Spatiotemporal patterns of a diffusive plant–herbivore model with toxin-determined functional responses: Multiple bifurcations

In this paper, a homogeneous diffusive plant–herbivore model with toxin-determined functional response subject to the homogeneous Neumann boundary condition in the one dimensional spatial open bounded domain is considered. By using Hopf bifurcation theorem and steady state bifurcation theorem due to...

Full description

Saved in:
Bibliographic Details
Published inMathematics and computers in simulation Vol. 187; pp. 337 - 356
Main Authors Xiang, Nan, Wu, Qidong, Wan, Aying
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2021
Subjects
Online AccessGet full text
ISSN0378-4754
1872-7166
DOI10.1016/j.matcom.2021.03.011

Cover

Abstract In this paper, a homogeneous diffusive plant–herbivore model with toxin-determined functional response subject to the homogeneous Neumann boundary condition in the one dimensional spatial open bounded domain is considered. By using Hopf bifurcation theorem and steady state bifurcation theorem due to Yi et al. (2009), we are able to show the existence of Hopf bifurcating periodic solutions (spatially homogeneous and non-homogeneous) and bifurcating non-constant steady state solutions. In particular, under certain conditions, the globally asymptotic stability of the positive constant steady state solutions and the non-existence of non-constant positive steady state solutions are investigated. These results allow the clear understanding of the mechanisms of the spatiotemporal pattern formations of this ecology model. In particular, our numerical results authenticate that toxicant parameter will play important roles in the stability and instability of the periodic solutions.
AbstractList In this paper, a homogeneous diffusive plant–herbivore model with toxin-determined functional response subject to the homogeneous Neumann boundary condition in the one dimensional spatial open bounded domain is considered. By using Hopf bifurcation theorem and steady state bifurcation theorem due to Yi et al. (2009), we are able to show the existence of Hopf bifurcating periodic solutions (spatially homogeneous and non-homogeneous) and bifurcating non-constant steady state solutions. In particular, under certain conditions, the globally asymptotic stability of the positive constant steady state solutions and the non-existence of non-constant positive steady state solutions are investigated. These results allow the clear understanding of the mechanisms of the spatiotemporal pattern formations of this ecology model. In particular, our numerical results authenticate that toxicant parameter will play important roles in the stability and instability of the periodic solutions.
Author Xiang, Nan
Wu, Qidong
Wan, Aying
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0002-1336-2364
  surname: Xiang
  fullname: Xiang, Nan
  email: xiangnanly@hrbeu.edu.cn
  organization: College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang Province, 150001, China
– sequence: 2
  givenname: Qidong
  surname: Wu
  fullname: Wu, Qidong
  organization: School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning Province, 116024, China
– sequence: 3
  givenname: Aying
  surname: Wan
  fullname: Wan, Aying
  organization: School of Mathematics and Statistics, Hulunbuir University, Halar, Inner Mongolia, 021008, China
BookMark eNqFkDtuGzEQhonABizLvoELXmA3fOxLKgIEQl6AAhexa4KPIUxhl1yQlGJ3vkNu6JOEilK5sCsOgfn-mfku0ZkPHhC6oaSmhHYfd_Uksw5TzQijNeE1ofQDWtChZ1VPu-4MLQjvh6rp2-YCXaa0I4SUul2g51-zzC5kmOYQ5YjLL0P0CQeLJTbO2n1yB8DzKH1-ef7zAFG5Q4iAp2BgxL9dfsA5PDpfGSjk5DwYbPdel1RfAiOkOfgEaY1_7sfs5hGwcnYf9XGuT1fo3MoxwfX_d4nuv36523yvtrfffmw-byvNSZerFWGtkqpnlKnOWjbwoW0t6xRv1Ir0kuihoa0xPeeKM1AryxQtDYZzDkQpvkTNKVfHkFIEK-boJhmfBCXiaFHsxMmiOFoUhItisWDrV5h2-d_mOUo3vgd_OsFQDjs4iCJpB16DcRF0Fia4twP-ApAJl9E
CitedBy_id crossref_primary_10_1016_j_physa_2022_127652
crossref_primary_10_3934_era_2023107
crossref_primary_10_1002_mma_10198
Cites_doi 10.1137/0512047
10.1016/j.matcom.2017.10.015
10.5890/JAND.2020.03.001
10.1142/S0218339020500023
10.1016/j.apm.2014.02.022
10.1142/S0218127418300045
10.5890/JAND.2018.06.005
10.1016/j.tpb.2007.12.004
10.1016/j.jde.2008.10.024
10.1137/110851614
10.1016/j.jde.2006.08.001
10.1016/j.jde.2007.10.034
10.1016/j.jde.2021.02.006
ContentType Journal Article
Copyright 2021 International Association for Mathematics and Computers in Simulation (IMACS)
Copyright_xml – notice: 2021 International Association for Mathematics and Computers in Simulation (IMACS)
DBID AAYXX
CITATION
DOI 10.1016/j.matcom.2021.03.011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 356
ExternalDocumentID 10_1016_j_matcom_2021_03_011
S0378475421000860
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971088
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11461024; 12061033
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities, China
  grantid: DUT18RC(3)070
  funderid: http://dx.doi.org/10.13039/501100012226
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-9025bab7212b6ff283855f26b34b907a0c8415dd733b32eb9f2b15f2d333e0bb3
IEDL.DBID .~1
ISSN 0378-4754
IngestDate Thu Apr 24 22:58:53 EDT 2025
Wed Oct 01 04:18:42 EDT 2025
Fri Feb 23 02:46:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Toxin-determined functional response
Steady state bifurcations
Plant–herbivore model
Hopf bifurcations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-9025bab7212b6ff283855f26b34b907a0c8415dd733b32eb9f2b15f2d333e0bb3
ORCID 0000-0002-1336-2364
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_matcom_2021_03_011
crossref_citationtrail_10_1016_j_matcom_2021_03_011
elsevier_sciencedirect_doi_10_1016_j_matcom_2021_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Han, Guin, Dai (b9) 2020; 28
Liu, Feng, Zhu, DeAngelis (b13) 2008; 245
Feng, Huang, DeAngelis (b3) 2013; 10
Ko, Ryu (b12) 2006; 231
Hsu, Shi (b11) 2009; 11
Yi, Wei, Shi (b16) 2009; 246
Hassard, Kazarinoff, Wan (b10) 1981
Feng, Liu, DeAngelis (b4) 2008; 73
Guin, Baek (b5) 2017; 146
Cheng (b2) 1981; 12
Zhao, Feng, Zheng, Cen (b17) 2015; 248
Sambath, Balachandran, Guin (b14) 2018; 28
Yi (b15) 2021; 281
Guin, Das, Sambath (b6) 2020; 9
Guin, Mandal (b7) 2014; 38
Castillo-Chavez, Feng, Huang (b1) 2012; 72
Guin, Mandal, Chakravarty (b8) 2018; 7
Guin (10.1016/j.matcom.2021.03.011_b7) 2014; 38
Guin (10.1016/j.matcom.2021.03.011_b8) 2018; 7
Hsu (10.1016/j.matcom.2021.03.011_b11) 2009; 11
Liu (10.1016/j.matcom.2021.03.011_b13) 2008; 245
Guin (10.1016/j.matcom.2021.03.011_b5) 2017; 146
Han (10.1016/j.matcom.2021.03.011_b9) 2020; 28
Feng (10.1016/j.matcom.2021.03.011_b4) 2008; 73
Ko (10.1016/j.matcom.2021.03.011_b12) 2006; 231
Feng (10.1016/j.matcom.2021.03.011_b3) 2013; 10
Castillo-Chavez (10.1016/j.matcom.2021.03.011_b1) 2012; 72
Guin (10.1016/j.matcom.2021.03.011_b6) 2020; 9
Yi (10.1016/j.matcom.2021.03.011_b16) 2009; 246
Sambath (10.1016/j.matcom.2021.03.011_b14) 2018; 28
Cheng (10.1016/j.matcom.2021.03.011_b2) 1981; 12
Hassard (10.1016/j.matcom.2021.03.011_b10) 1981
Yi (10.1016/j.matcom.2021.03.011_b15) 2021; 281
Zhao (10.1016/j.matcom.2021.03.011_b17) 2015; 248
References_xml – volume: 246
  start-page: 1944
  year: 2009
  end-page: 1977
  ident: b16
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J. Differential Equations
– volume: 248
  start-page: 2487
  year: 2015
  end-page: 2842
  ident: b17
  article-title: Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response
  publication-title: J. Differential Equations
– volume: 281
  start-page: 379
  year: 2021
  end-page: 410
  ident: b15
  article-title: Turing instability of the periodic solutions for reaction–diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling
  publication-title: J. Differential Equations
– volume: 7
  start-page: 165
  year: 2018
  end-page: 177
  ident: b8
  article-title: patiotemporal patterns of a pursuit-evasion generalist predator-prey model with prey harvesting
  publication-title: J. Appl. Nonlinear Dyn.
– volume: 12
  start-page: 541
  year: 1981
  end-page: 548
  ident: b2
  article-title: Uniqueness of a limit cycle for a predator–prey system
  publication-title: SIAM J. Math. Anal.
– volume: 10
  start-page: 1519
  year: 2013
  end-page: 1538
  ident: b3
  article-title: Spatially heterogeneous invasion of toxin plant mediated by herbivory
  publication-title: Meth. Biol. Eng.
– year: 1981
  ident: b10
  article-title: Theory and Application of Hopf Bifurcation
– volume: 11
  start-page: 893
  year: 2009
  end-page: 911
  ident: b11
  article-title: Relaxation oscillator profile of limit cycle in predator–prey system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 231
  start-page: 534
  year: 2006
  end-page: 550
  ident: b12
  article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge
  publication-title: J. Differential Equations
– volume: 28
  start-page: 27
  year: 2020
  end-page: 64
  ident: b9
  article-title: Cross-diffusion-driven pattern formation and selection in a modified leslie-gower predator–prey model with fear effect
  publication-title: J. Biol. Systems
– volume: 9
  start-page: 1
  year: 2020
  end-page: 21
  ident: b6
  article-title: Pattern formation scenario via Turing instability in interacting reaction–diffusion systems with both refuge and nonlinear harvesting
  publication-title: J. Appl. Nonlinear Dyn.
– volume: 28
  start-page: 100
  year: 2018
  end-page: 117
  ident: b14
  article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect
  publication-title: Int. J. Bifurcation Chaos
– volume: 72
  start-page: 1002
  year: 2012
  end-page: 1020
  ident: b1
  article-title: Global dynamics of a plant-herbivore model by toxin-determined functional response
  publication-title: SIAM J. Math. Anal.
– volume: 73
  start-page: 449
  year: 2008
  end-page: 459
  ident: b4
  article-title: Plant-herbivore interactions mediated by plant toxicity
  publication-title: Theor. Popul. Biol.
– volume: 146
  start-page: 100
  year: 2017
  end-page: 117
  ident: b5
  article-title: Comparative study between prey-dependent and ratio-dependent predator–prey models relating to patterning phenomenon
  publication-title: Math. Comput. Simulation
– volume: 245
  start-page: 442
  year: 2008
  end-page: 467
  ident: b13
  article-title: Bifurcation analysis of a plant-herbivore model with toxin-determined functional response
  publication-title: J. Differential Equations
– volume: 38
  start-page: 4417
  year: 2014
  end-page: 4427
  ident: b7
  article-title: Spatiotemporal dynamics of reaction–diffusion models of interacting populations
  publication-title: Appl. Math. Model.
– volume: 11
  start-page: 893
  issue: 4
  year: 2009
  ident: 10.1016/j.matcom.2021.03.011_b11
  article-title: Relaxation oscillator profile of limit cycle in predator–prey system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 12
  start-page: 541
  issue: 4
  year: 1981
  ident: 10.1016/j.matcom.2021.03.011_b2
  article-title: Uniqueness of a limit cycle for a predator–prey system
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0512047
– volume: 10
  start-page: 1519
  year: 2013
  ident: 10.1016/j.matcom.2021.03.011_b3
  article-title: Spatially heterogeneous invasion of toxin plant mediated by herbivory
  publication-title: Meth. Biol. Eng.
– volume: 146
  start-page: 100
  year: 2017
  ident: 10.1016/j.matcom.2021.03.011_b5
  article-title: Comparative study between prey-dependent and ratio-dependent predator–prey models relating to patterning phenomenon
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2017.10.015
– year: 1981
  ident: 10.1016/j.matcom.2021.03.011_b10
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.matcom.2021.03.011_b6
  article-title: Pattern formation scenario via Turing instability in interacting reaction–diffusion systems with both refuge and nonlinear harvesting
  publication-title: J. Appl. Nonlinear Dyn.
  doi: 10.5890/JAND.2020.03.001
– volume: 28
  start-page: 27
  issue: 1
  year: 2020
  ident: 10.1016/j.matcom.2021.03.011_b9
  article-title: Cross-diffusion-driven pattern formation and selection in a modified leslie-gower predator–prey model with fear effect
  publication-title: J. Biol. Systems
  doi: 10.1142/S0218339020500023
– volume: 38
  start-page: 4417
  year: 2014
  ident: 10.1016/j.matcom.2021.03.011_b7
  article-title: Spatiotemporal dynamics of reaction–diffusion models of interacting populations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.02.022
– volume: 28
  start-page: 100
  issue: 2
  year: 2018
  ident: 10.1016/j.matcom.2021.03.011_b14
  article-title: Spatiotemporal patterns in a predator–prey model with cross-diffusion effect
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127418300045
– volume: 248
  start-page: 2487
  year: 2015
  ident: 10.1016/j.matcom.2021.03.011_b17
  article-title: Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response
  publication-title: J. Differential Equations
– volume: 7
  start-page: 165
  issue: 2
  year: 2018
  ident: 10.1016/j.matcom.2021.03.011_b8
  article-title: patiotemporal patterns of a pursuit-evasion generalist predator-prey model with prey harvesting
  publication-title: J. Appl. Nonlinear Dyn.
  doi: 10.5890/JAND.2018.06.005
– volume: 73
  start-page: 449
  year: 2008
  ident: 10.1016/j.matcom.2021.03.011_b4
  article-title: Plant-herbivore interactions mediated by plant toxicity
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/j.tpb.2007.12.004
– volume: 246
  start-page: 1944
  year: 2009
  ident: 10.1016/j.matcom.2021.03.011_b16
  article-title: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2008.10.024
– volume: 72
  start-page: 1002
  issue: 4
  year: 2012
  ident: 10.1016/j.matcom.2021.03.011_b1
  article-title: Global dynamics of a plant-herbivore model by toxin-determined functional response
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/110851614
– volume: 231
  start-page: 534
  year: 2006
  ident: 10.1016/j.matcom.2021.03.011_b12
  article-title: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2006.08.001
– volume: 245
  start-page: 442
  year: 2008
  ident: 10.1016/j.matcom.2021.03.011_b13
  article-title: Bifurcation analysis of a plant-herbivore model with toxin-determined functional response
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.10.034
– volume: 281
  start-page: 379
  year: 2021
  ident: 10.1016/j.matcom.2021.03.011_b15
  article-title: Turing instability of the periodic solutions for reaction–diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2021.02.006
SSID ssj0007545
Score 2.3044987
Snippet In this paper, a homogeneous diffusive plant–herbivore model with toxin-determined functional response subject to the homogeneous Neumann boundary condition in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 337
SubjectTerms Hopf bifurcations
Plant–herbivore model
Steady state bifurcations
Toxin-determined functional response
Title Spatiotemporal patterns of a diffusive plant–herbivore model with toxin-determined functional responses: Multiple bifurcations
URI https://dx.doi.org/10.1016/j.matcom.2021.03.011
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LevHiW1xf5OA1bpq02643EZdVWS8q7K10mgQqS3dZu-JJ_A_-Q3-JkzT1AaLgsWUCZSad-WbyZYaQoyziMhc5Z7GJFQtVTzKQccQywcHYc04Q9jby6Lo3vAsvx9G4Rc6auzCWVul9f-3Tnbf2b7pem91ZUXRvuIzRtUahCBwwt3m77f6Fe_r4-ZPmgQKOxojCzEo31-ccxwtBoeWMCAx0rtVpEPwcnr6EnMEaWfFYkZ7Wn7NOWrrcIKvNHAbqf8tN8nLjaNG-y9SEzlzPzPKBTg3NqB2BsrAkdTqboBrfXl7RTFA8Tueaujk41NZiaTV9KkqmPDtGK2ojXl0opPOaSKsfTujIExApFGYx9_W-LXI3OL89GzI_WYHlmCJUzJ4tQgaY_QnoGYMQI4kiI3ogQ8BsOeN5goFdqVhKkEJD3wgIUEBJKTUHkNukXU5LvUOoiTiIzIBKdBiC4onpK0QBCOMg7AuedIhsFJrmvu24nX4xSRt-2X1amyG1Zki5TNEMHcI-Vs3qtht_yMeNrdJv2yfFyPDryt1_r9wjy_apJpztk3Y1X-gDRCgVHLoteEiWTi-uhtfvO3bqaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7QOMCFN2I8c-AaLUvateM2TaAB2y4DiVtUN4lUNHXTHojj_gP_kF-C06YIJAQS19aWqji1PyefbUIuk5DLVKScRTbSLNAtyUBGIUsEB-vuOUG4auTBsNV7DO6ewqc10q1qYRyt0vv-0qcX3to_afjVbEyzrDHiMkLXGgaiWQBzzNvXgxB9co2sd27ve8NPh4wyBZMR5ZlTqCroCpoX4kJHGxEY64pup83mzxHqS9S52SFbHi7STvlFu2TN5HtkuxrFQP2fuU9Wo4IZ7RtNjem0aJuZz-nE0oS6KShLx1On0zGu5PvqDS0F2ctkZmgxCoe641i6mLxmOdOeIGM0dUGvPCuks5JLa-ZXdOA5iBQyu5z5I78D8nhz_dDtMT9cgaWYJSyYu16EBDABFNCyFlFGHIZWtEAGgAlzwtMYY7vWkZQghYG2FdBEAS2lNBxAHpJaPsnNEaE25CASCzo2QQCax7atEQggkoOgLXhcJ7JaUJX6zuNuAMZYVRSzZ1WaQTkzKC4VmqFO2KfWtOy88Yd8VNlKfdtBCoPDr5rH_9a8IBu9h0Ff9W-H9ydk070p-WenpLaYLc0ZApYFnPsN-QEtPu0U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+patterns+of+a+diffusive+plant%E2%80%93herbivore+model+with+toxin-determined+functional+responses%3A+Multiple+bifurcations&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Xiang%2C+Nan&rft.au=Wu%2C+Qidong&rft.au=Wan%2C+Aying&rft.date=2021-09-01&rft.issn=0378-4754&rft.volume=187&rft.spage=337&rft.epage=356&rft_id=info:doi/10.1016%2Fj.matcom.2021.03.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matcom_2021_03_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon