Structural identification of concrete dams with ambient vibration based on surrogate-assisted multi-objective salp swarm algorithm
Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health mo...
Saved in:
| Published in | Structures (Oxford) Vol. 60; p. 105956 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2352-0124 2352-0124 |
| DOI | 10.1016/j.istruc.2024.105956 |
Cover
| Abstract | Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health monitoring. This study proposes a novel method for the vibration data-driven parameter identification of concrete dams by employing a multi-objective salp swarm algorithm (MSSA) together with a Gaussian process surrogate model. The Gaussian process was selected because of its advantage in capturing the nonlinear relationships between the input (dynamic elastic modulus) and output (natural frequency and mode shape) variables, thereby eliminating the need for extensive finite element simulations. MSSA was adopted to address the challenges presented by single-objective functions, particularly the intricate selection of weighting factors. A numerical example and an arch dam model experiment were presented to validate the proposed methodology. The results demonstrate that the MSSA provides a robust and accurate estimation of the dynamic parameters of concrete dams. Comparative evaluations with single-objective salp swarm algorithm (SSA), multi-objective particle swarm optimization (MOPSO), and a multi-objective evolutionary algorithm based on decomposition (MOEA/D) underline the superiority of MSSA in parameter identification, both in terms of accuracy and computational efficiency. The proposed method holds promise for parameter identification of other large-scale infrastructures owing to its minimal user intervention and computational burden requirements. |
|---|---|
| AbstractList | Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health monitoring. This study proposes a novel method for the vibration data-driven parameter identification of concrete dams by employing a multi-objective salp swarm algorithm (MSSA) together with a Gaussian process surrogate model. The Gaussian process was selected because of its advantage in capturing the nonlinear relationships between the input (dynamic elastic modulus) and output (natural frequency and mode shape) variables, thereby eliminating the need for extensive finite element simulations. MSSA was adopted to address the challenges presented by single-objective functions, particularly the intricate selection of weighting factors. A numerical example and an arch dam model experiment were presented to validate the proposed methodology. The results demonstrate that the MSSA provides a robust and accurate estimation of the dynamic parameters of concrete dams. Comparative evaluations with single-objective salp swarm algorithm (SSA), multi-objective particle swarm optimization (MOPSO), and a multi-objective evolutionary algorithm based on decomposition (MOEA/D) underline the superiority of MSSA in parameter identification, both in terms of accuracy and computational efficiency. The proposed method holds promise for parameter identification of other large-scale infrastructures owing to its minimal user intervention and computational burden requirements. |
| ArticleNumber | 105956 |
| Author | Wu, Yingrui Li, Xinyu Zhang, Yantan Li, Hongjun Kang, Fei |
| Author_xml | – sequence: 1 givenname: Yingrui surname: Wu fullname: Wu, Yingrui organization: School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 2 givenname: Fei surname: Kang fullname: Kang, Fei email: kangfei2009@163.com, kangfei@dlut.edu.cn organization: School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China – sequence: 3 givenname: Yantan surname: Zhang fullname: Zhang, Yantan organization: China Power Construction Group Northwest Survey, Design and Research Institute Co., Ltd, Xian 710065, China – sequence: 4 givenname: Xinyu surname: Li fullname: Li, Xinyu organization: China Yangtze Power Co., Ltd, Yichang 443000, China – sequence: 5 givenname: Hongjun surname: Li fullname: Li, Hongjun organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China |
| BookMark | eNqFkMtKAzEUhoNUsNa-gYu8wNRkMpeOC0GKNxBcqOtwcqsZZiYlSVvc-uSmjgtxoascDv_3k_OdosngBo3QOSULSmh10S5siH4rFznJi7Qqm7I6QtOclXlGaF5MfswnaB5CSwjJaZHS9RR9PB_YuPXQYav0EK2xEqJ1A3YGSzdIr6PGCvqA9za-YeiFTTG8s8KPOQFBK5yGsPXerSHqDEJIn0rbfttFmznRahntTuMA3QaHPfgeQ7d2PjX2Z-jYQBf0_Pudodfbm5fVffb4dPewun7MJCNVzBpWKwGMlWVdCFhWEkjTyKZqKJGklKKoClBMK8ZAUaIrZQyAAdEYULJeSjZDxdgrvQvBa8M33vbg3zkl_KCSt3xUyQ8q-agyYZe_MGnj1-XRg-3-g69GWKfDdlZ7HmTSJ7WyPinhytm_Cz4BhVuZcg |
| CitedBy_id | crossref_primary_10_1007_s00707_024_04216_2 crossref_primary_10_1080_15376494_2024_2425818 crossref_primary_10_1088_1402_4896_ad9d92 crossref_primary_10_1016_j_enbuild_2024_114922 crossref_primary_10_1038_s41598_025_85303_9 crossref_primary_10_1016_j_est_2025_115757 crossref_primary_10_1016_j_istruc_2024_107931 crossref_primary_10_1038_s41598_024_80259_8 crossref_primary_10_1002_pat_6621 crossref_primary_10_3390_drones9020147 crossref_primary_10_1080_15376494_2024_2423060 crossref_primary_10_1109_JSEN_2024_3523496 crossref_primary_10_1142_S0217984925501179 crossref_primary_10_1007_s43452_024_01109_y crossref_primary_10_1007_s11269_024_04065_7 crossref_primary_10_1016_j_iintel_2024_100122 crossref_primary_10_1016_j_est_2024_114807 crossref_primary_10_1016_j_jclepro_2024_143901 crossref_primary_10_1002_slct_202403847 crossref_primary_10_1007_s42417_024_01745_x crossref_primary_10_1007_s42417_024_01597_5 crossref_primary_10_1016_j_jseaes_2024_106377 crossref_primary_10_1080_15376494_2024_2422578 crossref_primary_10_1080_15397734_2024_2435576 crossref_primary_10_1080_15376494_2024_2420259 crossref_primary_10_1080_15376494_2024_2422579 crossref_primary_10_1002_pat_70009 crossref_primary_10_1080_10589759_2025_2451224 crossref_primary_10_1002_pat_70008 crossref_primary_10_1142_S021797922550153X crossref_primary_10_1016_j_ymssp_2024_112017 crossref_primary_10_1016_j_ymssp_2024_112011 crossref_primary_10_1080_19392699_2024_2434891 crossref_primary_10_1002_pat_70021 crossref_primary_10_1016_j_jcou_2024_102995 crossref_primary_10_1002_pat_70020 |
| Cites_doi | 10.1016/j.ymssp.2008.05.003 10.1016/j.aei.2022.101853 10.1016/j.istruc.2022.10.052 10.1080/17415977.2017.1386188 10.1061/(ASCE)BE.1943-5592.0001949 10.1016/j.aei.2023.102016 10.1016/j.advengsoft.2017.07.002 10.1007/s00500-022-06735-3 10.1016/j.aei.2018.09.005 10.1007/s00366-017-0514-1 10.1016/j.autcon.2022.104555 10.1016/j.measurement.2022.111591 10.1016/j.apm.2019.02.008 10.1080/08982112.2012.758284 10.1061/(ASCE)ST.1943-541X.0002629 10.1016/j.cma.2021.113665 10.1016/j.asoc.2022.109476 10.1016/j.apm.2020.09.048 10.1061/(ASCE)ST.1943-541X.0002467 10.1098/rsta.2006.1930 10.1016/j.engstruct.2021.113001 10.1016/j.aei.2023.102002 10.1016/j.engstruct.2023.116150 10.1016/j.istruc.2022.09.020 10.1016/j.aei.2022.101615 10.1016/j.advengsoft.2020.102870 10.1016/j.engstruct.2021.112032 10.1016/j.engstruct.2023.115686 10.1016/j.engstruct.2021.112035 10.1007/s00521-019-04375-7 10.1109/CEC.2002.1004388 10.1016/j.engstruct.2022.114683 10.1016/j.jsv.2014.01.015 10.12989/cac.2014.13.2.209 10.1061/(ASCE)GM.1943-5622.0002465 10.1016/j.istruc.2021.03.028 10.1061/(ASCE)ST.1943-541X.0002953 10.1007/s00603-021-02656-z 10.1016/j.jsv.2013.08.025 10.1016/j.aei.2021.101407 10.1002/eqe.3617 10.7551/mitpress/3206.001.0001 10.1109/TEVC.2007.892759 10.1016/j.knosys.2021.107537 10.1016/j.aei.2021.101348 |
| ContentType | Journal Article |
| Copyright | 2024 Institution of Structural Engineers |
| Copyright_xml | – notice: 2024 Institution of Structural Engineers |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.istruc.2024.105956 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2352-0124 |
| ExternalDocumentID | 10_1016_j_istruc_2024_105956 S2352012424001085 |
| GroupedDBID | --M 0R~ 4.4 457 AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADEZE AEBSH AEIPS AFJKZ AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN KOM M41 O9- OAUVE RIG ROL SPC SPCBC SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG |
| ID | FETCH-LOGICAL-c306t-937dba335574ba86ca099c96910c05cb464ad3ed33ad10e6dffaafab9fadc78c3 |
| IEDL.DBID | AIKHN |
| ISSN | 2352-0124 |
| IngestDate | Thu Apr 24 22:52:14 EDT 2025 Wed Oct 01 03:29:37 EDT 2025 Sat Feb 08 15:52:31 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Gaussian process regression Parameter identification Vibration data Concrete dams Multi-objective salp swarm algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-937dba335574ba86ca099c96910c05cb464ad3ed33ad10e6dffaafab9fadc78c3 |
| ParticipantIDs | crossref_primary_10_1016_j_istruc_2024_105956 crossref_citationtrail_10_1016_j_istruc_2024_105956 elsevier_sciencedirect_doi_10_1016_j_istruc_2024_105956 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Structures (Oxford) |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Günaydin, Sevim, Bayraktar, Adanur (bib50) 2016; 30 Yang, Wen, Yan, Hua, Su (bib5) 2022 Rasmussen, Williams (bib37) 2005 Pang, Zhou, He, Zhong, Hui (bib41) 2021; 147 He, Gu, Valente, Zhao, Liu, Yuan (bib10) 2022; 12 Türker, Bayraktar, Sevim (bib51) 2014; 13 Gong, Zou, Kong, Liu, Qu (bib8) 2021; 237 Jin, Cho, Jung, Lee, Yun (bib25) 2014; 333 Silvestrini, Montgomery, Jones (bib49) 2013; 25 Sevieri, De Falco, Andreini, Matthies (bib19) 2021; 246 Chen, Wang, Tong, Cai, Zhu, Liu (bib31) 2021; 233 Su, Zhang, Wen, Li (bib35) 2017; 33 Mostafaei, Ghamami, Aghabozorgi (bib1) 2021; 32 Lin, Li, Chen, Liu, Lin, Liang (bib43) 2019; 31 C.A. Coello Coello M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization Proc 2002 Congr Evol Comput CEC 2002 2 2002 1051 1056 doi: 10.1109/CEC.2002.1004388. Zhao, Kang, Li (bib4) 2022; 143 Hariri-Ardebili, Chen, Mahdavi (bib12) 2022; 52 Lin, Li, Chen, Lin, Liu, Gao (bib29) 2020; 148 Guo, Dufour, Humbert (bib18) 2022; 51 Tien Bui, Nhu, Hoang (bib30) 2018; 38 Kourehli (bib39) 2018; 26 Chen, Li, Zhu, Yang, Lang (bib6) 2022; 22 Zhou, Sun, Li, Zhang, Li, Ma (bib33) 2022; 26 Ma, Liu (bib7) 2022; 55 Kang, Wu, Ma, Li (bib38) 2023; 286 Li, Wu (bib27) 2022; 128 Xiong, Wei, Xu (bib36) 2022; 46 Kang, Wu, Li, Li (bib21) 2021; 49 Hwang, Jin S seop, Jung, Kim, Lee, Jung (bib24) 2018; 65 Segura, Padgett, Paultre (bib32) 2020; 146 Kang, Li (bib42) 2020; 146 Shu, Wang, Lu, Chen, Yan, Wang (bib11) 2022; 267 Huang, Kang, Li, Wang (bib3) 2023; 280 Zhang, Wan, Xiong, Xie, Noori, Xue (bib28) 2022; 199 Ren, Li, Li, Shen (bib2) 2021; 50 Zhang, Li (bib48) 2007; 11 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib44) 2017; 114 Liu, Hao, Ye, Yang, Lin (bib9) 2021; 376 Li, Hariri-Ardebili, Deng, Wei, Cao M (bib34) 2023; 55 Xu, Wu (bib26) 2022; 45 Liu, Wenbo, Wang, Linmei, Chen (bib22) 2022 Friswell (bib20) 2007; 365 Liu, Kang, Limongelli (bib13) 2023; 56 Zhi-Qian, Jian-Wen, Jin-Ting, Fu-Dong (bib15) 2022; 29 Magalhães, Cunha, Caetano (bib45) 2009; 23 Wei, Xie, Li, Zhong, You (bib16) 2021; 91 da Silva, Figueiredo, Moldovan (bib40) 2022; 27 Li, Wang, Wei, Zhong, Zhan (bib23) 2019; 71 Gandino, Garibaldi, Marchesiello (bib46) 2013; 332 Pereira, Magalhaes, Gomes, Cunha, Lemos (bib17) 2021; 235 Liu, Li, Wang, Huang, Wu, Li (bib14) 2023; 56 Wei (10.1016/j.istruc.2024.105956_bib16) 2021; 91 Kang (10.1016/j.istruc.2024.105956_bib21) 2021; 49 Mirjalili (10.1016/j.istruc.2024.105956_bib44) 2017; 114 Segura (10.1016/j.istruc.2024.105956_bib32) 2020; 146 Mostafaei (10.1016/j.istruc.2024.105956_bib1) 2021; 32 Shu (10.1016/j.istruc.2024.105956_bib11) 2022; 267 Li (10.1016/j.istruc.2024.105956_bib34) 2023; 55 Pereira (10.1016/j.istruc.2024.105956_bib17) 2021; 235 Tien Bui (10.1016/j.istruc.2024.105956_bib30) 2018; 38 Gong (10.1016/j.istruc.2024.105956_bib8) 2021; 237 Zhao (10.1016/j.istruc.2024.105956_bib4) 2022; 143 Pang (10.1016/j.istruc.2024.105956_bib41) 2021; 147 Lin (10.1016/j.istruc.2024.105956_bib43) 2019; 31 Chen (10.1016/j.istruc.2024.105956_bib31) 2021; 233 Huang (10.1016/j.istruc.2024.105956_bib3) 2023; 280 Rasmussen (10.1016/j.istruc.2024.105956_bib37) 2005 Silvestrini (10.1016/j.istruc.2024.105956_bib49) 2013; 25 Yang (10.1016/j.istruc.2024.105956_bib5) 2022 Hwang (10.1016/j.istruc.2024.105956_bib24) 2018; 65 Su (10.1016/j.istruc.2024.105956_bib35) 2017; 33 Guo (10.1016/j.istruc.2024.105956_bib18) 2022; 51 Liu (10.1016/j.istruc.2024.105956_bib13) 2023; 56 Jin (10.1016/j.istruc.2024.105956_bib25) 2014; 333 Zhang (10.1016/j.istruc.2024.105956_bib28) 2022; 199 Ren (10.1016/j.istruc.2024.105956_bib2) 2021; 50 Kourehli (10.1016/j.istruc.2024.105956_bib39) 2018; 26 Friswell (10.1016/j.istruc.2024.105956_bib20) 2007; 365 Xu (10.1016/j.istruc.2024.105956_bib26) 2022; 45 Kang (10.1016/j.istruc.2024.105956_bib42) 2020; 146 Zhi-Qian (10.1016/j.istruc.2024.105956_bib15) 2022; 29 Liu (10.1016/j.istruc.2024.105956_bib14) 2023; 56 10.1016/j.istruc.2024.105956_bib47 Magalhães (10.1016/j.istruc.2024.105956_bib45) 2009; 23 Li (10.1016/j.istruc.2024.105956_bib27) 2022; 128 Zhou (10.1016/j.istruc.2024.105956_bib33) 2022; 26 Xiong (10.1016/j.istruc.2024.105956_bib36) 2022; 46 He (10.1016/j.istruc.2024.105956_bib10) 2022; 12 da Silva (10.1016/j.istruc.2024.105956_bib40) 2022; 27 Günaydin (10.1016/j.istruc.2024.105956_bib50) 2016; 30 Hariri-Ardebili (10.1016/j.istruc.2024.105956_bib12) 2022; 52 Chen (10.1016/j.istruc.2024.105956_bib6) 2022; 22 Gandino (10.1016/j.istruc.2024.105956_bib46) 2013; 332 Türker (10.1016/j.istruc.2024.105956_bib51) 2014; 13 Sevieri (10.1016/j.istruc.2024.105956_bib19) 2021; 246 Ma (10.1016/j.istruc.2024.105956_bib7) 2022; 55 Liu (10.1016/j.istruc.2024.105956_bib22) 2022 Lin (10.1016/j.istruc.2024.105956_bib29) 2020; 148 Kang (10.1016/j.istruc.2024.105956_bib38) 2023; 286 Zhang (10.1016/j.istruc.2024.105956_bib48) 2007; 11 Li (10.1016/j.istruc.2024.105956_bib23) 2019; 71 Liu (10.1016/j.istruc.2024.105956_bib9) 2021; 376 |
| References_xml | – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib44 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw – volume: 50 year: 2021 ident: bib2 article-title: A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism publication-title: Adv Eng Inform – volume: 31 start-page: 8503 year: 2019 end-page: 8518 ident: bib43 article-title: Gaussian process regression-based forecasting model of dam deformation publication-title: Neural Comput Appl – year: 2005 ident: bib37 publication-title: Gaussian Process Mach Learn – volume: 286 year: 2023 ident: bib38 article-title: Structural identification of super high arch dams using Gaussian process regression with improved salp swarm algorithm publication-title: Eng Struct – volume: 147 year: 2021 ident: bib41 article-title: Uniform design–based gaussian process regression for data-driven rapid fragility assessment of bridges publication-title: J Struct Eng – volume: 12 start-page: 19 year: 2022 ident: bib10 article-title: Multi-arch dam safety evaluation based on statistical analysis and numerical simulation publication-title: Sci Rep – volume: 71 start-page: 60 year: 2019 end-page: 76 ident: bib23 article-title: Dynamic inversion method for the material parameters of a high arch dam and its foundation publication-title: Appl Math Model – volume: 332 start-page: 7000 year: 2013 end-page: 7017 ident: bib46 article-title: Covariance-driven subspace identification: a complete input-output approach publication-title: J Sound Vib – volume: 23 start-page: 316 year: 2009 end-page: 329 ident: bib45 article-title: Online automatic identification of the modal parameters of a long span arch bridge publication-title: Mech Syst Signal Process – volume: 146 year: 2020 ident: bib42 article-title: Displacement model for concrete dam safety monitoring via gaussian process regression considering extreme air temperature publication-title: J Struct Eng – volume: 91 start-page: 297 year: 2021 end-page: 310 ident: bib16 article-title: An improved hilbert–huang transform method for modal parameter identification of a high arch dam publication-title: Appl Math Model – volume: 376 year: 2021 ident: bib9 article-title: Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method publication-title: Comput Methods Appl Mech Eng – volume: 55 year: 2023 ident: bib34 article-title: A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams publication-title: Adv Eng Inform – volume: 365 start-page: 393 year: 2007 end-page: 410 ident: bib20 article-title: Damage identification using inverse methods publication-title: Philos Trans R Soc A Math Phys Eng Sci – volume: 146 start-page: 1 year: 2020 end-page: 17 ident: bib32 article-title: Metamodel-based seismic fragility analysis of concrete gravity dams publication-title: J Struct Eng – year: 2022 ident: bib5 article-title: Structural inverse analysis of concrete dams: considering residual hydration heat effect on dam displacements publication-title: Eng Comput – volume: 30 start-page: 4 year: 2016 end-page: 10 ident: bib50 article-title: Dynamic characteristics of an arch dam model before and after strengthening with consideration of reservoir water publication-title: S – volume: 280 year: 2023 ident: bib3 article-title: Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature publication-title: Eng Struct – volume: 128 year: 2022 ident: bib27 article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria publication-title: Appl Softw Comput – year: 2022 ident: bib22 article-title: Structural parameter inversion of a gravity dam based on the dynamic response induced by an underwater explosion publication-title: J Vib Control – volume: 65 start-page: 173 year: 2018 end-page: 181 ident: bib24 article-title: Experimental validation of FE model updating based on multi-objective optimization using the surrogate model publication-title: Struct Eng Mech – volume: 333 start-page: 2323 year: 2014 end-page: 2338 ident: bib25 article-title: A new multi-objective approach to finite element model updating publication-title: J Sound Vib – volume: 246 year: 2021 ident: bib19 article-title: Hierarchical Bayesian framework for uncertainty reduction in the seismic fragility analysis of concrete gravity dams publication-title: Eng Struct – volume: 29 start-page: 1 year: 2022 end-page: 19 ident: bib15 article-title: Improved approach for vibration-based structural health monitoring of arch dams during seismic events and normal operation publication-title: Struct Control Heal Monit – volume: 233 year: 2021 ident: bib31 article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features publication-title: Knowl-Based Syst – volume: 143 year: 2022 ident: bib4 article-title: Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction publication-title: Autom Constr – volume: 45 start-page: 145 year: 2022 end-page: 162 ident: bib26 article-title: Parameter identification of unsaturated seepage model of core rockfill dams using principal component analysis and multi-objective optimization publication-title: Structures – volume: 56 year: 2023 ident: bib14 article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning publication-title: Adv Eng Inform – volume: 25 start-page: 164 year: 2013 end-page: 174 ident: bib49 article-title: Comparing computer experiments for the Gaussian process model using integrated prediction variance publication-title: Qual Eng – volume: 49 year: 2021 ident: bib21 article-title: Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model publication-title: Adv Eng Inform – volume: 33 start-page: 1027 year: 2017 end-page: 1043 ident: bib35 article-title: Prototype monitoring data-based analysis of time-varying material parameters of dams and their foundation with structural reinforcement publication-title: Eng Comput – volume: 26 start-page: 9527 year: 2022 end-page: 9541 ident: bib33 article-title: Creep parameter inversion for high CFRDs based on improved BP neural network response surface method publication-title: Softw Comput – reference: C.A. Coello Coello M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization Proc 2002 Congr Evol Comput CEC 2002 2 2002 1051 1056 doi: 10.1109/CEC.2002.1004388. – volume: 26 start-page: 1198 year: 2018 end-page: 1213 ident: bib39 article-title: Plate-like structures damage detection based on static response and static strain energy using gaussian process regression (GPR) publication-title: Inverse Probl Sci Eng – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib48 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput – volume: 267 year: 2022 ident: bib11 article-title: Stability assessment method of damaged concrete gravity dams subjected to penetration explosion publication-title: Eng Struct – volume: 237 year: 2021 ident: bib8 article-title: An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface publication-title: Eng Struct – volume: 55 start-page: 275 year: 2022 end-page: 296 ident: bib7 article-title: Three-dimensional discontinuous deformation analysis of failure mechanisms and movement characteristics of slope rockfalls publication-title: Rock Mech Rock Eng – volume: 27 start-page: 1 year: 2022 end-page: 12 ident: bib40 article-title: Damage detection approach for bridges under temperature effects using gaussian process regression trained with hybrid data publication-title: J Bridg Eng – volume: 22 start-page: 1 year: 2022 end-page: 17 ident: bib6 article-title: Determination of the main direction of a sliding body based on a three-dimensional finite-element limit-equilibrium method publication-title: Int J Geomech – volume: 46 start-page: 88 year: 2022 end-page: 98 ident: bib36 article-title: Identification of arch dam mechanical parameters based on sensitivity analysis and Hooke–Jeeves algorithm optimization publication-title: Structures – volume: 148 year: 2020 ident: bib29 article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques publication-title: Adv Eng Softw – volume: 235 start-page: 14 year: 2021 ident: bib17 article-title: Vibration-based damage detection of a concrete arch dam publication-title: Eng Struct – volume: 32 start-page: 228 year: 2021 end-page: 236 ident: bib1 article-title: Modal identification of concrete arch dam by fully automated operational modal identification publication-title: Structures – volume: 13 start-page: 209 year: 2014 end-page: 220 ident: bib51 article-title: Vibration based damage identification of concrete arch dams by finite element model updating publication-title: Comput Concr – volume: 38 start-page: 593 year: 2018 end-page: 604 ident: bib30 article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network publication-title: Adv Eng Inform – volume: 52 year: 2022 ident: bib12 article-title: Machine learning-aided PSDM for dams with stochastic ground motions publication-title: Adv Eng Inform – volume: 56 year: 2023 ident: bib13 article-title: Multi-zone parametric inverse analysis of super high arch dams using deep learning networks based on measured displacements publication-title: Adv Eng Inform – volume: 51 start-page: 1321 year: 2022 end-page: 1342 ident: bib18 article-title: Modal analysis of an arch dam combining ambient vibration measurements, advanced fluid-element method and modified engineering approach publication-title: Earthq Eng Struct Dyn – volume: 199 year: 2022 ident: bib28 article-title: Output-only structural damage identification using hybrid Jaya and differential evolution algorithm with reference-free correlation functions publication-title: Measurement – volume: 23 start-page: 316 year: 2009 ident: 10.1016/j.istruc.2024.105956_bib45 article-title: Online automatic identification of the modal parameters of a long span arch bridge publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2008.05.003 – volume: 55 year: 2023 ident: 10.1016/j.istruc.2024.105956_bib34 article-title: A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101853 – volume: 46 start-page: 88 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib36 article-title: Identification of arch dam mechanical parameters based on sensitivity analysis and Hooke–Jeeves algorithm optimization publication-title: Structures doi: 10.1016/j.istruc.2022.10.052 – year: 2022 ident: 10.1016/j.istruc.2024.105956_bib5 article-title: Structural inverse analysis of concrete dams: considering residual hydration heat effect on dam displacements publication-title: Eng Comput – volume: 26 start-page: 1198 year: 2018 ident: 10.1016/j.istruc.2024.105956_bib39 article-title: Plate-like structures damage detection based on static response and static strain energy using gaussian process regression (GPR) publication-title: Inverse Probl Sci Eng doi: 10.1080/17415977.2017.1386188 – volume: 27 start-page: 1 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib40 article-title: Damage detection approach for bridges under temperature effects using gaussian process regression trained with hybrid data publication-title: J Bridg Eng doi: 10.1061/(ASCE)BE.1943-5592.0001949 – volume: 56 year: 2023 ident: 10.1016/j.istruc.2024.105956_bib14 article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102016 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.istruc.2024.105956_bib44 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 26 start-page: 9527 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib33 article-title: Creep parameter inversion for high CFRDs based on improved BP neural network response surface method publication-title: Softw Comput doi: 10.1007/s00500-022-06735-3 – volume: 38 start-page: 593 year: 2018 ident: 10.1016/j.istruc.2024.105956_bib30 article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network publication-title: Adv Eng Inform doi: 10.1016/j.aei.2018.09.005 – volume: 33 start-page: 1027 year: 2017 ident: 10.1016/j.istruc.2024.105956_bib35 article-title: Prototype monitoring data-based analysis of time-varying material parameters of dams and their foundation with structural reinforcement publication-title: Eng Comput doi: 10.1007/s00366-017-0514-1 – volume: 143 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib4 article-title: Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104555 – volume: 199 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib28 article-title: Output-only structural damage identification using hybrid Jaya and differential evolution algorithm with reference-free correlation functions publication-title: Measurement doi: 10.1016/j.measurement.2022.111591 – volume: 71 start-page: 60 year: 2019 ident: 10.1016/j.istruc.2024.105956_bib23 article-title: Dynamic inversion method for the material parameters of a high arch dam and its foundation publication-title: Appl Math Model doi: 10.1016/j.apm.2019.02.008 – volume: 25 start-page: 164 year: 2013 ident: 10.1016/j.istruc.2024.105956_bib49 article-title: Comparing computer experiments for the Gaussian process model using integrated prediction variance publication-title: Qual Eng doi: 10.1080/08982112.2012.758284 – volume: 146 start-page: 1 year: 2020 ident: 10.1016/j.istruc.2024.105956_bib32 article-title: Metamodel-based seismic fragility analysis of concrete gravity dams publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002629 – volume: 376 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib9 article-title: Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2021.113665 – volume: 128 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib27 article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria publication-title: Appl Softw Comput doi: 10.1016/j.asoc.2022.109476 – volume: 12 start-page: 19 issue: 1 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib10 article-title: Multi-arch dam safety evaluation based on statistical analysis and numerical simulation publication-title: Sci Rep – volume: 91 start-page: 297 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib16 article-title: An improved hilbert–huang transform method for modal parameter identification of a high arch dam publication-title: Appl Math Model doi: 10.1016/j.apm.2020.09.048 – volume: 146 year: 2020 ident: 10.1016/j.istruc.2024.105956_bib42 article-title: Displacement model for concrete dam safety monitoring via gaussian process regression considering extreme air temperature publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002467 – volume: 365 start-page: 393 year: 2007 ident: 10.1016/j.istruc.2024.105956_bib20 article-title: Damage identification using inverse methods publication-title: Philos Trans R Soc A Math Phys Eng Sci doi: 10.1098/rsta.2006.1930 – volume: 246 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib19 article-title: Hierarchical Bayesian framework for uncertainty reduction in the seismic fragility analysis of concrete gravity dams publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113001 – volume: 56 year: 2023 ident: 10.1016/j.istruc.2024.105956_bib13 article-title: Multi-zone parametric inverse analysis of super high arch dams using deep learning networks based on measured displacements publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102002 – volume: 65 start-page: 173 year: 2018 ident: 10.1016/j.istruc.2024.105956_bib24 article-title: Experimental validation of FE model updating based on multi-objective optimization using the surrogate model publication-title: Struct Eng Mech – volume: 286 year: 2023 ident: 10.1016/j.istruc.2024.105956_bib38 article-title: Structural identification of super high arch dams using Gaussian process regression with improved salp swarm algorithm publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116150 – volume: 45 start-page: 145 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib26 article-title: Parameter identification of unsaturated seepage model of core rockfill dams using principal component analysis and multi-objective optimization publication-title: Structures doi: 10.1016/j.istruc.2022.09.020 – volume: 30 start-page: 4 year: 2016 ident: 10.1016/j.istruc.2024.105956_bib50 article-title: Dynamic characteristics of an arch dam model before and after strengthening with consideration of reservoir water publication-title: S – volume: 52 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib12 article-title: Machine learning-aided PSDM for dams with stochastic ground motions publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101615 – volume: 148 year: 2020 ident: 10.1016/j.istruc.2024.105956_bib29 article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2020.102870 – volume: 235 start-page: 14 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib17 article-title: Vibration-based damage detection of a concrete arch dam publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.112032 – volume: 280 year: 2023 ident: 10.1016/j.istruc.2024.105956_bib3 article-title: Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.115686 – volume: 237 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib8 article-title: An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.112035 – volume: 31 start-page: 8503 year: 2019 ident: 10.1016/j.istruc.2024.105956_bib43 article-title: Gaussian process regression-based forecasting model of dam deformation publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04375-7 – ident: 10.1016/j.istruc.2024.105956_bib47 doi: 10.1109/CEC.2002.1004388 – volume: 267 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib11 article-title: Stability assessment method of damaged concrete gravity dams subjected to penetration explosion publication-title: Eng Struct doi: 10.1016/j.engstruct.2022.114683 – volume: 333 start-page: 2323 year: 2014 ident: 10.1016/j.istruc.2024.105956_bib25 article-title: A new multi-objective approach to finite element model updating publication-title: J Sound Vib doi: 10.1016/j.jsv.2014.01.015 – volume: 13 start-page: 209 year: 2014 ident: 10.1016/j.istruc.2024.105956_bib51 article-title: Vibration based damage identification of concrete arch dams by finite element model updating publication-title: Comput Concr doi: 10.12989/cac.2014.13.2.209 – volume: 29 start-page: 1 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib15 article-title: Improved approach for vibration-based structural health monitoring of arch dams during seismic events and normal operation publication-title: Struct Control Heal Monit – year: 2022 ident: 10.1016/j.istruc.2024.105956_bib22 article-title: Structural parameter inversion of a gravity dam based on the dynamic response induced by an underwater explosion publication-title: J Vib Control – volume: 22 start-page: 1 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib6 article-title: Determination of the main direction of a sliding body based on a three-dimensional finite-element limit-equilibrium method publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0002465 – volume: 32 start-page: 228 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib1 article-title: Modal identification of concrete arch dam by fully automated operational modal identification publication-title: Structures doi: 10.1016/j.istruc.2021.03.028 – volume: 147 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib41 article-title: Uniform design–based gaussian process regression for data-driven rapid fragility assessment of bridges publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0002953 – volume: 55 start-page: 275 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib7 article-title: Three-dimensional discontinuous deformation analysis of failure mechanisms and movement characteristics of slope rockfalls publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-021-02656-z – volume: 332 start-page: 7000 year: 2013 ident: 10.1016/j.istruc.2024.105956_bib46 article-title: Covariance-driven subspace identification: a complete input-output approach publication-title: J Sound Vib doi: 10.1016/j.jsv.2013.08.025 – volume: 50 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib2 article-title: A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101407 – volume: 51 start-page: 1321 year: 2022 ident: 10.1016/j.istruc.2024.105956_bib18 article-title: Modal analysis of an arch dam combining ambient vibration measurements, advanced fluid-element method and modified engineering approach publication-title: Earthq Eng Struct Dyn doi: 10.1002/eqe.3617 – year: 2005 ident: 10.1016/j.istruc.2024.105956_bib37 publication-title: Gaussian Process Mach Learn doi: 10.7551/mitpress/3206.001.0001 – volume: 11 start-page: 712 year: 2007 ident: 10.1016/j.istruc.2024.105956_bib48 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 233 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib31 article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107537 – volume: 49 year: 2021 ident: 10.1016/j.istruc.2024.105956_bib21 article-title: Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model publication-title: Adv Eng Inform doi: 10.1016/j.aei.2021.101348 |
| SSID | ssj0002140247 |
| Score | 2.4930453 |
| Snippet | Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105956 |
| SubjectTerms | Concrete dams Gaussian process regression Multi-objective salp swarm algorithm Parameter identification Vibration data |
| Title | Structural identification of concrete dams with ambient vibration based on surrogate-assisted multi-objective salp swarm algorithm |
| URI | https://dx.doi.org/10.1016/j.istruc.2024.105956 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: ACRLP dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AIKHN dateStart: 20150201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-0124 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002140247 issn: 2352-0124 databaseCode: AKRWK dateStart: 20150201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL3oQn_gmB6-h291sdvcoolSFXlTwtkxeUmm7pa1695c7k90tCqLgbR-ZEDJh5pvhywxj5zbtea0NCN3LrJCgUpE7Fwuf9cArk0ROB5bvQPUf5e1T-rTCLtu7MESrbGx_bdODtW6-dJvd7E6Hw-59jNgBzaskFiRx6FfZGvqfPO-wtYubu_5gmWqJMYiIQ6sxEhEk016iC0yvYSjVirFiLKntbUHNrH9yUl8cz_UW22wQI7-oF7XNVtxkh218qSO4yz7uQxVYqqDBh7bh_4Qt55XnGPEiNFw4bmE855R45TDWdA-Sv1GwHMaRN7McH-avs1lFuTWBsJrOgOWBdCgq_VIbRz6H0ZTP32E25jB6rmY443iPPV5fPVz2RdNcQaAC1EIgLLEaEoQbmdSQKwOIFU2hED6YKDVaKgk2cTZJwPYip6z3AB504cGaLDfJPutMqok7YFyBBZP6IooglcoVhZVJFsUep4-jrMgOWdLuZmmayuPUAGNUthSzl7LWQUk6KGsdHDKxlJrWlTf-GJ-1iiq_naASncOvkkf_ljxm6_RWs7hPWAf_u1MEKQt91hzCT8q96vA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69tD1UHRbh76nw65CHEuW4mNRtEhfubQFejOo15AiiYMk3e775SNlu-iAYgV2M2xRMEiJ_Ch8Ihn77ot-tNaBsH3jhQJdiEEIuYimD1E7mQWbWL4jPXxQV4_F4xo76-7CEK2y9f2NT0_eun3Ta7XZm4_HvbscsQO6V0UsSOLQf2AbqpAGd-fG6eX1cPRy1JJjEpGnVmMkIkimu0SXmF7jVKoVc8VcUdvbkppZvxWkXgWeix223SJGftr81Ce2Fmaf2darOoJf2O-7VAWWKmjwsW_5P0nlvI4cM16EhqvAPUyXnA5eOUwt3YPkPylZTuMomnmOD8vnxaKmszWBsJrWgOeJdChq-9Q4R76EyZwvf8FiymHyo17gjNNd9nBxfn82FG1zBYEG0CuBsMRbkAg3jLIw0A4QK7pSI3xwWeGs0gq8DF5K8P0saB8jQARbRvDODJz8ytZn9SzsMa7BgytimWVQKB3K0itpsjzi9HlmSrPPZKfNyrWVx6kBxqTqKGZPVWODimxQNTbYZ-JFat5U3nhnvOkMVf21gioMDv-UPPhvyW9sc3h_e1PdXI6uD9lH-tIwuo_YOo4NxwhYVvakXZB_ANdR7dE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+identification+of+concrete+dams+with+ambient+vibration+based+on+surrogate-assisted+multi-objective+salp+swarm+algorithm&rft.jtitle=Structures+%28Oxford%29&rft.au=Wu%2C+Yingrui&rft.au=Kang%2C+Fei&rft.au=Zhang%2C+Yantan&rft.au=Li%2C+Xinyu&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=60&rft_id=info:doi/10.1016%2Fj.istruc.2024.105956&rft.externalDocID=S2352012424001085 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon |