Seismic inverse modeling method based on generative adversarial networks

Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this pape...

Full description

Saved in:
Bibliographic Details
Published inJournal of petroleum science & engineering Vol. 215; p. 110652
Main Authors Xie, Pengfei, Hou, Jiagen, Yin, Yanshu, Chen, Zhangxin, Chen, Mei, Wang, Lixin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text
ISSN0920-4105
1873-4715
DOI10.1016/j.petrol.2022.110652

Cover

Abstract Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this paper, an inversion modeling method based on a wasserstein generative adversarial networks with gradient penalty (WGAN-GP) is introduced to integrate geology, well data and seismic data. A WGAN-GP is a generation model algorithm based on generative adversarial networks (GANs) that extracts spatial structure and abstract features of a training image. A gradient penalty function is added to an original loss function of GANs to improve the robustness. After assessment of the loss function, variograms and connectivity functions, the trained network is applied to seismic inversion simulation. In inversion, an optimal model is selected by the Metropolis with Markov chain Monte Carlo algorithm. Results show that the trained network can reproduce a thousand models containing millions of grid cells with a specific mode similar to a training image in 1 s. The inversion models conform to well data with 100% accuracy and have an efficient correspondence with prior seismic data. A whole inversion process completes 360,000 iterations in 4 h. The optimal inversion model has a subequal Root Mean Square Error (RMSE) with the true model and visually resembles a channel. With the proposed method, geological knowledge has a stable characterization in model realizations. •An inversion workflow is proposed to bridge a gap between geophysics data and geological knowledge.•The workflow is composed of a machine learning algorithm and a post-stack seismic inversion.•The WGAN-GP algorithm has a stable characterization on geological patterns.•Markov chain Monte Carlo (MCMC) sampling with GPUs speeds up the inversion.•The approach provides a way to decrease uncertainty and deal with the high-dimensional problem.
AbstractList Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is difficult to combine with complicated and abstract knowledge on geological modes, and its uncertainty is difficult to be assessed. In this paper, an inversion modeling method based on a wasserstein generative adversarial networks with gradient penalty (WGAN-GP) is introduced to integrate geology, well data and seismic data. A WGAN-GP is a generation model algorithm based on generative adversarial networks (GANs) that extracts spatial structure and abstract features of a training image. A gradient penalty function is added to an original loss function of GANs to improve the robustness. After assessment of the loss function, variograms and connectivity functions, the trained network is applied to seismic inversion simulation. In inversion, an optimal model is selected by the Metropolis with Markov chain Monte Carlo algorithm. Results show that the trained network can reproduce a thousand models containing millions of grid cells with a specific mode similar to a training image in 1 s. The inversion models conform to well data with 100% accuracy and have an efficient correspondence with prior seismic data. A whole inversion process completes 360,000 iterations in 4 h. The optimal inversion model has a subequal Root Mean Square Error (RMSE) with the true model and visually resembles a channel. With the proposed method, geological knowledge has a stable characterization in model realizations. •An inversion workflow is proposed to bridge a gap between geophysics data and geological knowledge.•The workflow is composed of a machine learning algorithm and a post-stack seismic inversion.•The WGAN-GP algorithm has a stable characterization on geological patterns.•Markov chain Monte Carlo (MCMC) sampling with GPUs speeds up the inversion.•The approach provides a way to decrease uncertainty and deal with the high-dimensional problem.
ArticleNumber 110652
Author Hou, Jiagen
Yin, Yanshu
Wang, Lixin
Chen, Zhangxin
Chen, Mei
Xie, Pengfei
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Xie
  fullname: Xie, Pengfei
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China
– sequence: 2
  givenname: Jiagen
  surname: Hou
  fullname: Hou, Jiagen
  email: jghou63@hotmail.com
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China
– sequence: 3
  givenname: Yanshu
  surname: Yin
  fullname: Yin, Yanshu
  organization: School of Geosciences, Yangtze University, Wuhan, 100083, China
– sequence: 4
  givenname: Zhangxin
  orcidid: 0000-0002-9107-1925
  surname: Chen
  fullname: Chen, Zhangxin
  organization: Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, T2N 1N4, Canada
– sequence: 5
  givenname: Mei
  surname: Chen
  fullname: Chen, Mei
  organization: State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China
– sequence: 6
  givenname: Lixin
  surname: Wang
  fullname: Wang, Lixin
  organization: School of Geosciences, Yangtze University, Wuhan, 100083, China
BookMark eNqFkE1LAzEQhoNUsFX_gYf8ga2TbPbLgyBFrVDwoJ5DNpmtqbtJSULFf--W9eRBTzOHeV7mfRZk5rxDQq4YLBmw8nq33GMKvl9y4HzJGJQFPyFzVld5JipWzMgcGg6ZYFCckUWMOwDIy7yak_UL2jhYTa07YIhIB2-wt25LB0zv3tBWRTTUO7pFh0Ele0CqzPFWBat66jB9-vARL8hpp_qIlz_znLw93L-u1tnm-fFpdbfJdA5lyhTPOdelgK5ssa4KFI1mRuS16MZ3Fas101XZAtPduIAwqBsDrUBsdKlrzM-JmHJ18DEG7OQ-2EGFL8lAHm3InZxsyKMNOdkYsZtfmLZpbONdCsr2_8G3E4xjsYPFIKO26DQaG1Anabz9O-AbBpqBQA
CitedBy_id crossref_primary_10_1109_LGRS_2025_3529024
crossref_primary_10_1016_j_marpetgeo_2024_107231
crossref_primary_10_1109_TGRS_2024_3521964
crossref_primary_10_1016_j_geoen_2025_213758
crossref_primary_10_3389_feart_2024_1498164
crossref_primary_10_1016_j_geoen_2023_212331
crossref_primary_10_3389_feart_2023_1345028
Cites_doi 10.1016/j.petrol.2021.109724
10.1016/S0098-3004(03)00028-1
10.1016/j.advwatres.2017.09.029
10.1214/ss/1177011136
10.1190/1.2803748
10.1023/A:1014009426274
10.1016/S1876-3804(21)60032-0
10.1190/1.1778241
10.1007/s12182-019-0328-4
10.1093/gji/ggv008
10.1007/s11004-017-9693-y
10.1029/2010WR009274
10.1007/s11004-021-09934-0
10.1029/96GL01671
10.1007/s11004-019-09832-6
10.1023/A:1022307807851
10.1190/1.3478209
10.1002/2017WR022148
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.petrol.2022.110652
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1873-4715
ExternalDocumentID 10_1016_j_petrol_2022_110652
S0920410522005228
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SPD
SSE
SSR
SSZ
T5K
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-a2322c640f6be875e49c1d4384f187a18c1c76b01cf1c704dec9d0b4ee9c6c8e3
IEDL.DBID .~1
ISSN 0920-4105
IngestDate Thu Oct 16 04:35:53 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Fri Feb 23 02:39:43 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords Reservoir Modeling
MCMC
Seismic Inversion
Variogram Modeling
Generative adversarial network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-a2322c640f6be875e49c1d4384f187a18c1c76b01cf1c704dec9d0b4ee9c6c8e3
ORCID 0000-0002-9107-1925
ParticipantIDs crossref_primary_10_1016_j_petrol_2022_110652
crossref_citationtrail_10_1016_j_petrol_2022_110652
elsevier_sciencedirect_doi_10_1016_j_petrol_2022_110652
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Journal of petroleum science & engineering
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Laloy, Vrugt (bib15) 2012; 50
Zhang, Tilke, Dupont, Zhu, Liang, Bailey (bib37) 2019; 16
Lochbuhler, Vrugt, Sadegh, Linde (bib21) 2015; 2
Gelman, Rubin (bib1) 1992; 7
Mariethoz, Renard, Caere (bib23) 2010; 46
Mosser, Dubrule, Blunt (bib25) 2019
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courvile, Bengio (bib10) 2014
Zhu, Zhang (bib38) 2019
Pardo-Iguzquiza, Dowd (bib28) 2003; 29
Jeong, Mukerji, Mariethoz (bib13) 2017; 49
Song, Mukerji, Hou (bib31) 2021; 53
Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville (bib11) 2017
Lixin, Yanshu, Hui (bib20) 2021; 48
Strebelle (bib34) 2002; 34
Glorot, Bordes, Bengio (bib8) 2011; 15
Arjovsky, Chintala, Bottou (bib2) 2017
Dubrule (bib6) 2003
Gonzalez, Mukerji, Mavko (bib9) 2008; 73
Mariethoz, Caers (bib22) 2014
Strebelle (bib33) 2000
Eidsvik, Avseth, Omre, Mukerji, Mavko (bib7) 2004; 69
Laloy, Linde, Ruffino, Herault, Gasso, Jacques (bib18) 2019; 133
Mosser, Dubrule, Blunt (bib24) 2017; 9
Laloy, Herault, Lee, Jacques, Linde (bib16) 2017; 1
Otchere, Hodgetts, Omar, Ullah, Rashid (bib27) August 2021
Pyrcz, Mchargue, Clark, Sullivan, Strebelle (bib29) 2012
Vrugt, Ter Braak, Diks, Robinson, Hyman, Higdon (bib35) 2009; 10
Laloy, Herault, Jacques, Linde (bib17) 2018; 54
Bosch, Mukerji, Gonzalez (bib3) 2010; 75
Song, Mukerji, Hou (bib32) 2021; 99
Wang, Yu, Li, Zhang (bib36) 2022; 208
Chan, Elsheikh (bib4) 2017
Kingma, Ba (bib14) 2014
Li, Ji, Zhao, Wu, Li (bib19) 2007; 34
Mukerji, Mavko, Rio (bib26) 1997; 29
Shibutani, Sambridge, Kennett (bib30) 2013; 23
Haas, Dubrule (bib12) 1994; 13
Doyen (bib5) 2007
Zhu (10.1016/j.petrol.2022.110652_bib38) 2019
Chan (10.1016/j.petrol.2022.110652_bib4) 2017
Laloy (10.1016/j.petrol.2022.110652_bib17) 2018; 54
Song (10.1016/j.petrol.2022.110652_bib32) 2021; 99
Strebelle (10.1016/j.petrol.2022.110652_bib34) 2002; 34
Bosch (10.1016/j.petrol.2022.110652_bib3) 2010; 75
Vrugt (10.1016/j.petrol.2022.110652_bib35) 2009; 10
Mariethoz (10.1016/j.petrol.2022.110652_bib22) 2014
Wang (10.1016/j.petrol.2022.110652_bib36) 2022; 208
Gulrajani (10.1016/j.petrol.2022.110652_bib11) 2017
Glorot (10.1016/j.petrol.2022.110652_bib8) 2011; 15
Dubrule (10.1016/j.petrol.2022.110652_bib6) 2003
Lixin (10.1016/j.petrol.2022.110652_bib20) 2021; 48
Eidsvik (10.1016/j.petrol.2022.110652_bib7) 2004; 69
Lochbuhler (10.1016/j.petrol.2022.110652_bib21) 2015; 2
Mosser (10.1016/j.petrol.2022.110652_bib24) 2017; 9
Zhang (10.1016/j.petrol.2022.110652_bib37) 2019; 16
Jeong (10.1016/j.petrol.2022.110652_bib13) 2017; 49
Laloy (10.1016/j.petrol.2022.110652_bib15) 2012; 50
Otchere (10.1016/j.petrol.2022.110652_bib27) 2021
Doyen (10.1016/j.petrol.2022.110652_bib5) 2007
Pardo-Iguzquiza (10.1016/j.petrol.2022.110652_bib28) 2003; 29
Pyrcz (10.1016/j.petrol.2022.110652_bib29) 2012
Laloy (10.1016/j.petrol.2022.110652_bib18) 2019; 133
Song (10.1016/j.petrol.2022.110652_bib31) 2021; 53
Gonzalez (10.1016/j.petrol.2022.110652_bib9) 2008; 73
Shibutani (10.1016/j.petrol.2022.110652_bib30) 2013; 23
Arjovsky (10.1016/j.petrol.2022.110652_bib2) 2017
Goodfellow (10.1016/j.petrol.2022.110652_bib10) 2014
Mariethoz (10.1016/j.petrol.2022.110652_bib23) 2010; 46
Li (10.1016/j.petrol.2022.110652_bib19) 2007; 34
Kingma (10.1016/j.petrol.2022.110652_bib14) 2014
Strebelle (10.1016/j.petrol.2022.110652_bib33) 2000
Laloy (10.1016/j.petrol.2022.110652_bib16) 2017; 1
Mukerji (10.1016/j.petrol.2022.110652_bib26) 1997; 29
Haas (10.1016/j.petrol.2022.110652_bib12) 1994; 13
Gelman (10.1016/j.petrol.2022.110652_bib1) 1992; 7
Mosser (10.1016/j.petrol.2022.110652_bib25) 2019
References_xml – volume: 69
  start-page: 978
  year: 2004
  end-page: 993
  ident: bib7
  article-title: Stochastic reservoir characterization using prestack seismic data
  publication-title: Geophysics
– volume: 48
  start-page: 407
  year: 2021
  end-page: 420
  ident: bib20
  article-title: A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling: a case study of Cretaceous McMurray reservoirs in a block of Canada
  publication-title: Petrol. Explor. Dev.
– year: 2014
  ident: bib10
  article-title: Generative adversarial nets
  publication-title: International Conference on Neural Information Processing Systems
– volume: 23
  start-page: 1829
  year: 2013
  end-page: 1832
  ident: bib30
  article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia
  publication-title: Geophys. Res. Lett.
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  ident: bib1
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
– volume: 49
  start-page: 845
  year: 2017
  end-page: 869
  ident: bib13
  article-title: A fast approximation for seismic inverse modeling: adaptive spatial resampling
  publication-title: Math. Geosci.
– volume: 1
  start-page: 387
  year: 2017
  end-page: 405
  ident: bib16
  article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Adv. Water Resour.
– year: 2017
  ident: bib2
  article-title: Wasserstein GAN
– volume: 13
  start-page: 61
  year: 1994
  end-page: 569
  ident: bib12
  article-title: Geostatistical inversion: a sequential method for stochastic reservoir modeling constrained by seismic data
  publication-title: First Break
– volume: 133
  year: 2019
  ident: bib18
  article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: is it feasible?
  publication-title: Comput. Geosci.
– volume: 99
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib32
  article-title: Bridging the gap between geophysics and geology with generative adversarial networks
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 73
  start-page: R11
  year: 2008
  end-page: R21
  ident: bib9
  article-title: Seismic inversion combining rock physics and multiple-point geostatistics
  publication-title: Geophysics
– volume: 46
  start-page: 2387
  year: 2010
  end-page: 2392
  ident: bib23
  article-title: Bayesian inverse problem and optimization with iterative spatial resampling
  publication-title: Water Resour. Res.
– volume: 10
  start-page: 273
  year: 2009
  end-page: 290
  ident: bib35
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
– year: 2017
  ident: bib4
  article-title: Parametrization and Generation of Geological Models with Generative Adversarial Networks
– volume: 50
  start-page: 182
  year: 2012
  end-page: 205
  ident: bib15
  article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing
  publication-title: Water Resour. Res.
– year: 2014
  ident: bib22
  article-title: Multiple-Point Geostatistics: Stochastic Modeling with Training Images
– volume: 34
  start-page: 451
  year: 2007
  end-page: 455
  ident: bib19
  article-title: Methodology and application of stochastic seismic inversion: a case from P Oilfield, M Basin, Sudan
  publication-title: Petrol. Explor. Dev.
– volume: 16
  start-page: 541
  year: 2019
  end-page: 549
  ident: bib37
  article-title: Generating geologically realistic 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks
  publication-title: Petrol. Sci.
– year: 2007
  ident: bib5
  article-title: Seismic Reservoir Characterization: an Earth Modelling Perspective
– volume: 15
  start-page: 315
  year: 2011
  end-page: 323
  ident: bib8
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 1413
  year: 2021
  end-page: 1444
  ident: bib31
  article-title: GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)
  publication-title: Math Geosci.
– start-page: 5767
  year: 2017
  end-page: 5777
  ident: bib11
  article-title: Improved Training of Wasserstein Gans. Advances in Neural Information Processing Systems
– volume: 54
  start-page: 381
  year: 2018
  end-page: 406
  ident: bib17
  article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 775
  year: 2003
  end-page: 785
  ident: bib28
  article-title: Connec3d: a computer program for connectivity analysis of 3d random set models
  publication-title: Comput. Geosci.
– year: 2000
  ident: bib33
  article-title: Sequential Simulation Drawing Structures from Training Images
– volume: 9
  start-page: 43
  year: 2017
  end-page: 49
  ident: bib24
  article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks
  publication-title: Phys. Rev.
– start-page: 27
  year: 2012
  end-page: 38
  ident: bib29
  article-title: Event-Based Geostatistical Modeling: Description and Applications
– year: 2019
  ident: bib38
  article-title: Generating Geological Facies Models with Fidelity to Diversity and Statistics of Training Images Using Improved Generative Adversarial Networks
– year: 2014
  ident: bib14
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– volume: 29
  start-page: 933
  year: 1997
  end-page: 950
  ident: bib26
  article-title: Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration
  publication-title: Math. Geol.
– volume: 208
  start-page: 109724
  year: 2022
  ident: bib36
  article-title: Two parameter optimization methods of multi-point geostatistics
  publication-title: J. Petrol. Sci. Eng.
– volume: 75
  start-page: 165
  year: 2010
  end-page: 176
  ident: bib3
  article-title: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review
  publication-title: Geophysics
– volume: 2
  start-page: 157
  year: 2015
  end-page: 171
  ident: bib21
  article-title: Summary statistics from training images as prior information in probabilistic inversion
  publication-title: Geophys. J. Int.
– year: 2019
  ident: bib25
  article-title: Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
  publication-title: Math. Geosci.
– year: 2003
  ident: bib6
  article-title: Geostatistics for Seismic Data Integration in Earth Models
– volume: 34
  start-page: 1
  year: 2002
  end-page: 21
  ident: bib34
  article-title: Conditional simulation of complex geological structures using multiple-point statistics
  publication-title: Math. Geol.
– year: August 2021
  ident: bib27
  article-title: Static reservoir modeling comparing inverse distance weighting to kriging interpolation algorithm in volumetric estimation. Case study: gullfaks field
  publication-title: Paper Presented at the Offshore Technology Conference, Virtual and Houston, Texas
– volume: 208
  start-page: 109724
  year: 2022
  ident: 10.1016/j.petrol.2022.110652_bib36
  article-title: Two parameter optimization methods of multi-point geostatistics
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109724
– year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib4
– volume: 29
  start-page: 775
  issue: 6
  year: 2003
  ident: 10.1016/j.petrol.2022.110652_bib28
  article-title: Connec3d: a computer program for connectivity analysis of 3d random set models
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(03)00028-1
– volume: 1
  start-page: 387
  issue: 10
  year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib16
  article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.029
– volume: 133
  issue: Dec
  year: 2019
  ident: 10.1016/j.petrol.2022.110652_bib18
  article-title: Gradient-based deterministic inversion of geophysical data with generative adversarial networks: is it feasible?
  publication-title: Comput. Geosci.
– year: 2019
  ident: 10.1016/j.petrol.2022.110652_bib38
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  ident: 10.1016/j.petrol.2022.110652_bib1
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011136
– volume: 10
  start-page: 273
  issue: 3
  year: 2009
  ident: 10.1016/j.petrol.2022.110652_bib35
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
  publication-title: Int. J. Nonlinear Sci. Numer. Stimul.
– year: 2003
  ident: 10.1016/j.petrol.2022.110652_bib6
– volume: 73
  start-page: R11
  issue: 1
  year: 2008
  ident: 10.1016/j.petrol.2022.110652_bib9
  article-title: Seismic inversion combining rock physics and multiple-point geostatistics
  publication-title: Geophysics
  doi: 10.1190/1.2803748
– volume: 34
  start-page: 451
  issue: 4
  year: 2007
  ident: 10.1016/j.petrol.2022.110652_bib19
  article-title: Methodology and application of stochastic seismic inversion: a case from P Oilfield, M Basin, Sudan
  publication-title: Petrol. Explor. Dev.
– year: 2000
  ident: 10.1016/j.petrol.2022.110652_bib33
– volume: 34
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.petrol.2022.110652_bib34
  article-title: Conditional simulation of complex geological structures using multiple-point statistics
  publication-title: Math. Geol.
  doi: 10.1023/A:1014009426274
– volume: 48
  start-page: 407
  issue: 2
  year: 2021
  ident: 10.1016/j.petrol.2022.110652_bib20
  article-title: A method of reconstructing 3D model from 2D geological cross-section based on self-adaptive spatial sampling: a case study of Cretaceous McMurray reservoirs in a block of Canada
  publication-title: Petrol. Explor. Dev.
  doi: 10.1016/S1876-3804(21)60032-0
– volume: 69
  start-page: 978
  year: 2004
  ident: 10.1016/j.petrol.2022.110652_bib7
  article-title: Stochastic reservoir characterization using prestack seismic data
  publication-title: Geophysics
  doi: 10.1190/1.1778241
– year: 2007
  ident: 10.1016/j.petrol.2022.110652_bib5
– volume: 16
  start-page: 541
  issue: 3
  year: 2019
  ident: 10.1016/j.petrol.2022.110652_bib37
  article-title: Generating geologically realistic 3d reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks
  publication-title: Petrol. Sci.
  doi: 10.1007/s12182-019-0328-4
– volume: 9
  start-page: 43
  issue: 6
  year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib24
  article-title: Reconstruction of three-dimensional porous media using generative adversarial neural networks
  publication-title: Phys. Rev.
– volume: 2
  start-page: 157
  issue: 1
  year: 2015
  ident: 10.1016/j.petrol.2022.110652_bib21
  article-title: Summary statistics from training images as prior information in probabilistic inversion
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv008
– year: 2014
  ident: 10.1016/j.petrol.2022.110652_bib10
  article-title: Generative adversarial nets
– volume: 49
  start-page: 845
  year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib13
  article-title: A fast approximation for seismic inverse modeling: adaptive spatial resampling
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-017-9693-y
– year: 2021
  ident: 10.1016/j.petrol.2022.110652_bib27
  article-title: Static reservoir modeling comparing inverse distance weighting to kriging interpolation algorithm in volumetric estimation. Case study: gullfaks field
– volume: 46
  start-page: 2387
  issue: 11
  year: 2010
  ident: 10.1016/j.petrol.2022.110652_bib23
  article-title: Bayesian inverse problem and optimization with iterative spatial resampling
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009274
– volume: 99
  start-page: 1
  year: 2021
  ident: 10.1016/j.petrol.2022.110652_bib32
  article-title: Bridging the gap between geophysics and geology with generative adversarial networks
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– volume: 53
  start-page: 1413
  year: 2021
  ident: 10.1016/j.petrol.2022.110652_bib31
  article-title: GANSim: Conditional Facies Simulation Using an Improved Progressive Growing of Generative Adversarial Networks (GANs)
  publication-title: Math Geosci.
  doi: 10.1007/s11004-021-09934-0
– volume: 15
  start-page: 315
  year: 2011
  ident: 10.1016/j.petrol.2022.110652_bib8
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 27
  year: 2012
  ident: 10.1016/j.petrol.2022.110652_bib29
– volume: 23
  start-page: 1829
  issue: 14
  year: 2013
  ident: 10.1016/j.petrol.2022.110652_bib30
  article-title: Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/96GL01671
– year: 2014
  ident: 10.1016/j.petrol.2022.110652_bib22
– year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib2
– issue: 1
  year: 2019
  ident: 10.1016/j.petrol.2022.110652_bib25
  article-title: Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-019-09832-6
– volume: 50
  start-page: 182
  issue: 3
  year: 2012
  ident: 10.1016/j.petrol.2022.110652_bib15
  article-title: High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing
  publication-title: Water Resour. Res.
– year: 2014
  ident: 10.1016/j.petrol.2022.110652_bib14
  article-title: Adam: a method for stochastic optimization
  publication-title: Comput. Sci.
– volume: 13
  start-page: 61
  issue: 12
  year: 1994
  ident: 10.1016/j.petrol.2022.110652_bib12
  article-title: Geostatistical inversion: a sequential method for stochastic reservoir modeling constrained by seismic data
  publication-title: First Break
– volume: 29
  start-page: 933
  issue: 7
  year: 1997
  ident: 10.1016/j.petrol.2022.110652_bib26
  article-title: Scales of reservoir heterogeneities and impact of seismic resolution on geostatistical integration
  publication-title: Math. Geol.
  doi: 10.1023/A:1022307807851
– volume: 75
  start-page: 165
  issue: 5
  year: 2010
  ident: 10.1016/j.petrol.2022.110652_bib3
  article-title: Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: a review
  publication-title: Geophysics
  doi: 10.1190/1.3478209
– start-page: 5767
  year: 2017
  ident: 10.1016/j.petrol.2022.110652_bib11
– volume: 54
  start-page: 381
  issue: 1
  year: 2018
  ident: 10.1016/j.petrol.2022.110652_bib17
  article-title: Training-image based geostatistical inversion using a spatial generative adversarial neural network
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR022148
SSID ssj0003637
Score 2.0018742
Snippet Seismic inverse modeling is a common method in reservoir architecture characterization associated with geology. The conventional seismic inversion method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110652
SubjectTerms Generative adversarial network
MCMC
Reservoir Modeling
Seismic Inversion
Variogram Modeling
Title Seismic inverse modeling method based on generative adversarial networks
URI https://dx.doi.org/10.1016/j.petrol.2022.110652
Volume 215
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier - Riviste Science Direct (Freedom collection from 1995)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: AIKHN
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: ACRLP
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003637
  issn: 0920-4105
  databaseCode: AKRWK
  dateStart: 19870801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEfQgOhXnj5GD17g2fU3b4xjOqrjLHOxWkjSRinZjmwcv_u0mTasTRMFbU96D8ni890K_930IXahIJpRrSSgHIMCFIAI8IFx7TLJQJ3lF13Q_YukEbqfhtIUGzS6MhVXWtd_V9Kpa1296dTR786Lojb2EehakSCvyIGoXfgEiq2Jw-f4F8wiY4800xsRaN-tzFcbLDKaLmf0BQanFw7OQ_tye1lrOcA_t1rMi7rvP2UctVbbRzhqDYBttXVfKvG8HKB2rYvlSSFyUFmmhcKVxY4ywE4nGtl_leFbix4pp2pY5zK0c85LbJMSlA4QvD9FkePUwSEktk0CkmfdXhJuhiEoGnmZCmeuHgkT6OQQxaD-OuB9LX0ZMeL7U5sGDXMkk9wQolUgmYxUcoY1yVqpjhHNFY61Nx8qpgkizWDCmQnsnAxHIGDooaKKTyZpD3EpZPGcNWOwpczHNbEwzF9MOIp9ec8eh8Yd91AQ--5YLmSnzv3qe_NvzFG3bk4P2naGN1eJVnZtxYyW6VT510Wb_5i4dfQDf6tWA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7MiagH0ak4f-bgNa5N07Q9ynBO3XbZBruVJk2kot3Y5sGLf7tJ0-oEUfBW0vegPB7vB_3yfQCXMhARSZTAJKEU04RzzKlDcaIcJpivorSga-oPWHdM7yf-pAbt6i6MgVWWtd_W9KJalyetMpqtWZa1hk5EHANSJAV5EAnXYJ36JDAb2NX7F87DY5Y4U1tjY17dnytAXnoynU_NHwhCDCCe-eTn_rTSczq7sFMOi-jafs8e1GTegO0VCsEGbNwW0rxv-9AdymzxkgmU5QZqIVEhcqONkFWJRqZhpWiao8eCatrUOZQYPeZFYrIQ5RYRvjiAcedm1O7iUicBCz3wL3GipyIiGHUU41LvH5JGwk2pF1LlhkHihsIVAeOOK5R-cGgqRZQ6nEoZCSZC6R1CPZ_m8ghQKkmolG5ZKZE0UCzkjEnfLGWUeyKkTfCq6MSiJBE3WhbPcYUWe4ptTGMT09jGtAn402tmSTT-sA-qwMffkiHWdf5Xz-N_e17AZnfU78W9u8HDCWyZNxbndwr15fxVnunZY8nPi9z6APgG1xU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seismic+inverse+modeling+method+based+on+generative+adversarial+networks&rft.jtitle=Journal+of+petroleum+science+%26+engineering&rft.au=Xie%2C+Pengfei&rft.au=Hou%2C+Jiagen&rft.au=Yin%2C+Yanshu&rft.au=Chen%2C+Zhangxin&rft.date=2022-08-01&rft.issn=0920-4105&rft.volume=215&rft.spage=110652&rft_id=info:doi/10.1016%2Fj.petrol.2022.110652&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_petrol_2022_110652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4105&client=summon