Structural identification of concrete dams with ambient vibration based on surrogate-assisted multi-objective salp swarm algorithm

Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health mo...

Full description

Saved in:
Bibliographic Details
Published inStructures (Oxford) Vol. 60; p. 105956
Main Authors Wu, Yingrui, Kang, Fei, Zhang, Yantan, Li, Xinyu, Li, Hongjun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text
ISSN2352-0124
2352-0124
DOI10.1016/j.istruc.2024.105956

Cover

Abstract Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health monitoring. This study proposes a novel method for the vibration data-driven parameter identification of concrete dams by employing a multi-objective salp swarm algorithm (MSSA) together with a Gaussian process surrogate model. The Gaussian process was selected because of its advantage in capturing the nonlinear relationships between the input (dynamic elastic modulus) and output (natural frequency and mode shape) variables, thereby eliminating the need for extensive finite element simulations. MSSA was adopted to address the challenges presented by single-objective functions, particularly the intricate selection of weighting factors. A numerical example and an arch dam model experiment were presented to validate the proposed methodology. The results demonstrate that the MSSA provides a robust and accurate estimation of the dynamic parameters of concrete dams. Comparative evaluations with single-objective salp swarm algorithm (SSA), multi-objective particle swarm optimization (MOPSO), and a multi-objective evolutionary algorithm based on decomposition (MOEA/D) underline the superiority of MSSA in parameter identification, both in terms of accuracy and computational efficiency. The proposed method holds promise for parameter identification of other large-scale infrastructures owing to its minimal user intervention and computational burden requirements.
AbstractList Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the operational state of structures and detecting potential anomalies. Structural identification based on vibration data is indispensable for dam health monitoring. This study proposes a novel method for the vibration data-driven parameter identification of concrete dams by employing a multi-objective salp swarm algorithm (MSSA) together with a Gaussian process surrogate model. The Gaussian process was selected because of its advantage in capturing the nonlinear relationships between the input (dynamic elastic modulus) and output (natural frequency and mode shape) variables, thereby eliminating the need for extensive finite element simulations. MSSA was adopted to address the challenges presented by single-objective functions, particularly the intricate selection of weighting factors. A numerical example and an arch dam model experiment were presented to validate the proposed methodology. The results demonstrate that the MSSA provides a robust and accurate estimation of the dynamic parameters of concrete dams. Comparative evaluations with single-objective salp swarm algorithm (SSA), multi-objective particle swarm optimization (MOPSO), and a multi-objective evolutionary algorithm based on decomposition (MOEA/D) underline the superiority of MSSA in parameter identification, both in terms of accuracy and computational efficiency. The proposed method holds promise for parameter identification of other large-scale infrastructures owing to its minimal user intervention and computational burden requirements.
ArticleNumber 105956
Author Wu, Yingrui
Li, Xinyu
Zhang, Yantan
Li, Hongjun
Kang, Fei
Author_xml – sequence: 1
  givenname: Yingrui
  surname: Wu
  fullname: Wu, Yingrui
  organization: School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Fei
  surname: Kang
  fullname: Kang, Fei
  email: kangfei2009@163.com, kangfei@dlut.edu.cn
  organization: School of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Yantan
  surname: Zhang
  fullname: Zhang, Yantan
  organization: China Power Construction Group Northwest Survey, Design and Research Institute Co., Ltd, Xian 710065, China
– sequence: 4
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  organization: China Yangtze Power Co., Ltd, Yichang 443000, China
– sequence: 5
  givenname: Hongjun
  surname: Li
  fullname: Li, Hongjun
  organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
BookMark eNqFkMtKAzEUhoNUsNa-gYu8wNRkMpeOC0GKNxBcqOtwcqsZZiYlSVvc-uSmjgtxoascDv_3k_OdosngBo3QOSULSmh10S5siH4rFznJi7Qqm7I6QtOclXlGaF5MfswnaB5CSwjJaZHS9RR9PB_YuPXQYav0EK2xEqJ1A3YGSzdIr6PGCvqA9za-YeiFTTG8s8KPOQFBK5yGsPXerSHqDEJIn0rbfttFmznRahntTuMA3QaHPfgeQ7d2PjX2Z-jYQBf0_Pudodfbm5fVffb4dPewun7MJCNVzBpWKwGMlWVdCFhWEkjTyKZqKJGklKKoClBMK8ZAUaIrZQyAAdEYULJeSjZDxdgrvQvBa8M33vbg3zkl_KCSt3xUyQ8q-agyYZe_MGnj1-XRg-3-g69GWKfDdlZ7HmTSJ7WyPinhytm_Cz4BhVuZcg
CitedBy_id crossref_primary_10_1007_s00707_024_04216_2
crossref_primary_10_1080_15376494_2024_2425818
crossref_primary_10_1088_1402_4896_ad9d92
crossref_primary_10_1016_j_enbuild_2024_114922
crossref_primary_10_1038_s41598_025_85303_9
crossref_primary_10_1016_j_est_2025_115757
crossref_primary_10_1016_j_istruc_2024_107931
crossref_primary_10_1038_s41598_024_80259_8
crossref_primary_10_1002_pat_6621
crossref_primary_10_3390_drones9020147
crossref_primary_10_1080_15376494_2024_2423060
crossref_primary_10_1109_JSEN_2024_3523496
crossref_primary_10_1142_S0217984925501179
crossref_primary_10_1007_s43452_024_01109_y
crossref_primary_10_1007_s11269_024_04065_7
crossref_primary_10_1016_j_iintel_2024_100122
crossref_primary_10_1016_j_est_2024_114807
crossref_primary_10_1016_j_jclepro_2024_143901
crossref_primary_10_1002_slct_202403847
crossref_primary_10_1007_s42417_024_01745_x
crossref_primary_10_1007_s42417_024_01597_5
crossref_primary_10_1016_j_jseaes_2024_106377
crossref_primary_10_1080_15376494_2024_2422578
crossref_primary_10_1080_15397734_2024_2435576
crossref_primary_10_1080_15376494_2024_2420259
crossref_primary_10_1080_15376494_2024_2422579
crossref_primary_10_1002_pat_70009
crossref_primary_10_1080_10589759_2025_2451224
crossref_primary_10_1002_pat_70008
crossref_primary_10_1142_S021797922550153X
crossref_primary_10_1016_j_ymssp_2024_112017
crossref_primary_10_1016_j_ymssp_2024_112011
crossref_primary_10_1080_19392699_2024_2434891
crossref_primary_10_1002_pat_70021
crossref_primary_10_1016_j_jcou_2024_102995
crossref_primary_10_1002_pat_70020
Cites_doi 10.1016/j.ymssp.2008.05.003
10.1016/j.aei.2022.101853
10.1016/j.istruc.2022.10.052
10.1080/17415977.2017.1386188
10.1061/(ASCE)BE.1943-5592.0001949
10.1016/j.aei.2023.102016
10.1016/j.advengsoft.2017.07.002
10.1007/s00500-022-06735-3
10.1016/j.aei.2018.09.005
10.1007/s00366-017-0514-1
10.1016/j.autcon.2022.104555
10.1016/j.measurement.2022.111591
10.1016/j.apm.2019.02.008
10.1080/08982112.2012.758284
10.1061/(ASCE)ST.1943-541X.0002629
10.1016/j.cma.2021.113665
10.1016/j.asoc.2022.109476
10.1016/j.apm.2020.09.048
10.1061/(ASCE)ST.1943-541X.0002467
10.1098/rsta.2006.1930
10.1016/j.engstruct.2021.113001
10.1016/j.aei.2023.102002
10.1016/j.engstruct.2023.116150
10.1016/j.istruc.2022.09.020
10.1016/j.aei.2022.101615
10.1016/j.advengsoft.2020.102870
10.1016/j.engstruct.2021.112032
10.1016/j.engstruct.2023.115686
10.1016/j.engstruct.2021.112035
10.1007/s00521-019-04375-7
10.1109/CEC.2002.1004388
10.1016/j.engstruct.2022.114683
10.1016/j.jsv.2014.01.015
10.12989/cac.2014.13.2.209
10.1061/(ASCE)GM.1943-5622.0002465
10.1016/j.istruc.2021.03.028
10.1061/(ASCE)ST.1943-541X.0002953
10.1007/s00603-021-02656-z
10.1016/j.jsv.2013.08.025
10.1016/j.aei.2021.101407
10.1002/eqe.3617
10.7551/mitpress/3206.001.0001
10.1109/TEVC.2007.892759
10.1016/j.knosys.2021.107537
10.1016/j.aei.2021.101348
ContentType Journal Article
Copyright 2024 Institution of Structural Engineers
Copyright_xml – notice: 2024 Institution of Structural Engineers
DBID AAYXX
CITATION
DOI 10.1016/j.istruc.2024.105956
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-0124
ExternalDocumentID 10_1016_j_istruc_2024_105956
S2352012424001085
GroupedDBID --M
0R~
4.4
457
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEIPS
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SST
SSZ
T5K
~G-
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
ID FETCH-LOGICAL-c306t-937dba335574ba86ca099c96910c05cb464ad3ed33ad10e6dffaafab9fadc78c3
IEDL.DBID AIKHN
ISSN 2352-0124
IngestDate Thu Apr 24 22:52:14 EDT 2025
Wed Oct 01 03:29:37 EDT 2025
Sat Feb 08 15:52:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Gaussian process regression
Parameter identification
Vibration data
Concrete dams
Multi-objective salp swarm algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-937dba335574ba86ca099c96910c05cb464ad3ed33ad10e6dffaafab9fadc78c3
ParticipantIDs crossref_primary_10_1016_j_istruc_2024_105956
crossref_citationtrail_10_1016_j_istruc_2024_105956
elsevier_sciencedirect_doi_10_1016_j_istruc_2024_105956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Structures (Oxford)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Günaydin, Sevim, Bayraktar, Adanur (bib50) 2016; 30
Yang, Wen, Yan, Hua, Su (bib5) 2022
Rasmussen, Williams (bib37) 2005
Pang, Zhou, He, Zhong, Hui (bib41) 2021; 147
He, Gu, Valente, Zhao, Liu, Yuan (bib10) 2022; 12
Türker, Bayraktar, Sevim (bib51) 2014; 13
Gong, Zou, Kong, Liu, Qu (bib8) 2021; 237
Jin, Cho, Jung, Lee, Yun (bib25) 2014; 333
Silvestrini, Montgomery, Jones (bib49) 2013; 25
Sevieri, De Falco, Andreini, Matthies (bib19) 2021; 246
Chen, Wang, Tong, Cai, Zhu, Liu (bib31) 2021; 233
Su, Zhang, Wen, Li (bib35) 2017; 33
Mostafaei, Ghamami, Aghabozorgi (bib1) 2021; 32
Lin, Li, Chen, Liu, Lin, Liang (bib43) 2019; 31
C.A. Coello Coello M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization Proc 2002 Congr Evol Comput CEC 2002 2 2002 1051 1056 doi: 10.1109/CEC.2002.1004388.
Zhao, Kang, Li (bib4) 2022; 143
Hariri-Ardebili, Chen, Mahdavi (bib12) 2022; 52
Lin, Li, Chen, Lin, Liu, Gao (bib29) 2020; 148
Guo, Dufour, Humbert (bib18) 2022; 51
Tien Bui, Nhu, Hoang (bib30) 2018; 38
Kourehli (bib39) 2018; 26
Chen, Li, Zhu, Yang, Lang (bib6) 2022; 22
Zhou, Sun, Li, Zhang, Li, Ma (bib33) 2022; 26
Ma, Liu (bib7) 2022; 55
Kang, Wu, Ma, Li (bib38) 2023; 286
Li, Wu (bib27) 2022; 128
Xiong, Wei, Xu (bib36) 2022; 46
Kang, Wu, Li, Li (bib21) 2021; 49
Hwang, Jin S seop, Jung, Kim, Lee, Jung (bib24) 2018; 65
Segura, Padgett, Paultre (bib32) 2020; 146
Kang, Li (bib42) 2020; 146
Shu, Wang, Lu, Chen, Yan, Wang (bib11) 2022; 267
Huang, Kang, Li, Wang (bib3) 2023; 280
Zhang, Wan, Xiong, Xie, Noori, Xue (bib28) 2022; 199
Ren, Li, Li, Shen (bib2) 2021; 50
Zhang, Li (bib48) 2007; 11
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib44) 2017; 114
Liu, Hao, Ye, Yang, Lin (bib9) 2021; 376
Li, Hariri-Ardebili, Deng, Wei, Cao M (bib34) 2023; 55
Xu, Wu (bib26) 2022; 45
Liu, Wenbo, Wang, Linmei, Chen (bib22) 2022
Friswell (bib20) 2007; 365
Liu, Kang, Limongelli (bib13) 2023; 56
Zhi-Qian, Jian-Wen, Jin-Ting, Fu-Dong (bib15) 2022; 29
Magalhães, Cunha, Caetano (bib45) 2009; 23
Wei, Xie, Li, Zhong, You (bib16) 2021; 91
da Silva, Figueiredo, Moldovan (bib40) 2022; 27
Li, Wang, Wei, Zhong, Zhan (bib23) 2019; 71
Gandino, Garibaldi, Marchesiello (bib46) 2013; 332
Pereira, Magalhaes, Gomes, Cunha, Lemos (bib17) 2021; 235
Liu, Li, Wang, Huang, Wu, Li (bib14) 2023; 56
Wei (10.1016/j.istruc.2024.105956_bib16) 2021; 91
Kang (10.1016/j.istruc.2024.105956_bib21) 2021; 49
Mirjalili (10.1016/j.istruc.2024.105956_bib44) 2017; 114
Segura (10.1016/j.istruc.2024.105956_bib32) 2020; 146
Mostafaei (10.1016/j.istruc.2024.105956_bib1) 2021; 32
Shu (10.1016/j.istruc.2024.105956_bib11) 2022; 267
Li (10.1016/j.istruc.2024.105956_bib34) 2023; 55
Pereira (10.1016/j.istruc.2024.105956_bib17) 2021; 235
Tien Bui (10.1016/j.istruc.2024.105956_bib30) 2018; 38
Gong (10.1016/j.istruc.2024.105956_bib8) 2021; 237
Zhao (10.1016/j.istruc.2024.105956_bib4) 2022; 143
Pang (10.1016/j.istruc.2024.105956_bib41) 2021; 147
Lin (10.1016/j.istruc.2024.105956_bib43) 2019; 31
Chen (10.1016/j.istruc.2024.105956_bib31) 2021; 233
Huang (10.1016/j.istruc.2024.105956_bib3) 2023; 280
Rasmussen (10.1016/j.istruc.2024.105956_bib37) 2005
Silvestrini (10.1016/j.istruc.2024.105956_bib49) 2013; 25
Yang (10.1016/j.istruc.2024.105956_bib5) 2022
Hwang (10.1016/j.istruc.2024.105956_bib24) 2018; 65
Su (10.1016/j.istruc.2024.105956_bib35) 2017; 33
Guo (10.1016/j.istruc.2024.105956_bib18) 2022; 51
Liu (10.1016/j.istruc.2024.105956_bib13) 2023; 56
Jin (10.1016/j.istruc.2024.105956_bib25) 2014; 333
Zhang (10.1016/j.istruc.2024.105956_bib28) 2022; 199
Ren (10.1016/j.istruc.2024.105956_bib2) 2021; 50
Kourehli (10.1016/j.istruc.2024.105956_bib39) 2018; 26
Friswell (10.1016/j.istruc.2024.105956_bib20) 2007; 365
Xu (10.1016/j.istruc.2024.105956_bib26) 2022; 45
Kang (10.1016/j.istruc.2024.105956_bib42) 2020; 146
Zhi-Qian (10.1016/j.istruc.2024.105956_bib15) 2022; 29
Liu (10.1016/j.istruc.2024.105956_bib14) 2023; 56
10.1016/j.istruc.2024.105956_bib47
Magalhães (10.1016/j.istruc.2024.105956_bib45) 2009; 23
Li (10.1016/j.istruc.2024.105956_bib27) 2022; 128
Zhou (10.1016/j.istruc.2024.105956_bib33) 2022; 26
Xiong (10.1016/j.istruc.2024.105956_bib36) 2022; 46
He (10.1016/j.istruc.2024.105956_bib10) 2022; 12
da Silva (10.1016/j.istruc.2024.105956_bib40) 2022; 27
Günaydin (10.1016/j.istruc.2024.105956_bib50) 2016; 30
Hariri-Ardebili (10.1016/j.istruc.2024.105956_bib12) 2022; 52
Chen (10.1016/j.istruc.2024.105956_bib6) 2022; 22
Gandino (10.1016/j.istruc.2024.105956_bib46) 2013; 332
Türker (10.1016/j.istruc.2024.105956_bib51) 2014; 13
Sevieri (10.1016/j.istruc.2024.105956_bib19) 2021; 246
Ma (10.1016/j.istruc.2024.105956_bib7) 2022; 55
Liu (10.1016/j.istruc.2024.105956_bib22) 2022
Lin (10.1016/j.istruc.2024.105956_bib29) 2020; 148
Kang (10.1016/j.istruc.2024.105956_bib38) 2023; 286
Zhang (10.1016/j.istruc.2024.105956_bib48) 2007; 11
Li (10.1016/j.istruc.2024.105956_bib23) 2019; 71
Liu (10.1016/j.istruc.2024.105956_bib9) 2021; 376
References_xml – volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib44
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
– volume: 50
  year: 2021
  ident: bib2
  article-title: A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism
  publication-title: Adv Eng Inform
– volume: 31
  start-page: 8503
  year: 2019
  end-page: 8518
  ident: bib43
  article-title: Gaussian process regression-based forecasting model of dam deformation
  publication-title: Neural Comput Appl
– year: 2005
  ident: bib37
  publication-title: Gaussian Process Mach Learn
– volume: 286
  year: 2023
  ident: bib38
  article-title: Structural identification of super high arch dams using Gaussian process regression with improved salp swarm algorithm
  publication-title: Eng Struct
– volume: 147
  year: 2021
  ident: bib41
  article-title: Uniform design–based gaussian process regression for data-driven rapid fragility assessment of bridges
  publication-title: J Struct Eng
– volume: 12
  start-page: 19
  year: 2022
  ident: bib10
  article-title: Multi-arch dam safety evaluation based on statistical analysis and numerical simulation
  publication-title: Sci Rep
– volume: 71
  start-page: 60
  year: 2019
  end-page: 76
  ident: bib23
  article-title: Dynamic inversion method for the material parameters of a high arch dam and its foundation
  publication-title: Appl Math Model
– volume: 332
  start-page: 7000
  year: 2013
  end-page: 7017
  ident: bib46
  article-title: Covariance-driven subspace identification: a complete input-output approach
  publication-title: J Sound Vib
– volume: 23
  start-page: 316
  year: 2009
  end-page: 329
  ident: bib45
  article-title: Online automatic identification of the modal parameters of a long span arch bridge
  publication-title: Mech Syst Signal Process
– volume: 146
  year: 2020
  ident: bib42
  article-title: Displacement model for concrete dam safety monitoring via gaussian process regression considering extreme air temperature
  publication-title: J Struct Eng
– volume: 91
  start-page: 297
  year: 2021
  end-page: 310
  ident: bib16
  article-title: An improved hilbert–huang transform method for modal parameter identification of a high arch dam
  publication-title: Appl Math Model
– volume: 376
  year: 2021
  ident: bib9
  article-title: Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method
  publication-title: Comput Methods Appl Mech Eng
– volume: 55
  year: 2023
  ident: bib34
  article-title: A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams
  publication-title: Adv Eng Inform
– volume: 365
  start-page: 393
  year: 2007
  end-page: 410
  ident: bib20
  article-title: Damage identification using inverse methods
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
– volume: 146
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib32
  article-title: Metamodel-based seismic fragility analysis of concrete gravity dams
  publication-title: J Struct Eng
– year: 2022
  ident: bib5
  article-title: Structural inverse analysis of concrete dams: considering residual hydration heat effect on dam displacements
  publication-title: Eng Comput
– volume: 30
  start-page: 4
  year: 2016
  end-page: 10
  ident: bib50
  article-title: Dynamic characteristics of an arch dam model before and after strengthening with consideration of reservoir water
  publication-title: S
– volume: 280
  year: 2023
  ident: bib3
  article-title: Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature
  publication-title: Eng Struct
– volume: 128
  year: 2022
  ident: bib27
  article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria
  publication-title: Appl Softw Comput
– year: 2022
  ident: bib22
  article-title: Structural parameter inversion of a gravity dam based on the dynamic response induced by an underwater explosion
  publication-title: J Vib Control
– volume: 65
  start-page: 173
  year: 2018
  end-page: 181
  ident: bib24
  article-title: Experimental validation of FE model updating based on multi-objective optimization using the surrogate model
  publication-title: Struct Eng Mech
– volume: 333
  start-page: 2323
  year: 2014
  end-page: 2338
  ident: bib25
  article-title: A new multi-objective approach to finite element model updating
  publication-title: J Sound Vib
– volume: 246
  year: 2021
  ident: bib19
  article-title: Hierarchical Bayesian framework for uncertainty reduction in the seismic fragility analysis of concrete gravity dams
  publication-title: Eng Struct
– volume: 29
  start-page: 1
  year: 2022
  end-page: 19
  ident: bib15
  article-title: Improved approach for vibration-based structural health monitoring of arch dams during seismic events and normal operation
  publication-title: Struct Control Heal Monit
– volume: 233
  year: 2021
  ident: bib31
  article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features
  publication-title: Knowl-Based Syst
– volume: 143
  year: 2022
  ident: bib4
  article-title: Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction
  publication-title: Autom Constr
– volume: 45
  start-page: 145
  year: 2022
  end-page: 162
  ident: bib26
  article-title: Parameter identification of unsaturated seepage model of core rockfill dams using principal component analysis and multi-objective optimization
  publication-title: Structures
– volume: 56
  year: 2023
  ident: bib14
  article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning
  publication-title: Adv Eng Inform
– volume: 25
  start-page: 164
  year: 2013
  end-page: 174
  ident: bib49
  article-title: Comparing computer experiments for the Gaussian process model using integrated prediction variance
  publication-title: Qual Eng
– volume: 49
  year: 2021
  ident: bib21
  article-title: Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model
  publication-title: Adv Eng Inform
– volume: 33
  start-page: 1027
  year: 2017
  end-page: 1043
  ident: bib35
  article-title: Prototype monitoring data-based analysis of time-varying material parameters of dams and their foundation with structural reinforcement
  publication-title: Eng Comput
– volume: 26
  start-page: 9527
  year: 2022
  end-page: 9541
  ident: bib33
  article-title: Creep parameter inversion for high CFRDs based on improved BP neural network response surface method
  publication-title: Softw Comput
– reference: C.A. Coello Coello M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization Proc 2002 Congr Evol Comput CEC 2002 2 2002 1051 1056 doi: 10.1109/CEC.2002.1004388.
– volume: 26
  start-page: 1198
  year: 2018
  end-page: 1213
  ident: bib39
  article-title: Plate-like structures damage detection based on static response and static strain energy using gaussian process regression (GPR)
  publication-title: Inverse Probl Sci Eng
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib48
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
– volume: 267
  year: 2022
  ident: bib11
  article-title: Stability assessment method of damaged concrete gravity dams subjected to penetration explosion
  publication-title: Eng Struct
– volume: 237
  year: 2021
  ident: bib8
  article-title: An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface
  publication-title: Eng Struct
– volume: 55
  start-page: 275
  year: 2022
  end-page: 296
  ident: bib7
  article-title: Three-dimensional discontinuous deformation analysis of failure mechanisms and movement characteristics of slope rockfalls
  publication-title: Rock Mech Rock Eng
– volume: 27
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib40
  article-title: Damage detection approach for bridges under temperature effects using gaussian process regression trained with hybrid data
  publication-title: J Bridg Eng
– volume: 22
  start-page: 1
  year: 2022
  end-page: 17
  ident: bib6
  article-title: Determination of the main direction of a sliding body based on a three-dimensional finite-element limit-equilibrium method
  publication-title: Int J Geomech
– volume: 46
  start-page: 88
  year: 2022
  end-page: 98
  ident: bib36
  article-title: Identification of arch dam mechanical parameters based on sensitivity analysis and Hooke–Jeeves algorithm optimization
  publication-title: Structures
– volume: 148
  year: 2020
  ident: bib29
  article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques
  publication-title: Adv Eng Softw
– volume: 235
  start-page: 14
  year: 2021
  ident: bib17
  article-title: Vibration-based damage detection of a concrete arch dam
  publication-title: Eng Struct
– volume: 32
  start-page: 228
  year: 2021
  end-page: 236
  ident: bib1
  article-title: Modal identification of concrete arch dam by fully automated operational modal identification
  publication-title: Structures
– volume: 13
  start-page: 209
  year: 2014
  end-page: 220
  ident: bib51
  article-title: Vibration based damage identification of concrete arch dams by finite element model updating
  publication-title: Comput Concr
– volume: 38
  start-page: 593
  year: 2018
  end-page: 604
  ident: bib30
  article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network
  publication-title: Adv Eng Inform
– volume: 52
  year: 2022
  ident: bib12
  article-title: Machine learning-aided PSDM for dams with stochastic ground motions
  publication-title: Adv Eng Inform
– volume: 56
  year: 2023
  ident: bib13
  article-title: Multi-zone parametric inverse analysis of super high arch dams using deep learning networks based on measured displacements
  publication-title: Adv Eng Inform
– volume: 51
  start-page: 1321
  year: 2022
  end-page: 1342
  ident: bib18
  article-title: Modal analysis of an arch dam combining ambient vibration measurements, advanced fluid-element method and modified engineering approach
  publication-title: Earthq Eng Struct Dyn
– volume: 199
  year: 2022
  ident: bib28
  article-title: Output-only structural damage identification using hybrid Jaya and differential evolution algorithm with reference-free correlation functions
  publication-title: Measurement
– volume: 23
  start-page: 316
  year: 2009
  ident: 10.1016/j.istruc.2024.105956_bib45
  article-title: Online automatic identification of the modal parameters of a long span arch bridge
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2008.05.003
– volume: 55
  year: 2023
  ident: 10.1016/j.istruc.2024.105956_bib34
  article-title: A surrogate-assisted stochastic optimization inversion algorithm: parameter identification of dams
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101853
– volume: 46
  start-page: 88
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib36
  article-title: Identification of arch dam mechanical parameters based on sensitivity analysis and Hooke–Jeeves algorithm optimization
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.10.052
– year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib5
  article-title: Structural inverse analysis of concrete dams: considering residual hydration heat effect on dam displacements
  publication-title: Eng Comput
– volume: 26
  start-page: 1198
  year: 2018
  ident: 10.1016/j.istruc.2024.105956_bib39
  article-title: Plate-like structures damage detection based on static response and static strain energy using gaussian process regression (GPR)
  publication-title: Inverse Probl Sci Eng
  doi: 10.1080/17415977.2017.1386188
– volume: 27
  start-page: 1
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib40
  article-title: Damage detection approach for bridges under temperature effects using gaussian process regression trained with hybrid data
  publication-title: J Bridg Eng
  doi: 10.1061/(ASCE)BE.1943-5592.0001949
– volume: 56
  year: 2023
  ident: 10.1016/j.istruc.2024.105956_bib14
  article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102016
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.istruc.2024.105956_bib44
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 26
  start-page: 9527
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib33
  article-title: Creep parameter inversion for high CFRDs based on improved BP neural network response surface method
  publication-title: Softw Comput
  doi: 10.1007/s00500-022-06735-3
– volume: 38
  start-page: 593
  year: 2018
  ident: 10.1016/j.istruc.2024.105956_bib30
  article-title: Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2018.09.005
– volume: 33
  start-page: 1027
  year: 2017
  ident: 10.1016/j.istruc.2024.105956_bib35
  article-title: Prototype monitoring data-based analysis of time-varying material parameters of dams and their foundation with structural reinforcement
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0514-1
– volume: 143
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib4
  article-title: Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104555
– volume: 199
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib28
  article-title: Output-only structural damage identification using hybrid Jaya and differential evolution algorithm with reference-free correlation functions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111591
– volume: 71
  start-page: 60
  year: 2019
  ident: 10.1016/j.istruc.2024.105956_bib23
  article-title: Dynamic inversion method for the material parameters of a high arch dam and its foundation
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.02.008
– volume: 25
  start-page: 164
  year: 2013
  ident: 10.1016/j.istruc.2024.105956_bib49
  article-title: Comparing computer experiments for the Gaussian process model using integrated prediction variance
  publication-title: Qual Eng
  doi: 10.1080/08982112.2012.758284
– volume: 146
  start-page: 1
  year: 2020
  ident: 10.1016/j.istruc.2024.105956_bib32
  article-title: Metamodel-based seismic fragility analysis of concrete gravity dams
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002629
– volume: 376
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib9
  article-title: Free vibration and transient dynamic response of functionally graded sandwich plates with power-law nonhomogeneity by the scaled boundary finite element method
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2021.113665
– volume: 128
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib27
  article-title: A methodology for dam parameter identification combining machine learning, multi-objective optimization and multiple decision criteria
  publication-title: Appl Softw Comput
  doi: 10.1016/j.asoc.2022.109476
– volume: 12
  start-page: 19
  issue: 1
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib10
  article-title: Multi-arch dam safety evaluation based on statistical analysis and numerical simulation
  publication-title: Sci Rep
– volume: 91
  start-page: 297
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib16
  article-title: An improved hilbert–huang transform method for modal parameter identification of a high arch dam
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.09.048
– volume: 146
  year: 2020
  ident: 10.1016/j.istruc.2024.105956_bib42
  article-title: Displacement model for concrete dam safety monitoring via gaussian process regression considering extreme air temperature
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002467
– volume: 365
  start-page: 393
  year: 2007
  ident: 10.1016/j.istruc.2024.105956_bib20
  article-title: Damage identification using inverse methods
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2006.1930
– volume: 246
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib19
  article-title: Hierarchical Bayesian framework for uncertainty reduction in the seismic fragility analysis of concrete gravity dams
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.113001
– volume: 56
  year: 2023
  ident: 10.1016/j.istruc.2024.105956_bib13
  article-title: Multi-zone parametric inverse analysis of super high arch dams using deep learning networks based on measured displacements
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102002
– volume: 65
  start-page: 173
  year: 2018
  ident: 10.1016/j.istruc.2024.105956_bib24
  article-title: Experimental validation of FE model updating based on multi-objective optimization using the surrogate model
  publication-title: Struct Eng Mech
– volume: 286
  year: 2023
  ident: 10.1016/j.istruc.2024.105956_bib38
  article-title: Structural identification of super high arch dams using Gaussian process regression with improved salp swarm algorithm
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.116150
– volume: 45
  start-page: 145
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib26
  article-title: Parameter identification of unsaturated seepage model of core rockfill dams using principal component analysis and multi-objective optimization
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.09.020
– volume: 30
  start-page: 4
  year: 2016
  ident: 10.1016/j.istruc.2024.105956_bib50
  article-title: Dynamic characteristics of an arch dam model before and after strengthening with consideration of reservoir water
  publication-title: S
– volume: 52
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib12
  article-title: Machine learning-aided PSDM for dams with stochastic ground motions
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101615
– volume: 148
  year: 2020
  ident: 10.1016/j.istruc.2024.105956_bib29
  article-title: Structural identification in long-term deformation characteristic of dam foundation using meta-heuristic optimization techniques
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2020.102870
– volume: 235
  start-page: 14
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib17
  article-title: Vibration-based damage detection of a concrete arch dam
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112032
– volume: 280
  year: 2023
  ident: 10.1016/j.istruc.2024.105956_bib3
  article-title: Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2023.115686
– volume: 237
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib8
  article-title: An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2021.112035
– volume: 31
  start-page: 8503
  year: 2019
  ident: 10.1016/j.istruc.2024.105956_bib43
  article-title: Gaussian process regression-based forecasting model of dam deformation
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04375-7
– ident: 10.1016/j.istruc.2024.105956_bib47
  doi: 10.1109/CEC.2002.1004388
– volume: 267
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib11
  article-title: Stability assessment method of damaged concrete gravity dams subjected to penetration explosion
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2022.114683
– volume: 333
  start-page: 2323
  year: 2014
  ident: 10.1016/j.istruc.2024.105956_bib25
  article-title: A new multi-objective approach to finite element model updating
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2014.01.015
– volume: 13
  start-page: 209
  year: 2014
  ident: 10.1016/j.istruc.2024.105956_bib51
  article-title: Vibration based damage identification of concrete arch dams by finite element model updating
  publication-title: Comput Concr
  doi: 10.12989/cac.2014.13.2.209
– volume: 29
  start-page: 1
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib15
  article-title: Improved approach for vibration-based structural health monitoring of arch dams during seismic events and normal operation
  publication-title: Struct Control Heal Monit
– year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib22
  article-title: Structural parameter inversion of a gravity dam based on the dynamic response induced by an underwater explosion
  publication-title: J Vib Control
– volume: 22
  start-page: 1
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib6
  article-title: Determination of the main direction of a sliding body based on a three-dimensional finite-element limit-equilibrium method
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0002465
– volume: 32
  start-page: 228
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib1
  article-title: Modal identification of concrete arch dam by fully automated operational modal identification
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.03.028
– volume: 147
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib41
  article-title: Uniform design–based gaussian process regression for data-driven rapid fragility assessment of bridges
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0002953
– volume: 55
  start-page: 275
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib7
  article-title: Three-dimensional discontinuous deformation analysis of failure mechanisms and movement characteristics of slope rockfalls
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-021-02656-z
– volume: 332
  start-page: 7000
  year: 2013
  ident: 10.1016/j.istruc.2024.105956_bib46
  article-title: Covariance-driven subspace identification: a complete input-output approach
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2013.08.025
– volume: 50
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib2
  article-title: A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101407
– volume: 51
  start-page: 1321
  year: 2022
  ident: 10.1016/j.istruc.2024.105956_bib18
  article-title: Modal analysis of an arch dam combining ambient vibration measurements, advanced fluid-element method and modified engineering approach
  publication-title: Earthq Eng Struct Dyn
  doi: 10.1002/eqe.3617
– year: 2005
  ident: 10.1016/j.istruc.2024.105956_bib37
  publication-title: Gaussian Process Mach Learn
  doi: 10.7551/mitpress/3206.001.0001
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.istruc.2024.105956_bib48
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892759
– volume: 233
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib31
  article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107537
– volume: 49
  year: 2021
  ident: 10.1016/j.istruc.2024.105956_bib21
  article-title: Dynamic parameter inverse analysis of concrete dams based on Jaya algorithm with Gaussian processes surrogate model
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2021.101348
SSID ssj0002140247
Score 2.4930453
Snippet Dynamic identification is integral to understanding the vibration characteristics of structures as it offers valuable information for perceiving the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105956
SubjectTerms Concrete dams
Gaussian process regression
Multi-objective salp swarm algorithm
Parameter identification
Vibration data
Title Structural identification of concrete dams with ambient vibration based on surrogate-assisted multi-objective salp swarm algorithm
URI https://dx.doi.org/10.1016/j.istruc.2024.105956
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: ACRLP
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AIKHN
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-0124
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002140247
  issn: 2352-0124
  databaseCode: AKRWK
  dateStart: 20150201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL3oQn_gmB6-h291sdvcoolSFXlTwtkxeUmm7pa1695c7k90tCqLgbR-ZEDJh5pvhywxj5zbtea0NCN3LrJCgUpE7Fwuf9cArk0ROB5bvQPUf5e1T-rTCLtu7MESrbGx_bdODtW6-dJvd7E6Hw-59jNgBzaskFiRx6FfZGvqfPO-wtYubu_5gmWqJMYiIQ6sxEhEk016iC0yvYSjVirFiLKntbUHNrH9yUl8cz_UW22wQI7-oF7XNVtxkh218qSO4yz7uQxVYqqDBh7bh_4Qt55XnGPEiNFw4bmE855R45TDWdA-Sv1GwHMaRN7McH-avs1lFuTWBsJrOgOWBdCgq_VIbRz6H0ZTP32E25jB6rmY443iPPV5fPVz2RdNcQaAC1EIgLLEaEoQbmdSQKwOIFU2hED6YKDVaKgk2cTZJwPYip6z3AB504cGaLDfJPutMqok7YFyBBZP6IooglcoVhZVJFsUep4-jrMgOWdLuZmmayuPUAGNUthSzl7LWQUk6KGsdHDKxlJrWlTf-GJ-1iiq_naASncOvkkf_ljxm6_RWs7hPWAf_u1MEKQt91hzCT8q96vA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69tD1UHRbh76nw65CHEuW4mNRtEhfubQFejOo15AiiYMk3e775SNlu-iAYgV2M2xRMEiJ_Ch8Ihn77ot-tNaBsH3jhQJdiEEIuYimD1E7mQWbWL4jPXxQV4_F4xo76-7CEK2y9f2NT0_eun3Ta7XZm4_HvbscsQO6V0UsSOLQf2AbqpAGd-fG6eX1cPRy1JJjEpGnVmMkIkimu0SXmF7jVKoVc8VcUdvbkppZvxWkXgWeix223SJGftr81Ce2Fmaf2darOoJf2O-7VAWWKmjwsW_5P0nlvI4cM16EhqvAPUyXnA5eOUwt3YPkPylZTuMomnmOD8vnxaKmszWBsJrWgOeJdChq-9Q4R76EyZwvf8FiymHyo17gjNNd9nBxfn82FG1zBYEG0CuBsMRbkAg3jLIw0A4QK7pSI3xwWeGs0gq8DF5K8P0saB8jQARbRvDODJz8ytZn9SzsMa7BgytimWVQKB3K0itpsjzi9HlmSrPPZKfNyrWVx6kBxqTqKGZPVWODimxQNTbYZ-JFat5U3nhnvOkMVf21gioMDv-UPPhvyW9sc3h_e1PdXI6uD9lH-tIwuo_YOo4NxwhYVvakXZB_ANdR7dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+identification+of+concrete+dams+with+ambient+vibration+based+on+surrogate-assisted+multi-objective+salp+swarm+algorithm&rft.jtitle=Structures+%28Oxford%29&rft.au=Wu%2C+Yingrui&rft.au=Kang%2C+Fei&rft.au=Zhang%2C+Yantan&rft.au=Li%2C+Xinyu&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=2352-0124&rft.eissn=2352-0124&rft.volume=60&rft_id=info:doi/10.1016%2Fj.istruc.2024.105956&rft.externalDocID=S2352012424001085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0124&client=summon