Multi-label learning of non-equilibrium labels completion with mean shift
In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize r...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 321; pp. 92 - 102 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
10.12.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 |
| DOI | 10.1016/j.neucom.2018.09.033 |
Cover
| Abstract | In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize rich information contained in features-space and labels-space. In this paper, a multi-label learning algorithm of Non-Equilibrium Labels Completion with Mean Shift (i.e. NeLC-MS) was proposed. The aim of this research was to mine the feature hidden information by reconstructing the features space, and introduce non-equilibrium label correlation information so as to better improve the robustness of multi-label learning classification. First, the mean shift clustering method was used to reconstruct the information between features in the feature space to obtain the hidden information between features. Then, the new information entropy was used to measure the correlation between labels which gets the basic labels confidence matrix. Then the basic labels confidence matrix was improved to construct a Non-equilibrium labels completion matrix by the non-equilibrium parameters. Finally, the new training set was constructed by using the reconstructed features space and the Non-equilibrium Labels Completion matrix, and the existing linear classifier was used for predicting the new training set. The experimental results of the proposed algorithm in the opening benchmark multi-label datasets showed that the NeLC-MS algorithm would have some advantages over other comparative multi-label learning algorithms, and the effectiveness of the proposed method was further illustrated by the use of statistical hypothesis test and stability analysis. |
|---|---|
| AbstractList | In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize rich information contained in features-space and labels-space. In this paper, a multi-label learning algorithm of Non-Equilibrium Labels Completion with Mean Shift (i.e. NeLC-MS) was proposed. The aim of this research was to mine the feature hidden information by reconstructing the features space, and introduce non-equilibrium label correlation information so as to better improve the robustness of multi-label learning classification. First, the mean shift clustering method was used to reconstruct the information between features in the feature space to obtain the hidden information between features. Then, the new information entropy was used to measure the correlation between labels which gets the basic labels confidence matrix. Then the basic labels confidence matrix was improved to construct a Non-equilibrium labels completion matrix by the non-equilibrium parameters. Finally, the new training set was constructed by using the reconstructed features space and the Non-equilibrium Labels Completion matrix, and the existing linear classifier was used for predicting the new training set. The experimental results of the proposed algorithm in the opening benchmark multi-label datasets showed that the NeLC-MS algorithm would have some advantages over other comparative multi-label learning algorithms, and the effectiveness of the proposed method was further illustrated by the use of statistical hypothesis test and stability analysis. |
| Author | Yibin, Wang Yusheng, Cheng Wenfa, Zhan Dawei, Zhao |
| Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-6562-1153 surname: Yusheng fullname: Yusheng, Cheng email: chengyshaq@163.com organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China – sequence: 2 givenname: Zhao surname: Dawei fullname: Dawei, Zhao email: like854@qq.com organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China – sequence: 3 givenname: Zhan surname: Wenfa fullname: Wenfa, Zhan email: zhanwf@aqnu.edu.cn organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China – sequence: 4 givenname: Wang surname: Yibin fullname: Yibin, Wang email: wangyb07@mail.ustc.edu.cn organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China |
| BookMark | eNqFkL1OwzAUhS1UJNrCGzD4BRKu7TSxGZBQxZ9UxAKzZSc31JWbFNsB8faklIkBpruc75yrb0YmXd8hIecMcgasvNjkHQ51v805MJmDykGIIzJlsuKZ5LKckCkovsi4YPyEzGLcALCKcTUlD4-DTy7zxqKnHk3oXPdK-5aOExm-Dc47G9ywpd-JSMeVncfk-o5-uLSmWzQdjWvXplNy3Bof8eznzsnL7c3z8j5bPd09LK9XWS2gTJmsUSmjuJAKrEBhmGCsKg23DSvBoF3YsgUEKKS0jWyK1qgGKywWFkosuJiTy0NvHfoYA7a6dsnsP0rBOK8Z6L0UvdEHKXovRYPSo5QRLn7Bu-C2Jnz-h10dsFEBvjsMOtYOuxobF7BOuund3wVfPNOBcg |
| CitedBy_id | crossref_primary_10_1038_s41598_024_72765_6 crossref_primary_10_1007_s11042_021_11663_9 crossref_primary_10_1016_j_ins_2022_02_022 crossref_primary_10_1007_s00500_020_04775_1 crossref_primary_10_1016_j_asoc_2020_106868 crossref_primary_10_1016_j_asoc_2019_105924 crossref_primary_10_1007_s00500_021_06645_w crossref_primary_10_1016_j_ins_2024_120228 |
| Cites_doi | 10.1016/j.patcog.2006.12.019 10.1007/s10994-011-5256-5 10.1109/TKDE.2006.162 10.1109/TKDE.2013.39 10.1016/j.patcog.2004.03.009 10.1016/j.ins.2016.02.037 10.1145/2499907.2499910 10.1109/TPAMI.2014.2339815 10.1109/TKDE.2010.164 10.1016/j.knosys.2018.04.004 10.1049/iet-cvi.2016.0243 10.1007/s10994-008-5064-8 10.1002/j.1538-7305.1948.tb01338.x 10.1109/TIT.1975.1055330 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2018.09.033 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 102 |
| ExternalDocumentID | 10_1016_j_neucom_2018_09_033 S0925231218310956 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-8ce99a923890b3e3a131176a2bd160aeb5b6f0e00488bd8d4fa9de7e45b06e423 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 |
| IngestDate | Wed Oct 01 02:27:40 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:30:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Mean shift Label correlation Multi-label classification Information entropy Label completion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-8ce99a923890b3e3a131176a2bd160aeb5b6f0e00488bd8d4fa9de7e45b06e423 |
| ORCID | 0000-0002-6562-1153 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2018_09_033 crossref_primary_10_1016_j_neucom_2018_09_033 elsevier_sciencedirect_doi_10_1016_j_neucom_2018_09_033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-10 |
| PublicationDateYYYYMMDD | 2018-12-10 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Lin, Li, Wang, Chen (bib0026) 2018 Lee, Kim, Kim (bib0014) 2016; 351 Z. Younes, F. Abdallah, T. Denoeux, Multi-label classification algorithm derived from K-nearest neighbor rule with label dependencies in: Proceedings of the IEEE Signal Processing Conference , 2015:1–5. Park, Simoff. (bib0015) 2016 Boutell, Luo, Shen (bib0002) 2004; 37 Zhang, Zhou (bib0003) 2006; 18 Wang, Cheng, Pei (bib0024) 2018; 54 Wu, Ye, Sheng (bib0020) 2017; 11 Fukunaga, Hostetler (bib0021) 1975; 21 Zhang, Zhou (bib0025) 2014; 26 Liang, Dang, Chin (bib0022) 2002; 31 Zhang, Li, Li (bib0013) 2012; 30 Read, Pfahringer, Holmes (bib0005) 2011; 85 Zhang, Yeung (bib0011) 2013; 7 Zhang, Zhou (bib0001) 2017 Zhang, Zhou (bib0004) 2007; 40 Huang, Yu, Zhou (bib0016) 2012 Zhang (bib0017) 2012; 49 . Zhang, Wu (bib0018) 2015; 37 H. Gweon, M. Schonlau, S. Steiner, Nearest labelset using double distances for multi-label classification. 2017, arXiv Zhang, Zhong, Zhang (bib0019) 2018 Brinker (bib0006) 2008; 73 Elisseeff, Weston (bib0008) 2002 Ar (bib0027) 2006; 7 Shannon (bib0012) 1948; 27 Tsoumakas, Katakis, Vlahavas (bib0007) 2011; 23 Pizzuti (bib0023) 2009 Fukunaga (10.1016/j.neucom.2018.09.033_bib0021) 1975; 21 Read (10.1016/j.neucom.2018.09.033_bib0005) 2011; 85 Zhang (10.1016/j.neucom.2018.09.033_bib0018) 2015; 37 Elisseeff (10.1016/j.neucom.2018.09.033_bib0008) 2002 Brinker (10.1016/j.neucom.2018.09.033_bib0006) 2008; 73 Zhang (10.1016/j.neucom.2018.09.033_bib0025) 2014; 26 Tsoumakas (10.1016/j.neucom.2018.09.033_bib0007) 2011; 23 Shannon (10.1016/j.neucom.2018.09.033_bib0012) 1948; 27 Wu (10.1016/j.neucom.2018.09.033_bib0020) 2017; 11 10.1016/j.neucom.2018.09.033_bib0009 Lee (10.1016/j.neucom.2018.09.033_bib0014) 2016; 351 Lin (10.1016/j.neucom.2018.09.033_bib0026) 2018 Zhang (10.1016/j.neucom.2018.09.033_bib0001) 2017 Liang (10.1016/j.neucom.2018.09.033_bib0022) 2002; 31 Zhang (10.1016/j.neucom.2018.09.033_bib0011) 2013; 7 Zhang (10.1016/j.neucom.2018.09.033_bib0019) 2018 Pizzuti (10.1016/j.neucom.2018.09.033_bib0023) 2009 Zhang (10.1016/j.neucom.2018.09.033_bib0013) 2012; 30 Zhang (10.1016/j.neucom.2018.09.033_bib0017) 2012; 49 Boutell (10.1016/j.neucom.2018.09.033_bib0002) 2004; 37 Zhang (10.1016/j.neucom.2018.09.033_bib0003) 2006; 18 Park (10.1016/j.neucom.2018.09.033_bib0015) 2016 Wang (10.1016/j.neucom.2018.09.033_bib0024) 2018; 54 Ar (10.1016/j.neucom.2018.09.033_bib0027) 2006; 7 Huang (10.1016/j.neucom.2018.09.033_bib0016) 2012 Zhang (10.1016/j.neucom.2018.09.033_bib0004) 2007; 40 10.1016/j.neucom.2018.09.033_bib0010 |
| References_xml | – volume: 40 start-page: 2038 year: 2007 end-page: 2048 ident: bib0004 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recognit. – reference: H. Gweon, M. Schonlau, S. Steiner, Nearest labelset using double distances for multi-label classification. 2017, arXiv: – start-page: 217 year: 2016 end-page: 228 ident: bib0015 article-title: Using entropy as a measure of acceptance for multi-label classification publication-title: Proceedings of the International Symposium on Intelligent Data Analysis – volume: 85 start-page: 333 year: 2011 ident: bib0005 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. – volume: 7 start-page: 1 year: 2013 end-page: 30 ident: bib0011 article-title: Multilabel relationship learning publication-title: ACM Trans. Knowl. Discov. Data – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: bib0012 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: 49 start-page: 2271 year: 2012 end-page: 2282 ident: bib0017 article-title: An improved multi-label lazy learning approach publication-title: J. Comput. Res. Dev. – volume: 26 start-page: 1819 year: 2014 end-page: 1837 ident: bib0025 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 379 year: 2009 end-page: 386 ident: bib0023 article-title: A multi-objective genetic algorithm for community detection in networks publication-title: Proceedings of the IEEE International Conference on TOOLS with Artificial Intelligence – volume: 30 start-page: 968 year: 2012 end-page: 973 ident: bib0013 article-title: A multi-lable classification algorithm using correlation information entropy publication-title: J. Northwestern Polytech. Univ. – volume: 23 start-page: 1079 year: 2011 end-page: 1089 ident: bib0007 article-title: Random k-labelsets for multilabel classification publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 525 year: 2012 end-page: 533 ident: bib0016 article-title: Multi-label hypothesis reuse publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 31 start-page: 331 year: 2002 end-page: 342 ident: bib0022 article-title: A new method for measuring of rough sets and rough relational databases publication-title: Inf. Sci. – volume: 73 start-page: 133 year: 2008 end-page: 153 ident: bib0006 article-title: Multilabel classification via calibrated label ranking publication-title: Mach. Learn. – start-page: 875 year: 2017 end-page: 881 ident: bib0001 article-title: Multi-label learning publication-title: Encyclopedia of Machine Learning and Data Mining – start-page: 681 year: 2002 end-page: 687 ident: bib0008 article-title: A kernel method for multi-labelled classification publication-title: Advances in Neural Information Processing Systems 14 – volume: 11 start-page: 577 year: 2017 end-page: 584 ident: bib0020 article-title: Active learning with label correlation exploration for multi-label image classification publication-title: Iet Comput. Vis. – reference: Z. Younes, F. Abdallah, T. Denoeux, Multi-label classification algorithm derived from K-nearest neighbor rule with label dependencies in: Proceedings of the IEEE Signal Processing Conference , 2015:1–5. – volume: 37 start-page: 107 year: 2015 end-page: 120 ident: bib0018 article-title: Lift: Multi-label learning with label-specific features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2018 ident: bib0026 article-title: Attribute reduction for multi-label learning with fuzzy rough set publication-title: Knowl. Based Syst. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0027 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – reference: . – year: 2018 ident: bib0019 article-title: Feature-induced labeling information enrichment for multi-label learning publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – volume: 351 start-page: 101 year: 2016 end-page: 114 ident: bib0014 article-title: An approach for multi-label classification by directed acyclic graph with label correlation maximization publication-title: Inf. Sci. – volume: 21 start-page: 32 year: 1975 end-page: 40 ident: bib0021 article-title: The estimation of the gradient of a density function, with applications in pattern recognition publication-title: IEEE Trans. Inf. Theory – volume: 37 start-page: 1757 year: 2004 end-page: 1771 ident: bib0002 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. – volume: 18 start-page: 1338 year: 2006 end-page: 1351 ident: bib0003 article-title: Multilabel neural networks with applications to functional genomics and text categorization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 54 start-page: 422 year: 2018 end-page: 435 ident: bib0024 article-title: Improved algorithm for multi-instance multi-label learning based on mean shift publication-title: J. Nanjing Univ. Nat. Sci. – volume: 40 start-page: 2038 issue: 7 year: 2007 ident: 10.1016/j.neucom.2018.09.033_bib0004 article-title: ML-KNN: A lazy learning approach to multi-label learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2006.12.019 – volume: 30 start-page: 968 issue: 6 year: 2012 ident: 10.1016/j.neucom.2018.09.033_bib0013 article-title: A multi-lable classification algorithm using correlation information entropy publication-title: J. Northwestern Polytech. Univ. – volume: 85 start-page: 333 issue: 3 year: 2011 ident: 10.1016/j.neucom.2018.09.033_bib0005 article-title: Classifier chains for multi-label classification publication-title: Mach. Learn. doi: 10.1007/s10994-011-5256-5 – start-page: 875 year: 2017 ident: 10.1016/j.neucom.2018.09.033_bib0001 article-title: Multi-label learning – volume: 18 start-page: 1338 issue: 10 year: 2006 ident: 10.1016/j.neucom.2018.09.033_bib0003 article-title: Multilabel neural networks with applications to functional genomics and text categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.162 – volume: 26 start-page: 1819 issue: 8 year: 2014 ident: 10.1016/j.neucom.2018.09.033_bib0025 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.39 – start-page: 525 year: 2012 ident: 10.1016/j.neucom.2018.09.033_bib0016 article-title: Multi-label hypothesis reuse – volume: 37 start-page: 1757 issue: 9 year: 2004 ident: 10.1016/j.neucom.2018.09.033_bib0002 article-title: Learning multi-label scene classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.03.009 – ident: 10.1016/j.neucom.2018.09.033_bib0009 – volume: 351 start-page: 101 issue: C year: 2016 ident: 10.1016/j.neucom.2018.09.033_bib0014 article-title: An approach for multi-label classification by directed acyclic graph with label correlation maximization publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.02.037 – ident: 10.1016/j.neucom.2018.09.033_bib0010 – volume: 7 start-page: 1 issue: 2 year: 2013 ident: 10.1016/j.neucom.2018.09.033_bib0011 article-title: Multilabel relationship learning publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/2499907.2499910 – volume: 37 start-page: 107 issue: 1 year: 2015 ident: 10.1016/j.neucom.2018.09.033_bib0018 article-title: Lift: Multi-label learning with label-specific features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2339815 – volume: 54 start-page: 422 issue: 2 year: 2018 ident: 10.1016/j.neucom.2018.09.033_bib0024 article-title: Improved algorithm for multi-instance multi-label learning based on mean shift publication-title: J. Nanjing Univ. Nat. Sci. – start-page: 217 year: 2016 ident: 10.1016/j.neucom.2018.09.033_bib0015 article-title: Using entropy as a measure of acceptance for multi-label classification – start-page: 379 year: 2009 ident: 10.1016/j.neucom.2018.09.033_bib0023 article-title: A multi-objective genetic algorithm for community detection in networks publication-title: IEEE Computer Society – volume: 23 start-page: 1079 issue: 7 year: 2011 ident: 10.1016/j.neucom.2018.09.033_bib0007 article-title: Random k-labelsets for multilabel classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2010.164 – year: 2018 ident: 10.1016/j.neucom.2018.09.033_bib0026 article-title: Attribute reduction for multi-label learning with fuzzy rough set publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.04.004 – volume: 31 start-page: 331 issue: 4 year: 2002 ident: 10.1016/j.neucom.2018.09.033_bib0022 article-title: A new method for measuring of rough sets and rough relational databases publication-title: Inf. Sci. – volume: 11 start-page: 577 issue: 7 year: 2017 ident: 10.1016/j.neucom.2018.09.033_bib0020 article-title: Active learning with label correlation exploration for multi-label image classification publication-title: Iet Comput. Vis. doi: 10.1049/iet-cvi.2016.0243 – volume: 73 start-page: 133 issue: 2 year: 2008 ident: 10.1016/j.neucom.2018.09.033_bib0006 article-title: Multilabel classification via calibrated label ranking publication-title: Mach. Learn. doi: 10.1007/s10994-008-5064-8 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.neucom.2018.09.033_bib0012 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – start-page: 681 year: 2002 ident: 10.1016/j.neucom.2018.09.033_bib0008 article-title: A kernel method for multi-labelled classification – year: 2018 ident: 10.1016/j.neucom.2018.09.033_bib0019 article-title: Feature-induced labeling information enrichment for multi-label learning – volume: 49 start-page: 2271 issue: 11 year: 2012 ident: 10.1016/j.neucom.2018.09.033_bib0017 article-title: An improved multi-label lazy learning approach publication-title: J. Comput. Res. Dev. – volume: 21 start-page: 32 issue: 1 year: 1975 ident: 10.1016/j.neucom.2018.09.033_bib0021 article-title: The estimation of the gradient of a density function, with applications in pattern recognition publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1975.1055330 – volume: 7 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.neucom.2018.09.033_bib0027 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. |
| SSID | ssj0017129 |
| Score | 2.3128343 |
| Snippet | In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 92 |
| SubjectTerms | Information entropy Label completion Label correlation Mean shift Multi-label classification |
| Title | Multi-label learning of non-equilibrium labels completion with mean shift |
| URI | https://dx.doi.org/10.1016/j.neucom.2018.09.033 |
| Volume | 321 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1NtlncizFUhV70UJvIelOdKWt1e5e_e0m2d2iIAoeN8xA-JLMY_lmBqFL0CZTIQVigsiQCCgnPAZXnAPW2SiIWeYSxftxMppEt9N42kKDphbG0Spr21_ZdG-t65VejWZvlee9ByoCm0Ux5-OZa6fnKtij1E0xuPrY0DxYyoKq314QEyfdlM95jtcSSscZsU6QV91Ow5_d0xeXM9xDO3WsiPvVdvZRC5YHaLeZw4DrZ3mIbnwVLbHnCXNcj4F4wq8G29SewFuZe15_ucBeYo09jRzciWD3GxYvQC3x-jk3xRGaDK8fByNSj0ggMxvrF4TPQAhlgzQuqA4hVK57TpqoQGcssVDrWCeGgn-nOuNZZJTIIIUo1jQBG0odo7bdC5wgLExmc6fE2pvMxkg6VIInmitjRKxSxkwHhQ0yclb3D3djLOayIYq9yApP6fCUVEiLZweRjdaq6p_xh3zagC6_3QNpTfyvmqf_1jxD2-7LkVQYPUft4r2ECxtqFLrr71IXbfVv7kbjTz761Hg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3rxbcRnD14r7b57NEQCClyEhFvT0qliAFF2r_52230QTYwmXrczSfO1ncfmmxmErkEZLX0KxHiBIQHQhCQhuOIcsM5GQsi0SxT7g6gzCu7H4biGWlUtjKNVlra_sOm5tS6_NEs0m8vptPlIuWezKOZ8PHPt9DbQZhB6scvAbj7WPA8WM69ouOeFxIlX9XM5yWsBmSONWC-YFO1O_Z_90xef095DO2WwiG-L_eyjGiwO0G41iAGX7_IQdfMyWmIPFGa4nAPxhF8Ntrk9gbdsmhP7sznOJVY455GDOxLs_sPiOcgFXj1PTXqERu27YatDyhkJZGKD_ZQkE-Bc2igt4VT54EvXPieOpKc0iyzWKlSRoZA_VKUTHRjJNcQQhIpGYGOpY1S3e4EThLnRNnmKrMHRNkhSvuRJpBJpDA9lzJhpIL9CRkzKBuJujsVMVEyxF1HgKRyegnJh8WwgstZaFg00_pCPK9DFt4sgrI3_VfP035pXaKsz7PdErzt4OEPbbsUxVhg9R_X0PYMLG3ek6jK_V59R7tYN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+learning+of+non-equilibrium+labels+completion+with+mean+shift&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yusheng%2C+Cheng&rft.au=Dawei%2C+Zhao&rft.au=Wenfa%2C+Zhan&rft.au=Yibin%2C+Wang&rft.date=2018-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=321&rft.spage=92&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2018.09.033&rft.externalDocID=S0925231218310956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |