Hou, Jiagen email: jghou63@hotmail.com organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China – sequence: 3 givenname: Yanshu surname: Yin fullname: Yin, Yanshu organization: School of Geosciences, Yangtze University, Wuhan, 100083, China – sequence: 4 givenname: Zhangxin orcidid: 0000-0002-9107-1925 surname: Chen fullname: Chen, Zhangxin organization: Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 1N4, Canada – sequence: 5 givenname: Mei surname: Chen fullname: Chen, Mei organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China – sequence: 6 givenname: Lixin surname: Wang fullname: Wang, Lixin organization: School of Geosciences, Yangtze University, Wuhan, 100083, China |
| BookMark | eNqFkE1LAzEQhoNUsFX_gYf8ga2TbPbLgyBFrVDwoJ5DNpmtqbtJSULFf--W9eRBTzOHeV7mfRZk5rxDQq4YLBmw8nq33GMKvl9y4HzJGJQFPyFzVld5JipWzMgcGg6ZYFCckUWMOwDIy7yak_UL2jhYTa07YIhIB2-wt25LB0zv3tBWRTTUO7pFh0Ele0CqzPFWBat66jB9-vARL8hpp_qIlz_znLw93L-u1tnm-fFpdbfJdA5lyhTPOdelgK5ssa4KFI1mRuS16MZ3Fas101XZAtPduIAwqBsDrUBsdKlrzM-JmHJ18DEG7OQ-2EGFL8lAHm3InZxsyKMNOdkYsZtfmLZpbONdCsr2_8G3E4xjsYPFIKO26DQaG1Anabz9O-AbBpqBQA |
| CitedBy_id | crossref_primary_10_1109_LGRS_2025_3529024 crossref_primary_10_1016_j_marpetgeo_2024_107231 crossref_primary_10_1109_TGRS_2024_3521964 crossref_primary_10_1016_j_geoen_2025_213758 crossref_primary_10_3389_feart_2024_1498164 crossref_primary_10_1016_j_geoen_2023_212331 crossref_primary_10_3389_feart_2023_1345028 |
| Cites_doi | 10.1016/j.petrol.2021.109724 10.1016/S0098-3004(03)00028-1 10.1016/j.advwatres.2017.09.029 10.1214/ss/1177011136 10.1190/1.2803748 10.1023/A:1014009426274 10.1016/S1876-3804(21)60032-0 10.1190/1.1778241 10.1007/s12182-019-0328-4 10.1093/gji/ggv008 10.1007/s11004-017-9693-y 10.1029/2010WR009274 10.1007/s11004-021-09934-0 10.1029/96GL01671 10.1007/s11004-019-09832-6 10.1023/A:1022307807851 10.1190/1.3478209 10.1002/2017WR022148 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.petrol.2022.110652 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1873-4715 |
| ExternalDocumentID | 10_1016_j_petrol_2022_110652 S0920410522005228 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W JARJE KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SPD SSE SSR SSZ T5K WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-a2322c640f6be875e49c1d4384f187a18c1c76b01cf1c704dec9d0b4ee9c6c8e3 |
| IEDL.DBID | .~1 |
| ISSN | 0920-4105 |
| IngestDate | Thu Oct 16 04:35:53 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Fri Feb 23 02:39:43 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Reservoir Modeling MCMC Seismic Inversion Variogram Modeling Generative adversarial network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-a2322c640f6be875e49c1d4384f187a18c1c76b01cf1c704dec9d0b4ee9c6c8e3 |
| ORCID | 0000-0002-9107-1925 |
| ParticipantIDs | crossref_primary_10_1016_j_petrol_2022_110652 crossref_citationtrail_10_1016_j_petrol_2022_110652 elsevier_sciencedirect_doi_10_1016_j_petrol_2022_110652 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of petroleum science & engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Laloy, Vrugt (bib15) 2012; 50 Zhang, Tilke, Dupont, Zhu, Liang, Bailey (bib37) 2019; 16 Lochbuhler, Vrugt, Sadegh, Linde (bib21) 2015; 2 Gelman, Rubin (bib1) 1992; 7 Mariethoz, Renard, Caere (bib23) 2010; 46 Mosser, Dubrule, Blunt (bib25) 2019 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courvile, Bengio (bib10) 2014 Zhu, Zhang (bib38) 2019 Pardo-Iguzquiza, Dowd (bib28) 2003; 29 Jeong, Mukerji, Mariethoz (bib13) 2017; 49 Song, Mukerji, Hou (bib31) 2021; 53 Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib11) 2017 Lixin, Yanshu, Hui (bib20) 2021; 48 Strebelle (bib34) 2002; 34 Glorot, Bordes, Bengio (bib8) 2011; 15 Arjovsky, Chintala, Bottou (bib2) 2017 Dubrule (bib6) 2003 Gonzalez, Mukerji, Mavko (bib9) 2008; 73 Mariethoz, Caers (bib22) 2014 Strebelle (bib33) 2000 Eidsvik, Avseth, Omre, Mukerji, Mavko (bib7) 2004; 69 Laloy, Linde, Ruffino, Herault, Gasso, Jacques (bib18) 2019; 133 Mosser, Dubrule, Blunt (bib24) 2017; 9 Laloy, Herault, Lee, Jacques, Linde (bib16) 2017; 1 Otchere, Hodgetts, Omar, Ullah, Rashid (bib27) August 2021 Pyrcz, Mchargue, Clark, Sullivan, Strebelle (bib29) 2012 Vrugt, Ter Braak, Diks, Robinson, Hyman, Higdon (bib35) 2009; 10 Laloy, Herault, Jacques, Linde (bib17) 2018; 54 Bosch, Mukerji, Gonzalez (bib3) 2010; 75 Song, Mukerji, Hou (bib32) 2021; 99 Wang, Yu, Li, Zhang (bib36) 2022; 208 Chan, Elsheikh (bib4) 2017 Kingma, Ba (bib14) 2014 Li, Ji, Zhao, Wu, Li (bib19) 2007; 34 Mukerji, Mavko, Rio (bib26) 1997; 29 Shibutani, Sambridge, Kennett (bib30) 2013; 23 Haas, Dubrule (bib12) 1994; 13 Doyen (bib5) 2007 Zhu (10.1016/j.petrol.2022.110652_bib38) 2019 Chan (10.1016/j.petrol.2022.110652_bib4) 2017 Laloy (10.1016/j.petrol.2022.110652_bib17) 2018; 54 Song (10.1016/j.petrol.2022.110652_bib32) 2021; 99 Strebelle (10.1016/j.petrol.2022.110652_bib34) 2002; 34 Bosch (10.1016/j.petrol.2022.110652_bib3) 2010; 75 Vrugt (10.1016/j.petrol.2022.110652_bib35) 2009; 10 Mariethoz (10.1016/j.petrol.2022.110652_bib22) 2014 Wang (10.1016/j.petrol.2022.110652_bib36) 2022; 208 Gulrajani (10.1016/j.petrol.2022.110652_bib11) 2017 Glorot (10.1016/j.petrol.2022.110652_bib8) 2011; 15 Dubrule (10.1016/j.petrol.2022.110652_bib6) 2003 Lixin (10.1016/j.petrol.2022.110652_bib20) 2021; 48 Eidsvik (10.1016/j.petrol.2022.110652_bib7) 2004; 69 Lochbuhler (10.1016/j.petrol.2022.110652_bib21) 2015; 2 Mosser (10.1016/j.petrol.2022.110652_bib24) 2017; 9 Zhang (10.1016/j.petrol.2022.110652_bib37) 2019; 16 Jeong (10.1016/j.petrol.2022.110652_bib13) 2017; 49 Laloy (10.1016/j.petrol.2022.110652_bib15) 2012; 50 Otchere (10.1016/j.petrol.2022.110652_bib27) 2021 Doyen (10.1016/j.petrol.2022.110652_bib5) 2007 Pardo-Iguzquiza (10.1016/j.petrol.2022.110652_bib28) 2003; 29 Pyrcz (10.1016/j.petrol.2022.110652_bib29) 2012 Laloy (10.1016/j.petrol.2022.110652_bib18) 2019; 133 Song (10.1016/j.petrol.2022.110652_bib31) 2021; 53 Gonzalez (10.1016/j.petrol.2022.110652_bib9) 2008; 73 Shibutani (10.1016/j.petrol.2022.110652_bib30) 2013; 23 Arjovsky (10.1016/j.petrol.2022.110652_bib2) 2017 Goodfellow (10.1016/j.petrol.2022.110652_bib10) 2014 Mariethoz (10.1016/j.petrol.2022.110652_bib23) 2010; 46 Li (10.1016/j.petrol.2022.110652_bib19) 2007; 34 Kingma (10.1016/j.petrol.2022.110652_bib14) 2014 Strebelle (10.1016/j.petrol.2022.110652_bib33) 2000 Laloy (10.1016/j.petrol.2022.110652_bib16) 2017; 1 Mukerji (10.1016/j.petrol.2022.110652_bib26) 1997; 29 Haas (10.1016/j.petrol.2022.110652_bib12) 1994; 13 Gelman (10.1016/j.petrol.2022.110652_bib1) 1992; 7 Mosser (10.1016/j.petrol.2022.110652_bib25) 2019 |
| References_xml | – volume: 69 start-page: 978 year: 2004 end-page: 993 ident: bib7 article-title: Stochastic reservoir characterization using prestack seismic data publication-title: Geophysics – volume: 48 start-page: 407 year: 2021 end-page: 420 ident: bib20 article-title: A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling: a case study of Cretaceous McMurray reservoirs in a block of Canada publication-title: Petrol. Explor. Dev. – year: 2014 ident: bib10 article-title: Generative adversarial nets publication-title: International Conference on Neural Information Processing Systems – volume: 23 start-page: 1829 year: 2013 end-page: 1832 ident: bib30 article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia publication-title: Geophys. Res. Lett. – volume: 7 start-page: 457 year: 1992 end-page: 472 ident: bib1 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. – volume: 49 start-page: 845 year: 2017 end-page: 869 ident: bib13 article-title: A fast approximation for seismic inverse modeling: adaptive spatial resampling publication-title: Math. Geosci. – volume: 1 start-page: 387 year: 2017 end-page: 405 ident: bib16 article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network publication-title: Adv. Water Resour. – year: 2017 ident: bib2 article-title: Wasserstein GAN – volume: 13 start-page: 61 year: 1994 end-page: 569 ident: bib12 article-title: Geostatistical inversion: a sequential method for stochastic reservoir modeling constrained by seismic data publication-title: First Break – volume: 133 year: 2019 ident: bib18 article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: is it feasible? publication-title: Comput. Geosci. – volume: 99 start-page: 1 year: 2021 end-page: 11 ident: bib32 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 73 start-page: R11 year: 2008 end-page: R21 ident: bib9 article-title: Seismic inversion combining rock physics and multiple-point geostatistics publication-title: Geophysics – volume: 46 start-page: 2387 year: 2010 end-page: 2392 ident: bib23 article-title: Bayesian inverse problem and optimization with iterative spatial resampling publication-title: Water Resour. Res. – volume: 10 start-page: 273 year: 2009 end-page: 290 ident: bib35 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlinear Sci. Numer. Stimul. – year: 2017 ident: bib4 article-title: Parametrization and Generation of Geological Models with Generative Adversarial Networks – volume: 50 start-page: 182 year: 2012 end-page: 205 ident: bib15 article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing publication-title: Water Resour. Res. – year: 2014 ident: bib22 article-title: Multiple-Point Geostatistics: Stochastic Modeling with Training Images – volume: 34 start-page: 451 year: 2007 end-page: 455 ident: bib19 article-title: Methodology and application of stochastic seismic inversion: a case from P Oilfield, M Basin, Sudan publication-title: Petrol. Explor. Dev. – volume: 16 start-page: 541 year: 2019 end-page: 549 ident: bib37 article-title: Generating geologically realistic 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks publication-title: Petrol. Sci. – year: 2007 ident: bib5 article-title: Seismic Reservoir Characterization: an Earth Modelling Perspective – volume: 15 start-page: 315 year: 2011 end-page: 323 ident: bib8 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – volume: 53 start-page: 1413 year: 2021 end-page: 1444 ident: bib31 article-title: GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs) publication-title: Math Geosci. – start-page: 5767 year: 2017 end-page: 5777 ident: bib11 article-title: Improved Training of Wasserstein Gans. Advances in Neural Information Processing Systems – volume: 54 start-page: 381 year: 2018 end-page: 406 ident: bib17 article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network publication-title: Water Resour. Res. – volume: 29 start-page: 775 year: 2003 end-page: 785 ident: bib28 article-title: Connec3d: a computer program for connectivity analysis of 3d random set models publication-title: Comput. Geosci. – year: 2000 ident: bib33 article-title: Sequential Simulation Drawing Structures from Training Images – volume: 9 start-page: 43 year: 2017 end-page: 49 ident: bib24 article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks publication-title: Phys. Rev. – start-page: 27 year: 2012 end-page: 38 ident: bib29 article-title: Event-Based Geostatistical Modeling: Description and Applications – year: 2019 ident: bib38 article-title: Generating Geological Facies Models with Fidelity to Diversity and Statistics of Training Images Using Improved Generative Adversarial Networks – year: 2014 ident: bib14 article-title: Adam: a method for stochastic optimization publication-title: Comput. Sci. – volume: 29 start-page: 933 year: 1997 end-page: 950 ident: bib26 article-title: Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration publication-title: Math. Geol. – volume: 208 start-page: 109724 year: 2022 ident: bib36 article-title: Two parameter optimization methods of multi-point geostatistics publication-title: J. Petrol. Sci. Eng. – volume: 75 start-page: 165 year: 2010 end-page: 176 ident: bib3 article-title: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review publication-title: Geophysics – volume: 2 start-page: 157 year: 2015 end-page: 171 ident: bib21 article-title: Summary statistics from training images as prior information in probabilistic inversion publication-title: Geophys. J. Int. – year: 2019 ident: bib25 article-title: Stochastic seismic waveform inversion using generative adversarial networks as a geological prior publication-title: Math. Geosci. – year: 2003 ident: bib6 article-title: Geostatistics for Seismic Data Integration in Earth Models – volume: 34 start-page: 1 year: 2002 end-page: 21 ident: bib34 article-title: Conditional simulation of complex geological structures using multiple-point statistics publication-title: Math. Geol. – year: August 2021 ident: bib27 article-title: Static reservoir modeling comparing inverse distance weighting to kriging interpolation algorithm in volumetric estimation. Case study: gullfaks field publication-title: Paper Presented at the Offshore Technology Conference, Virtual and Houston, Texas – volume: 208 start-page: 109724 year: 2022 ident: 10.1016/j.petrol.2022.110652_bib36 article-title: Two parameter optimization methods of multi-point geostatistics publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109724 – year: 2017 ident: 10.1016/j.petrol.2022.110652_bib4 – volume: 29 start-page: 775 issue: 6 year: 2003 ident: 10.1016/j.petrol.2022.110652_bib28 article-title: Connec3d: a computer program for connectivity analysis of 3d random set models publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(03)00028-1 – volume: 1 start-page: 387 issue: 10 year: 2017 ident: 10.1016/j.petrol.2022.110652_bib16 article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.029 – volume: 133 issue: Dec year: 2019 ident: 10.1016/j.petrol.2022.110652_bib18 article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: is it feasible? publication-title: Comput. Geosci. – year: 2019 ident: 10.1016/j.petrol.2022.110652_bib38 – volume: 7 start-page: 457 issue: 4 year: 1992 ident: 10.1016/j.petrol.2022.110652_bib1 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. doi: 10.1214/ss/1177011136 – volume: 10 start-page: 273 issue: 3 year: 2009 ident: 10.1016/j.petrol.2022.110652_bib35 article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling publication-title: Int. J. Nonlinear Sci. Numer. Stimul. – year: 2003 ident: 10.1016/j.petrol.2022.110652_bib6 – volume: 73 start-page: R11 issue: 1 year: 2008 ident: 10.1016/j.petrol.2022.110652_bib9 article-title: Seismic inversion combining rock physics and multiple-point geostatistics publication-title: Geophysics doi: 10.1190/1.2803748 – volume: 34 start-page: 451 issue: 4 year: 2007 ident: 10.1016/j.petrol.2022.110652_bib19 article-title: Methodology and application of stochastic seismic inversion: a case from P Oilfield, M Basin, Sudan publication-title: Petrol. Explor. Dev. – year: 2000 ident: 10.1016/j.petrol.2022.110652_bib33 – volume: 34 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.petrol.2022.110652_bib34 article-title: Conditional simulation of complex geological structures using multiple-point statistics publication-title: Math. Geol. doi: 10.1023/A:1014009426274 – volume: 48 start-page: 407 issue: 2 year: 2021 ident: 10.1016/j.petrol.2022.110652_bib20 article-title: A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling: a case study of Cretaceous McMurray reservoirs in a block of Canada publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(21)60032-0 – volume: 69 start-page: 978 year: 2004 ident: 10.1016/j.petrol.2022.110652_bib7 article-title: Stochastic reservoir characterization using prestack seismic data publication-title: Geophysics doi: 10.1190/1.1778241 – year: 2007 ident: 10.1016/j.petrol.2022.110652_bib5 – volume: 16 start-page: 541 issue: 3 year: 2019 ident: 10.1016/j.petrol.2022.110652_bib37 article-title: Generating geologically realistic 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks publication-title: Petrol. Sci. doi: 10.1007/s12182-019-0328-4 – volume: 9 start-page: 43 issue: 6 year: 2017 ident: 10.1016/j.petrol.2022.110652_bib24 article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks publication-title: Phys. Rev. – volume: 2 start-page: 157 issue: 1 year: 2015 ident: 10.1016/j.petrol.2022.110652_bib21 article-title: Summary statistics from training images as prior information in probabilistic inversion publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv008 – year: 2014 ident: 10.1016/j.petrol.2022.110652_bib10 article-title: Generative adversarial nets – volume: 49 start-page: 845 year: 2017 ident: 10.1016/j.petrol.2022.110652_bib13 article-title: A fast approximation for seismic inverse modeling: adaptive spatial resampling publication-title: Math. Geosci. doi: 10.1007/s11004-017-9693-y – year: 2021 ident: 10.1016/j.petrol.2022.110652_bib27 article-title: Static reservoir modeling comparing inverse distance weighting to kriging interpolation algorithm in volumetric estimation. Case study: gullfaks field – volume: 46 start-page: 2387 issue: 11 year: 2010 ident: 10.1016/j.petrol.2022.110652_bib23 article-title: Bayesian inverse problem and optimization with iterative spatial resampling publication-title: Water Resour. Res. doi: 10.1029/2010WR009274 – volume: 99 start-page: 1 year: 2021 ident: 10.1016/j.petrol.2022.110652_bib32 article-title: Bridging the gap between geophysics and geology with generative adversarial networks publication-title: IEEE Trans. Geosci. Rem. Sens. – volume: 53 start-page: 1413 year: 2021 ident: 10.1016/j.petrol.2022.110652_bib31 article-title: GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs) publication-title: Math Geosci. doi: 10.1007/s11004-021-09934-0 – volume: 15 start-page: 315 year: 2011 ident: 10.1016/j.petrol.2022.110652_bib8 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – start-page: 27 year: 2012 ident: 10.1016/j.petrol.2022.110652_bib29 – volume: 23 start-page: 1829 issue: 14 year: 2013 ident: 10.1016/j.petrol.2022.110652_bib30 article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia publication-title: Geophys. Res. Lett. doi: 10.1029/96GL01671 – year: 2014 ident: 10.1016/j.petrol.2022.110652_bib22 – year: 2017 ident: 10.1016/j.petrol.2022.110652_bib2 – issue: 1 year: 2019 ident: 10.1016/j.petrol.2022.110652_bib25 article-title: Stochastic seismic waveform inversion using generative adversarial networks as a geological prior publication-title: Math. Geosci. doi: 10.1007/s11004-019-09832-6 – volume: 50 start-page: 182 issue: 3 year: 2012 ident: 10.1016/j.petrol.2022.110652_bib15 article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing publication-title: Water Resour. Res. – year: 2014 ident: 10.1016/j.petrol.2022.110652_bib14 article-title: Adam: a method for stochastic optimization publication-title: Comput. Sci. – volume: 13 start-page: 61 issue: 12 year: 1994 ident: 10.1016/j.petrol.2022.110652_bib12 article-title: Geostatistical inversion: a sequential method for stochastic reservoir modeling constrained by seismic data publication-title: First Break – volume: 29 start-page: 933 issue: 7 year: 1997 ident: 10.1016/j.petrol.2022.110652_bib26 article-title: Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration publication-title: Math. Geol. doi: 10.1023/A:1022307807851 – volume: 75 start-page: 165 issue: 5 year: 2010 ident: 10.1016/j.petrol.2022.110652_bib3 article-title: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review publication-title: Geophysics doi: 10.1190/1.3478209 – start-page: 5767 year: 2017 ident: 10.1016/j.petrol.2022.110652_bib11 – volume: 54 start-page: 381 issue: 1 year: 2018 ident: 10.1016/j.petrol.2022.110652_bib17 article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network publication-title: Water Resour. Res. doi: 10.1002/2017WR022148 |
| SSID | ssj0003637 |
| Score | 2.0018742 |
| Snippet | Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110652 |
| SubjectTerms | Generative adversarial network MCMC Reservoir Modeling Seismic Inversion Variogram Modeling |
| Title | Seismic inverse modeling method based on generative adversarial networks |
| URI | https://dx.doi.org/10.1016/j.petrol.2022.110652 |
| Volume | 215 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier - Riviste Science Direct (Freedom collection from 1995) customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: AIKHN dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: ACRLP dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003637 issn: 0920-4105 databaseCode: AKRWK dateStart: 19870801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEfQgOhXnj5GD17g2fU3b4xjOqrjLHOxWkjSRinZjmwcv_u0mTasTRMFbU96D8ni890K_930IXahIJpRrSSgHIMCFIAI8IFx7TLJQJ3lF13Q_YukEbqfhtIUGzS6MhVXWtd_V9Kpa1296dTR786Lojb2EehakSCvyIGoXfgEiq2Jw-f4F8wiY4800xsRaN-tzFcbLDKaLmf0BQanFw7OQ_tye1lrOcA_t1rMi7rvP2UctVbbRzhqDYBttXVfKvG8HKB2rYvlSSFyUFmmhcKVxY4ywE4nGtl_leFbix4pp2pY5zK0c85LbJMSlA4QvD9FkePUwSEktk0CkmfdXhJuhiEoGnmZCmeuHgkT6OQQxaD-OuB9LX0ZMeL7U5sGDXMkk9wQolUgmYxUcoY1yVqpjhHNFY61Nx8qpgkizWDCmQnsnAxHIGDooaKKTyZpD3EpZPGcNWOwpczHNbEwzF9MOIp9ec8eh8Yd91AQ--5YLmSnzv3qe_NvzFG3bk4P2naGN1eJVnZtxYyW6VT510Wb_5i4dfQDf6tWA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiagH0ak4f-bgNa5N07Q9ynBO3XbZBruVJk2kot3Y5sGLf7tJ0-oEUfBW0vegPB7vB_3yfQCXMhARSZTAJKEU04RzzKlDcaIcJpivorSga-oPWHdM7yf-pAbt6i6MgVWWtd_W9KJalyetMpqtWZa1hk5EHANSJAV5EAnXYJ36JDAb2NX7F87DY5Y4U1tjY17dnytAXnoynU_NHwhCDCCe-eTn_rTSczq7sFMOi-jafs8e1GTegO0VCsEGbNwW0rxv-9AdymzxkgmU5QZqIVEhcqONkFWJRqZhpWiao8eCatrUOZQYPeZFYrIQ5RYRvjiAcedm1O7iUicBCz3wL3GipyIiGHUU41LvH5JGwk2pF1LlhkHihsIVAeOOK5R-cGgqRZQ6nEoZCSZC6R1CPZ_m8ghQKkmolG5ZKZE0UCzkjEnfLGWUeyKkTfCq6MSiJBE3WhbPcYUWe4ptTGMT09jGtAn402tmSTT-sA-qwMffkiHWdf5Xz-N_e17AZnfU78W9u8HDCWyZNxbndwr15fxVnunZY8nPi9z6APgG1xU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+inverse+modeling+method+based+on+generative+adversarial+networks&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Xie%2C+Pengfei&rft.au=Hou%2C+Jiagen&rft.au=Yin%2C+Yanshu&rft.au=Chen%2C+Zhangxin&rft.date=2022-08-01&rft.issn=0920-4105&rft.volume=215&rft.spage=110652&rft_id=info:doi/10.1016%2Fj.petrol.2022.110652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_petrol_2022_110652 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon |