Multi-label learning of non-equilibrium labels completion with mean shift

In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize r...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 321; pp. 92 - 102
Main Authors Yusheng, Cheng, Dawei, Zhao, Wenfa, Zhan, Yibin, Wang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.12.2018
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2018.09.033

Cover

Abstract In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize rich information contained in features-space and labels-space. In this paper, a multi-label learning algorithm of Non-Equilibrium Labels Completion with Mean Shift (i.e. NeLC-MS) was proposed. The aim of this research was to mine the feature hidden information by reconstructing the features space, and introduce non-equilibrium label correlation information so as to better improve the robustness of multi-label learning classification. First, the mean shift clustering method was used to reconstruct the information between features in the feature space to obtain the hidden information between features. Then, the new information entropy was used to measure the correlation between labels which gets the basic labels confidence matrix. Then the basic labels confidence matrix was improved to construct a Non-equilibrium labels completion matrix by the non-equilibrium parameters. Finally, the new training set was constructed by using the reconstructed features space and the Non-equilibrium Labels Completion matrix, and the existing linear classifier was used for predicting the new training set. The experimental results of the proposed algorithm in the opening benchmark multi-label datasets showed that the NeLC-MS algorithm would have some advantages over other comparative multi-label learning algorithms, and the effectiveness of the proposed method was further illustrated by the use of statistical hypothesis test and stability analysis.
AbstractList In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for studying labels correlation usually do not consider the study of feature-space information. Further study is deserved about how to synchronize rich information contained in features-space and labels-space. In this paper, a multi-label learning algorithm of Non-Equilibrium Labels Completion with Mean Shift (i.e. NeLC-MS) was proposed. The aim of this research was to mine the feature hidden information by reconstructing the features space, and introduce non-equilibrium label correlation information so as to better improve the robustness of multi-label learning classification. First, the mean shift clustering method was used to reconstruct the information between features in the feature space to obtain the hidden information between features. Then, the new information entropy was used to measure the correlation between labels which gets the basic labels confidence matrix. Then the basic labels confidence matrix was improved to construct a Non-equilibrium labels completion matrix by the non-equilibrium parameters. Finally, the new training set was constructed by using the reconstructed features space and the Non-equilibrium Labels Completion matrix, and the existing linear classifier was used for predicting the new training set. The experimental results of the proposed algorithm in the opening benchmark multi-label datasets showed that the NeLC-MS algorithm would have some advantages over other comparative multi-label learning algorithms, and the effectiveness of the proposed method was further illustrated by the use of statistical hypothesis test and stability analysis.
Author Yibin, Wang
Yusheng, Cheng
Wenfa, Zhan
Dawei, Zhao
Author_xml – sequence: 1
  givenname: Cheng
  orcidid: 0000-0002-6562-1153
  surname: Yusheng
  fullname: Yusheng, Cheng
  email: chengyshaq@163.com
  organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China
– sequence: 2
  givenname: Zhao
  surname: Dawei
  fullname: Dawei, Zhao
  email: like854@qq.com
  organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China
– sequence: 3
  givenname: Zhan
  surname: Wenfa
  fullname: Wenfa, Zhan
  email: zhanwf@aqnu.edu.cn
  organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China
– sequence: 4
  givenname: Wang
  surname: Yibin
  fullname: Yibin, Wang
  email: wangyb07@mail.ustc.edu.cn
  organization: School of Computer and Information, Anqing Normal University, Anhui, Anqing 246011, China
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRKu7TSxGZBQxZ9UxAKzZSc31JWbFNsB8faklIkBpruc75yrb0YmXd8hIecMcgasvNjkHQ51v805MJmDykGIIzJlsuKZ5LKckCkovsi4YPyEzGLcALCKcTUlD4-DTy7zxqKnHk3oXPdK-5aOExm-Dc47G9ywpd-JSMeVncfk-o5-uLSmWzQdjWvXplNy3Bof8eznzsnL7c3z8j5bPd09LK9XWS2gTJmsUSmjuJAKrEBhmGCsKg23DSvBoF3YsgUEKKS0jWyK1qgGKywWFkosuJiTy0NvHfoYA7a6dsnsP0rBOK8Z6L0UvdEHKXovRYPSo5QRLn7Bu-C2Jnz-h10dsFEBvjsMOtYOuxobF7BOuund3wVfPNOBcg
CitedBy_id crossref_primary_10_1038_s41598_024_72765_6
crossref_primary_10_1007_s11042_021_11663_9
crossref_primary_10_1016_j_ins_2022_02_022
crossref_primary_10_1007_s00500_020_04775_1
crossref_primary_10_1016_j_asoc_2020_106868
crossref_primary_10_1016_j_asoc_2019_105924
crossref_primary_10_1007_s00500_021_06645_w
crossref_primary_10_1016_j_ins_2024_120228
Cites_doi 10.1016/j.patcog.2006.12.019
10.1007/s10994-011-5256-5
10.1109/TKDE.2006.162
10.1109/TKDE.2013.39
10.1016/j.patcog.2004.03.009
10.1016/j.ins.2016.02.037
10.1145/2499907.2499910
10.1109/TPAMI.2014.2339815
10.1109/TKDE.2010.164
10.1016/j.knosys.2018.04.004
10.1049/iet-cvi.2016.0243
10.1007/s10994-008-5064-8
10.1002/j.1538-7305.1948.tb01338.x
10.1109/TIT.1975.1055330
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.09.033
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 102
ExternalDocumentID 10_1016_j_neucom_2018_09_033
S0925231218310956
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-8ce99a923890b3e3a131176a2bd160aeb5b6f0e00488bd8d4fa9de7e45b06e423
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Wed Oct 01 02:27:40 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mean shift
Label correlation
Multi-label classification
Information entropy
Label completion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-8ce99a923890b3e3a131176a2bd160aeb5b6f0e00488bd8d4fa9de7e45b06e423
ORCID 0000-0002-6562-1153
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2018_09_033
crossref_primary_10_1016_j_neucom_2018_09_033
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_09_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-10
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-10
  day: 10
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lin, Li, Wang, Chen (bib0026) 2018
Lee, Kim, Kim (bib0014) 2016; 351
Z. Younes, F. Abdallah, T. Denoeux, Multi-label classification algorithm derived from K-nearest neighbor rule with label dependencies in: Proceedings of the IEEE Signal Processing Conference , 2015:1–5.
Park, Simoff. (bib0015) 2016
Boutell, Luo, Shen (bib0002) 2004; 37
Zhang, Zhou (bib0003) 2006; 18
Wang, Cheng, Pei (bib0024) 2018; 54
Wu, Ye, Sheng (bib0020) 2017; 11
Fukunaga, Hostetler (bib0021) 1975; 21
Zhang, Zhou (bib0025) 2014; 26
Liang, Dang, Chin (bib0022) 2002; 31
Zhang, Li, Li (bib0013) 2012; 30
Read, Pfahringer, Holmes (bib0005) 2011; 85
Zhang, Yeung (bib0011) 2013; 7
Zhang, Zhou (bib0001) 2017
Zhang, Zhou (bib0004) 2007; 40
Huang, Yu, Zhou (bib0016) 2012
Zhang (bib0017) 2012; 49
.
Zhang, Wu (bib0018) 2015; 37
H. Gweon, M. Schonlau, S. Steiner, Nearest labelset using double distances for multi-label classification. 2017, arXiv
Zhang, Zhong, Zhang (bib0019) 2018
Brinker (bib0006) 2008; 73
Elisseeff, Weston (bib0008) 2002
Ar (bib0027) 2006; 7
Shannon (bib0012) 1948; 27
Tsoumakas, Katakis, Vlahavas (bib0007) 2011; 23
Pizzuti (bib0023) 2009
Fukunaga (10.1016/j.neucom.2018.09.033_bib0021) 1975; 21
Read (10.1016/j.neucom.2018.09.033_bib0005) 2011; 85
Zhang (10.1016/j.neucom.2018.09.033_bib0018) 2015; 37
Elisseeff (10.1016/j.neucom.2018.09.033_bib0008) 2002
Brinker (10.1016/j.neucom.2018.09.033_bib0006) 2008; 73
Zhang (10.1016/j.neucom.2018.09.033_bib0025) 2014; 26
Tsoumakas (10.1016/j.neucom.2018.09.033_bib0007) 2011; 23
Shannon (10.1016/j.neucom.2018.09.033_bib0012) 1948; 27
Wu (10.1016/j.neucom.2018.09.033_bib0020) 2017; 11
10.1016/j.neucom.2018.09.033_bib0009
Lee (10.1016/j.neucom.2018.09.033_bib0014) 2016; 351
Lin (10.1016/j.neucom.2018.09.033_bib0026) 2018
Zhang (10.1016/j.neucom.2018.09.033_bib0001) 2017
Liang (10.1016/j.neucom.2018.09.033_bib0022) 2002; 31
Zhang (10.1016/j.neucom.2018.09.033_bib0011) 2013; 7
Zhang (10.1016/j.neucom.2018.09.033_bib0019) 2018
Pizzuti (10.1016/j.neucom.2018.09.033_bib0023) 2009
Zhang (10.1016/j.neucom.2018.09.033_bib0013) 2012; 30
Zhang (10.1016/j.neucom.2018.09.033_bib0017) 2012; 49
Boutell (10.1016/j.neucom.2018.09.033_bib0002) 2004; 37
Zhang (10.1016/j.neucom.2018.09.033_bib0003) 2006; 18
Park (10.1016/j.neucom.2018.09.033_bib0015) 2016
Wang (10.1016/j.neucom.2018.09.033_bib0024) 2018; 54
Ar (10.1016/j.neucom.2018.09.033_bib0027) 2006; 7
Huang (10.1016/j.neucom.2018.09.033_bib0016) 2012
Zhang (10.1016/j.neucom.2018.09.033_bib0004) 2007; 40
10.1016/j.neucom.2018.09.033_bib0010
References_xml – volume: 40
  start-page: 2038
  year: 2007
  end-page: 2048
  ident: bib0004
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recognit.
– reference: H. Gweon, M. Schonlau, S. Steiner, Nearest labelset using double distances for multi-label classification. 2017, arXiv:
– start-page: 217
  year: 2016
  end-page: 228
  ident: bib0015
  article-title: Using entropy as a measure of acceptance for multi-label classification
  publication-title: Proceedings of the International Symposium on Intelligent Data Analysis
– volume: 85
  start-page: 333
  year: 2011
  ident: bib0005
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 30
  ident: bib0011
  article-title: Multilabel relationship learning
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0012
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 49
  start-page: 2271
  year: 2012
  end-page: 2282
  ident: bib0017
  article-title: An improved multi-label lazy learning approach
  publication-title: J. Comput. Res. Dev.
– volume: 26
  start-page: 1819
  year: 2014
  end-page: 1837
  ident: bib0025
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 379
  year: 2009
  end-page: 386
  ident: bib0023
  article-title: A multi-objective genetic algorithm for community detection in networks
  publication-title: Proceedings of the IEEE International Conference on TOOLS with Artificial Intelligence
– volume: 30
  start-page: 968
  year: 2012
  end-page: 973
  ident: bib0013
  article-title: A multi-lable classification algorithm using correlation information entropy
  publication-title: J. Northwestern Polytech. Univ.
– volume: 23
  start-page: 1079
  year: 2011
  end-page: 1089
  ident: bib0007
  article-title: Random k-labelsets for multilabel classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 525
  year: 2012
  end-page: 533
  ident: bib0016
  article-title: Multi-label hypothesis reuse
  publication-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 31
  start-page: 331
  year: 2002
  end-page: 342
  ident: bib0022
  article-title: A new method for measuring of rough sets and rough relational databases
  publication-title: Inf. Sci.
– volume: 73
  start-page: 133
  year: 2008
  end-page: 153
  ident: bib0006
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Mach. Learn.
– start-page: 875
  year: 2017
  end-page: 881
  ident: bib0001
  article-title: Multi-label learning
  publication-title: Encyclopedia of Machine Learning and Data Mining
– start-page: 681
  year: 2002
  end-page: 687
  ident: bib0008
  article-title: A kernel method for multi-labelled classification
  publication-title: Advances in Neural Information Processing Systems 14
– volume: 11
  start-page: 577
  year: 2017
  end-page: 584
  ident: bib0020
  article-title: Active learning with label correlation exploration for multi-label image classification
  publication-title: Iet Comput. Vis.
– reference: Z. Younes, F. Abdallah, T. Denoeux, Multi-label classification algorithm derived from K-nearest neighbor rule with label dependencies in: Proceedings of the IEEE Signal Processing Conference , 2015:1–5.
– volume: 37
  start-page: 107
  year: 2015
  end-page: 120
  ident: bib0018
  article-title: Lift: Multi-label learning with label-specific features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2018
  ident: bib0026
  article-title: Attribute reduction for multi-label learning with fuzzy rough set
  publication-title: Knowl. Based Syst.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0027
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– reference: .
– year: 2018
  ident: bib0019
  article-title: Feature-induced labeling information enrichment for multi-label learning
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– volume: 351
  start-page: 101
  year: 2016
  end-page: 114
  ident: bib0014
  article-title: An approach for multi-label classification by directed acyclic graph with label correlation maximization
  publication-title: Inf. Sci.
– volume: 21
  start-page: 32
  year: 1975
  end-page: 40
  ident: bib0021
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
– volume: 37
  start-page: 1757
  year: 2004
  end-page: 1771
  ident: bib0002
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 1338
  year: 2006
  end-page: 1351
  ident: bib0003
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 54
  start-page: 422
  year: 2018
  end-page: 435
  ident: bib0024
  article-title: Improved algorithm for multi-instance multi-label learning based on mean shift
  publication-title: J. Nanjing Univ. Nat. Sci.
– volume: 40
  start-page: 2038
  issue: 7
  year: 2007
  ident: 10.1016/j.neucom.2018.09.033_bib0004
  article-title: ML-KNN: A lazy learning approach to multi-label learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2006.12.019
– volume: 30
  start-page: 968
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2018.09.033_bib0013
  article-title: A multi-lable classification algorithm using correlation information entropy
  publication-title: J. Northwestern Polytech. Univ.
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2018.09.033_bib0005
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5256-5
– start-page: 875
  year: 2017
  ident: 10.1016/j.neucom.2018.09.033_bib0001
  article-title: Multi-label learning
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  ident: 10.1016/j.neucom.2018.09.033_bib0003
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.162
– volume: 26
  start-page: 1819
  issue: 8
  year: 2014
  ident: 10.1016/j.neucom.2018.09.033_bib0025
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.39
– start-page: 525
  year: 2012
  ident: 10.1016/j.neucom.2018.09.033_bib0016
  article-title: Multi-label hypothesis reuse
– volume: 37
  start-page: 1757
  issue: 9
  year: 2004
  ident: 10.1016/j.neucom.2018.09.033_bib0002
  article-title: Learning multi-label scene classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.03.009
– ident: 10.1016/j.neucom.2018.09.033_bib0009
– volume: 351
  start-page: 101
  issue: C
  year: 2016
  ident: 10.1016/j.neucom.2018.09.033_bib0014
  article-title: An approach for multi-label classification by directed acyclic graph with label correlation maximization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.02.037
– ident: 10.1016/j.neucom.2018.09.033_bib0010
– volume: 7
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.neucom.2018.09.033_bib0011
  article-title: Multilabel relationship learning
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2499907.2499910
– volume: 37
  start-page: 107
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.09.033_bib0018
  article-title: Lift: Multi-label learning with label-specific features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2339815
– volume: 54
  start-page: 422
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2018.09.033_bib0024
  article-title: Improved algorithm for multi-instance multi-label learning based on mean shift
  publication-title: J. Nanjing Univ. Nat. Sci.
– start-page: 217
  year: 2016
  ident: 10.1016/j.neucom.2018.09.033_bib0015
  article-title: Using entropy as a measure of acceptance for multi-label classification
– start-page: 379
  year: 2009
  ident: 10.1016/j.neucom.2018.09.033_bib0023
  article-title: A multi-objective genetic algorithm for community detection in networks
  publication-title: IEEE Computer Society
– volume: 23
  start-page: 1079
  issue: 7
  year: 2011
  ident: 10.1016/j.neucom.2018.09.033_bib0007
  article-title: Random k-labelsets for multilabel classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2010.164
– year: 2018
  ident: 10.1016/j.neucom.2018.09.033_bib0026
  article-title: Attribute reduction for multi-label learning with fuzzy rough set
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.04.004
– volume: 31
  start-page: 331
  issue: 4
  year: 2002
  ident: 10.1016/j.neucom.2018.09.033_bib0022
  article-title: A new method for measuring of rough sets and rough relational databases
  publication-title: Inf. Sci.
– volume: 11
  start-page: 577
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2018.09.033_bib0020
  article-title: Active learning with label correlation exploration for multi-label image classification
  publication-title: Iet Comput. Vis.
  doi: 10.1049/iet-cvi.2016.0243
– volume: 73
  start-page: 133
  issue: 2
  year: 2008
  ident: 10.1016/j.neucom.2018.09.033_bib0006
  article-title: Multilabel classification via calibrated label ranking
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-008-5064-8
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.neucom.2018.09.033_bib0012
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– start-page: 681
  year: 2002
  ident: 10.1016/j.neucom.2018.09.033_bib0008
  article-title: A kernel method for multi-labelled classification
– year: 2018
  ident: 10.1016/j.neucom.2018.09.033_bib0019
  article-title: Feature-induced labeling information enrichment for multi-label learning
– volume: 49
  start-page: 2271
  issue: 11
  year: 2012
  ident: 10.1016/j.neucom.2018.09.033_bib0017
  article-title: An improved multi-label lazy learning approach
  publication-title: J. Comput. Res. Dev.
– volume: 21
  start-page: 32
  issue: 1
  year: 1975
  ident: 10.1016/j.neucom.2018.09.033_bib0021
  article-title: The estimation of the gradient of a density function, with applications in pattern recognition
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1975.1055330
– volume: 7
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2018.09.033_bib0027
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
SSID ssj0017129
Score 2.3128343
Snippet In multi-label learning, the use of labels correlation is crucial for the improvement of multi-label learning performance. Most of the existing methods for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Information entropy
Label completion
Label correlation
Mean shift
Multi-label classification
Title Multi-label learning of non-equilibrium labels completion with mean shift
URI https://dx.doi.org/10.1016/j.neucom.2018.09.033
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1NtlncizFUhV70UJvIelOdKWt1e5e_e0m2d2iIAoeN8xA-JLMY_lmBqFL0CZTIQVigsiQCCgnPAZXnAPW2SiIWeYSxftxMppEt9N42kKDphbG0Spr21_ZdG-t65VejWZvlee9ByoCm0Ux5-OZa6fnKtij1E0xuPrY0DxYyoKq314QEyfdlM95jtcSSscZsU6QV91Ow5_d0xeXM9xDO3WsiPvVdvZRC5YHaLeZw4DrZ3mIbnwVLbHnCXNcj4F4wq8G29SewFuZe15_ucBeYo09jRzciWD3GxYvQC3x-jk3xRGaDK8fByNSj0ggMxvrF4TPQAhlgzQuqA4hVK57TpqoQGcssVDrWCeGgn-nOuNZZJTIIIUo1jQBG0odo7bdC5wgLExmc6fE2pvMxkg6VIInmitjRKxSxkwHhQ0yclb3D3djLOayIYq9yApP6fCUVEiLZweRjdaq6p_xh3zagC6_3QNpTfyvmqf_1jxD2-7LkVQYPUft4r2ECxtqFLrr71IXbfVv7kbjTz761Hg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3rxbcRnD14r7b57NEQCClyEhFvT0qliAFF2r_52230QTYwmXrczSfO1ncfmmxmErkEZLX0KxHiBIQHQhCQhuOIcsM5GQsi0SxT7g6gzCu7H4biGWlUtjKNVlra_sOm5tS6_NEs0m8vptPlIuWezKOZ8PHPt9DbQZhB6scvAbj7WPA8WM69ouOeFxIlX9XM5yWsBmSONWC-YFO1O_Z_90xef095DO2WwiG-L_eyjGiwO0G41iAGX7_IQdfMyWmIPFGa4nAPxhF8Ntrk9gbdsmhP7sznOJVY455GDOxLs_sPiOcgFXj1PTXqERu27YatDyhkJZGKD_ZQkE-Bc2igt4VT54EvXPieOpKc0iyzWKlSRoZA_VKUTHRjJNcQQhIpGYGOpY1S3e4EThLnRNnmKrMHRNkhSvuRJpBJpDA9lzJhpIL9CRkzKBuJujsVMVEyxF1HgKRyegnJh8WwgstZaFg00_pCPK9DFt4sgrI3_VfP035pXaKsz7PdErzt4OEPbbsUxVhg9R_X0PYMLG3ek6jK_V59R7tYN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-label+learning+of+non-equilibrium+labels+completion+with+mean+shift&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yusheng%2C+Cheng&rft.au=Dawei%2C+Zhao&rft.au=Wenfa%2C+Zhan&rft.au=Yibin%2C+Wang&rft.date=2018-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=321&rft.spage=92&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2018.09.033&rft.externalDocID=S0925231218310956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon