Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas

Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and l...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 193; no. 2; pp. 1365 - 1380
Main Authors Cazzaniga, Stefano, Kim, Minjae, Pivato, Matteo, Perozeni, Federico, Sardar, Samim, D’Andrea, Cosimo, Jin, EonSeon, Ballottari, Matteo
Format Journal Article
LanguageEnglish
Published US Oxford University Press 22.09.2023
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1093/plphys/kiad391

Cover

Abstract Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes. Targeted mutagenesis and complementation in Chlamydomonas reveal the functions of CP26, a monomeric antenna of photosystem II, demonstrating its key role in regulating photoprotection.
AbstractList Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes. Targeted mutagenesis and complementation in Chlamydomonas reveal the functions of CP26, a monomeric antenna of photosystem II, demonstrating its key role in regulating photoprotection.
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Author Kim, Minjae
D’Andrea, Cosimo
Pivato, Matteo
Perozeni, Federico
Jin, EonSeon
Cazzaniga, Stefano
Sardar, Samim
Ballottari, Matteo
Author_xml – sequence: 1
  givenname: Stefano
  orcidid: 0000-0002-2824-7916
  surname: Cazzaniga
  fullname: Cazzaniga, Stefano
– sequence: 2
  givenname: Minjae
  orcidid: 0000-0002-2356-1295
  surname: Kim
  fullname: Kim, Minjae
– sequence: 3
  givenname: Matteo
  orcidid: 0000-0002-1168-6357
  surname: Pivato
  fullname: Pivato, Matteo
– sequence: 4
  givenname: Federico
  surname: Perozeni
  fullname: Perozeni, Federico
– sequence: 5
  givenname: Samim
  orcidid: 0000-0003-1783-6974
  surname: Sardar
  fullname: Sardar, Samim
– sequence: 6
  givenname: Cosimo
  surname: D’Andrea
  fullname: D’Andrea, Cosimo
– sequence: 7
  givenname: EonSeon
  orcidid: 0000-0001-5691-0124
  surname: Jin
  fullname: Jin, EonSeon
  email: esjin@hanyang.ac.kr
– sequence: 8
  givenname: Matteo
  orcidid: 0000-0001-8410-3397
  surname: Ballottari
  fullname: Ballottari, Matteo
  email: matteo.ballottari@univr.it
BookMark eNqFkL1PwzAQxS1UJNrCyuwRhrZ2nCbOiCI-KlWiA8zRxbkQU8cOsTvkvydVmJAQ05303u_d6S3IzDqLhNxytuYsE5vOdM3gN0cNlcj4BZnzrYhW0TaWMzJnbNyZlNkVWXj_yRjjgsdzgofGBecHH7Clux1tnXUt9lpRsAGtBZofooR2BgZPgR5xoL0zSLWl4_nuDKsGW63A0K8TWtVo-3FW88ZAO1RuDAR_TS5rMB5vfuaSvD89vuUvq_3r8y5_2K-UYElYSajqOpUqKcsqAswYVFvAUkpIeSlUlSCTVSzKtEwgUmk66hWTWZwwSONEoViSuym36934jQ9Fq71CY8CiO_kikkIkscxEOlrjyap6532PdaF0gKCdDT1oU3BWnFstplaLn1ZHbP0L63rdQj_8DdxPgDt1_3m_AWmEkL4
CitedBy_id crossref_primary_10_3390_plants13101393
crossref_primary_10_1080_07388551_2024_2357368
crossref_primary_10_1186_s13068_024_02483_8
crossref_primary_10_3390_plants13152103
Cites_doi 10.1111/pce.13680
10.1038/s41467-018-03231-x
10.1146/annurev.pp.45.060194.003221
10.1016/j.febslet.2007.08.066
10.1073/pnas.1912462116
10.1016/j.bbabio.2017.02.015
10.7554/eLife.60383
10.1021/ar50066a001
10.1105/tpc.112.108274
10.1016/0003-2697(87)90587-2
10.1104/pp.67.3.570
10.1073/pnas.89.4.1408
10.1038/nature02373
10.1074/jbc.M115.704601
10.1016/j.fshw.2019.03.001
10.1155/2015/519513
10.1016/j.bbabio.2013.07.012
10.1016/S1046-2023(05)80203-8
10.1016/0005-2728(86)90076-9
10.1016/j.sbi.2020.03.007
10.1105/tpc.107.055749
10.1111/j.1365-313X.2011.04537.x
10.1073/pnas.1817796116
10.1016/0005-2728(93)90134-2
10.1073/pnas.1222606110
10.3389/fpls.2020.00306
10.1038/srep30620
10.1111/tpj.12825
10.1146/annurev.arplant.59.032607.092759
10.1007/BF00033156
10.1126/science.aai8878
10.1074/jbc.M708291200
10.3390/molecules26041142
10.1038/nature13991
10.1128/AEM.66.1.64-72.2000
10.1016/j.bbabio.2019.06.007
10.1074/jbc.M111.331991
10.1038/s41467-022-28807-6
10.1038/nature08587
10.1073/pnas.1605380113
10.1074/jbc.RA120.014198
10.1038/nplants.2016.225
10.1105/tpc.002154
10.1007/978-1-4613-0409-8_8
10.1038/146061a0
10.1038/s41598-017-12923-1
10.1371/journal.pone.0119211
10.1016/j.pbi.2013.03.011
10.1105/tpc.111.087320
10.1021/ja4107463
10.1016/j.biotechadv.2019.107419
10.1016/j.jphotobiol.2011.02.015
10.1038/s41598-017-10700-8
10.1074/jbc.M114.574822
10.1038/nsmb.2008
10.1023/A:1006024827225
10.3390/md17060312
10.1016/S0304-4165(89)80016-9
10.1074/jbc.M117.805192
10.1007/s11120-004-2079-2
10.1111/pbi.13364
ContentType Journal Article
Copyright American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023
– notice: American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
7X8
DOI 10.1093/plphys/kiad391
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1380
ExternalDocumentID 10_1093_plphys_kiad391
10.1093/plphys/kiad391
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AASNB
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABMNT
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABXSQ
ABXVV
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ACZBC
ADACV
ADBBV
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
AEEJZ
AENEX
AEUPB
AFAZZ
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGMDO
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ANFBD
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DOOOF
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HMCUK
HTVGU
IPSME
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
AAYXX
ABDFA
ABEJV
ABGNP
ABVGC
ABXZS
ADGKP
AHGBF
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
7X8
ID FETCH-LOGICAL-c306t-8adff78c6bbd2ae90ad5aeb88a71b3cd6e08d43b7b6a2c770add089460a746ce3
ISSN 0032-0889
1532-2548
IngestDate Sun Sep 28 02:43:06 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Wed Oct 01 03:04:52 EDT 2025
Wed Aug 28 03:17:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8adff78c6bbd2ae90ad5aeb88a71b3cd6e08d43b7b6a2c770add089460a746ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2824-7916
0000-0001-5691-0124
0000-0002-2356-1295
0000-0002-1168-6357
0000-0003-1783-6974
0000-0001-8410-3397
PQID 2833648937
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2833648937
crossref_citationtrail_10_1093_plphys_kiad391
crossref_primary_10_1093_plphys_kiad391
oup_primary_10_1093_plphys_kiad391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-22
  day: 22
PublicationDecade 2020
PublicationPlace US
PublicationPlace_xml – name: US
PublicationTitle Plant physiology (Bethesda)
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Garnier (2023092305170921000_kiad391-B22) 1986; 851
Camacho (2023092305170921000_kiad391-B11) 2019; 17
Baker (2023092305170921000_kiad391-B5) 2008; 59
Natali (2023092305170921000_kiad391-B44) 2015; 10
Kromdijk (2023092305170921000_kiad391-B35) 2016; 354
Medipally (2023092305170921000_kiad391-B42) 2015; 2015
Tian (2023092305170921000_kiad391-B57) 2019; 116
Joo (2023092305170921000_kiad391-B30) 2022; 13
Graham (2023092305170921000_kiad391-B26) 2017; 7
Perozeni (2023092305170921000_kiad391-B49) 2020; 18
Głowacka (2023092305170921000_kiad391-B25) 2018; 9
Drop (2023092305170921000_kiad391-B19) 2014; 1837
Liu (2023092305170921000_kiad391-B39) 2004; 428
Baek (2023092305170921000_kiad391-B4) 2016; 6
Long (2023092305170921000_kiad391-B40) 1994; 45
Rani (2023092305170921000_kiad391-B51) 2021; 26
Kim (2023092305170921000_kiad391-B32) 2020; 11
Peter (2023092305170921000_kiad391-B50) 1991; 3
Ido (2023092305170921000_kiad391-B29) 2014; 289
Lagarde (2023092305170921000_kiad391-B37) 2000; 66
de Bianchi (2023092305170921000_kiad391-B17) 2008; 20
Vass (2023092305170921000_kiad391-B62) 1992; 89
Bonente (2023092305170921000_kiad391-B8) 2008; 283
Troiano (2023092305170921000_kiad391-B60) 2021; 10
Niyogi (2023092305170921000_kiad391-B46) 2013; 16
Elrad (2023092305170921000_kiad391-B20) 2002; 14
Neidhardt (2023092305170921000_kiad391-B45) 1998; 56
Butler (2023092305170921000_kiad391-B9) 1973; 6
Kropat (2023092305170921000_kiad391-B36) 2011; 66
Cazzaniga (2023092305170921000_kiad391-B13) 2020; 43
Shen (2023092305170921000_kiad391-B55) 2019; 116
Bernaerts (2023092305170921000_kiad391-B7) 2019; 37
Albanese (2023092305170921000_kiad391-B1) 2017; 7
de Bianchi (2023092305170921000_kiad391-B16) 2011; 23
Dall'Osto (2023092305170921000_kiad391-B15) 2020; 1861
Horton (2023092305170921000_kiad391-B28) 1996
Tokutsu (2023092305170921000_kiad391-B59) 2013; 110
Ballottari (2023092305170921000_kiad391-B6) 2016; 291
Croce (2023092305170921000_kiad391-B14) 2011; 104
Genty (2023092305170921000_kiad391-B23) 1989; 990
Cao (2023092305170921000_kiad391-B12) 2020; 63
Girolomoni (2023092305170921000_kiad391-B24) 2017; 68
Minagawa (2023092305170921000_kiad391-B43) 2004; 82
Erickson (2023092305170921000_kiad391-B21) 2015; 82
Suga (2023092305170921000_kiad391-B56) 2015; 517
Tokutsu (2023092305170921000_kiad391-B58) 2012; 287
Pan (2023092305170921000_kiad391-B47) 2011; 18
Sacharz (2023092305170921000_kiad391-B52) 2017; 3
Semchonok (2023092305170921000_kiad391-B54) 2017; 1858
Peers (2023092305170921000_kiad391-B48) 2009; 462
Schägger (2023092305170921000_kiad391-B53) 1987; 166
Liguori (2023092305170921000_kiad391-B38) 2013; 135
Van Kooten (2023092305170921000_kiad391-B61) 1990; 25
Hill (2023092305170921000_kiad391-B27) 1940; 146
Allorent (2023092305170921000_kiad391-B2) 2013; 25
Malkin (2023092305170921000_kiad391-B41) 1981; 67
Dinc (2023092305170921000_kiad391-B18) 2016; 113
Kim (2023092305170921000_kiad391-B33) 2020; 295
Aro (2023092305170921000_kiad391-B3) 1993; 1143
Caffarri (2023092305170921000_kiad391-B10) 2007; 581
Kim (2023092305170921000_kiad391-B31) 2017; 292
Koyande (2023092305170921000_kiad391-B34) 2019; 8
References_xml – volume: 43
  start-page: 496
  issue: 2
  year: 2020
  ident: 2023092305170921000_kiad391-B13
  article-title: Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13680
– volume: 9
  start-page: 868
  issue: 1
  year: 2018
  ident: 2023092305170921000_kiad391-B25
  article-title: Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-03231-x
– volume: 45
  start-page: 633
  issue: 1
  year: 1994
  ident: 2023092305170921000_kiad391-B40
  article-title: Photoinhibition of photosynthesis in nature
  publication-title: Ann Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.45.060194.003221
– volume: 581
  start-page: 4704
  issue: 24
  year: 2007
  ident: 2023092305170921000_kiad391-B10
  article-title: A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of photosystem II
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2007.08.066
– volume: 116
  start-page: 21246
  issue: 42
  year: 2019
  ident: 2023092305170921000_kiad391-B55
  article-title: Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii
  publication-title: Proc Natl Acad of Sci U S A
  doi: 10.1073/pnas.1912462116
– volume: 1858
  start-page: 379
  issue: 5
  year: 2017
  ident: 2023092305170921000_kiad391-B54
  article-title: Interaction between the photoprotective protein LHCSR3 and C2S2 photosystem II supercomplex in Chlamydomonas reinhardtii
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2017.02.015
– volume: 10
  start-page: e60383
  year: 2021
  ident: 2023092305170921000_kiad391-B60
  article-title: Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii
  publication-title: Elife
  doi: 10.7554/eLife.60383
– volume: 6
  start-page: 177
  issue: 6
  year: 1973
  ident: 2023092305170921000_kiad391-B9
  article-title: Primary photochemistry of photosystem II in photosynthesis
  publication-title: Acc Chem Res
  doi: 10.1021/ar50066a001
– volume: 25
  start-page: 545
  issue: 2
  year: 2013
  ident: 2023092305170921000_kiad391-B2
  article-title: A dual strategy to cope with high light in Chlamydomonas reinhardtii
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.108274
– volume: 166
  start-page: 368
  issue: 2
  year: 1987
  ident: 2023092305170921000_kiad391-B53
  article-title: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(87)90587-2
– volume: 67
  start-page: 570
  issue: 3
  year: 1981
  ident: 2023092305170921000_kiad391-B41
  article-title: Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity
  publication-title: Plant Physiol
  doi: 10.1104/pp.67.3.570
– volume: 89
  start-page: 1408
  issue: 4
  year: 1992
  ident: 2023092305170921000_kiad391-B62
  article-title: Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.4.1408
– volume: 428
  start-page: 287
  issue: 6980
  year: 2004
  ident: 2023092305170921000_kiad391-B39
  article-title: Crystal structure of spinach major light-harvesting complex at 2.72 A resolution
  publication-title: Nature
  doi: 10.1038/nature02373
– volume: 291
  start-page: 7334
  issue: 14
  year: 2016
  ident: 2023092305170921000_kiad391-B6
  article-title: Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M115.704601
– volume: 8
  start-page: 16
  issue: 1
  year: 2019
  ident: 2023092305170921000_kiad391-B34
  article-title: Microalgae: a potential alternative to health supplementation for humans
  publication-title: Food Sci Hum Wellness
  doi: 10.1016/j.fshw.2019.03.001
– volume: 2015
  start-page: 519513
  year: 2015
  ident: 2023092305170921000_kiad391-B42
  article-title: Microalgae as sustainable renewable energy feedstock for biofuel production
  publication-title: Biomed Res Int
  doi: 10.1155/2015/519513
– volume: 1837
  start-page: 63
  issue: 1
  year: 2014
  ident: 2023092305170921000_kiad391-B19
  article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2013.07.012
– volume: 3
  start-page: 115
  issue: 2
  year: 1991
  ident: 2023092305170921000_kiad391-B50
  article-title: Solubilization and two-dimensional electrophoretic procedures for studying the organization and composition of photosynthetic membrane polypeptides
  publication-title: Methods: Companion Methods Enzymol
  doi: 10.1016/S1046-2023(05)80203-8
– volume: 851
  start-page: 395
  issue: 3
  year: 1986
  ident: 2023092305170921000_kiad391-B22
  article-title: Low-temperature fluorescence emission spectra and chlorophyll-protein complexes in mutants of Chlamydomonas reinhardtii: evidence for a new chlorophyll-a-protein complex related to photosystem I
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2728(86)90076-9
– volume: 63
  start-page: 49
  year: 2020
  ident: 2023092305170921000_kiad391-B12
  article-title: Assembly of eukaryotic photosystem II with diverse light-harvesting antennas
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2020.03.007
– volume: 20
  start-page: 1012
  issue: 4
  year: 2008
  ident: 2023092305170921000_kiad391-B17
  article-title: Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.107.055749
– volume: 66
  start-page: 770
  issue: 5
  year: 2011
  ident: 2023092305170921000_kiad391-B36
  article-title: A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04537.x
– volume: 116
  start-page: 8320
  issue: 17
  year: 2019
  ident: 2023092305170921000_kiad391-B57
  article-title: pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1817796116
– volume: 1143
  start-page: 113
  issue: 2
  year: 1993
  ident: 2023092305170921000_kiad391-B3
  article-title: Photoinhibition of photosystem II—inactivation, protein damage and turnover
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2728(93)90134-2
– volume: 110
  start-page: 10016
  issue: 24
  year: 2013
  ident: 2023092305170921000_kiad391-B59
  article-title: Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1222606110
– volume: 11
  start-page: 306
  year: 2020
  ident: 2023092305170921000_kiad391-B32
  article-title: Site-specific gene knock-out and on-site heterologous gene overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-mediated knock-in method
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00306
– volume: 6
  start-page: 30620
  year: 2016
  ident: 2023092305170921000_kiad391-B4
  article-title: DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins
  publication-title: Sci Rep
  doi: 10.1038/srep30620
– volume: 82
  start-page: 449
  issue: 3
  year: 2015
  ident: 2023092305170921000_kiad391-B21
  article-title: Light stress and photoprotection in Chlamydomonas reinhardtii
  publication-title: Plant J
  doi: 10.1111/tpj.12825
– volume: 59
  start-page: 89
  issue: 1
  year: 2008
  ident: 2023092305170921000_kiad391-B5
  article-title: Chlorophyll fluorescence: a probe of photosynthesis in vivo
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092759
– volume: 25
  start-page: 147
  issue: 3
  year: 1990
  ident: 2023092305170921000_kiad391-B61
  article-title: The use of chlorophyll fluorescence nomenclature in plant stress physiology
  publication-title: Photosynt Res
  doi: 10.1007/BF00033156
– volume: 354
  start-page: 857
  issue: 6314
  year: 2016
  ident: 2023092305170921000_kiad391-B35
  article-title: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection
  publication-title: Science
  doi: 10.1126/science.aai8878
– volume: 283
  start-page: 8434
  issue: 13
  year: 2008
  ident: 2023092305170921000_kiad391-B8
  article-title: Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M708291200
– volume: 26
  start-page: 1142
  issue: 4
  year: 2021
  ident: 2023092305170921000_kiad391-B51
  article-title: Microorganisms: a potential source of bioactive molecules for antioxidant applications
  publication-title: Molecules
  doi: 10.3390/molecules26041142
– volume: 517
  start-page: 99
  issue: 7532
  year: 2015
  ident: 2023092305170921000_kiad391-B56
  article-title: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses
  publication-title: Nature
  doi: 10.1038/nature13991
– volume: 66
  start-page: 64
  issue: 1
  year: 2000
  ident: 2023092305170921000_kiad391-B37
  article-title: Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.66.1.64-72.2000
– volume: 1861
  start-page: 148035
  issue: 4
  year: 2020
  ident: 2023092305170921000_kiad391-B15
  article-title: Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids
  publication-title: Biochim Biophys Acta Bioenerg
  doi: 10.1016/j.bbabio.2019.06.007
– volume: 287
  start-page: 31574
  issue: 37
  year: 2012
  ident: 2023092305170921000_kiad391-B58
  article-title: Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.331991
– volume: 13
  start-page: 1133
  issue: 1
  year: 2022
  ident: 2023092305170921000_kiad391-B30
  article-title: Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28807-6
– volume: 462
  start-page: 518
  issue: 7272
  year: 2009
  ident: 2023092305170921000_kiad391-B48
  article-title: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis
  publication-title: Nature
  doi: 10.1038/nature08587
– volume: 113
  start-page: 7673
  issue: 27
  year: 2016
  ident: 2023092305170921000_kiad391-B18
  article-title: LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1605380113
– volume: 68
  start-page: 627
  issue: 3
  year: 2017
  ident: 2023092305170921000_kiad391-B24
  article-title: The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii
  publication-title: J Exp Bot
– volume: 295
  start-page: 14537
  issue: 43
  year: 2020
  ident: 2023092305170921000_kiad391-B33
  article-title: Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.014198
– volume: 3
  start-page: 16225
  year: 2017
  ident: 2023092305170921000_kiad391-B52
  article-title: The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching
  publication-title: Nat Plants
  doi: 10.1038/nplants.2016.225
– volume: 14
  start-page: 1801
  issue: 8
  year: 2002
  ident: 2023092305170921000_kiad391-B20
  article-title: A major light-harvesting polypeptide of photosystem II functions in thermal dissipation
  publication-title: Plant Cell
  doi: 10.1105/tpc.002154
– start-page: 99
  volume-title: Light as an energy source and information carrier in plant physiology
  year: 1996
  ident: 2023092305170921000_kiad391-B28
  doi: 10.1007/978-1-4613-0409-8_8
– volume: 146
  start-page: 61
  issue: 3689
  year: 1940
  ident: 2023092305170921000_kiad391-B27
  article-title: Production of oxygen by illuminated chloroplasts
  publication-title: Nature
  doi: 10.1038/146061a0
– volume: 7
  start-page: 12513
  issue: 1
  year: 2017
  ident: 2023092305170921000_kiad391-B26
  article-title: A penalty on photosynthetic growth in fluctuating light
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12923-1
– volume: 10
  start-page: e0119211
  issue: 2
  year: 2015
  ident: 2023092305170921000_kiad391-B44
  article-title: Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119211
– volume: 16
  start-page: 307
  issue: 3
  year: 2013
  ident: 2023092305170921000_kiad391-B46
  article-title: Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.03.011
– volume: 23
  start-page: 2659
  issue: 7
  year: 2011
  ident: 2023092305170921000_kiad391-B16
  article-title: Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.087320
– volume: 135
  start-page: 18339
  issue: 49
  year: 2013
  ident: 2023092305170921000_kiad391-B38
  article-title: Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch
  publication-title: J Am Chem Soc
  doi: 10.1021/ja4107463
– volume: 37
  start-page: 107419
  issue: 8
  year: 2019
  ident: 2023092305170921000_kiad391-B7
  article-title: The potential of microalgae and their biopolymers as structuring ingredients in food: a review
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2019.107419
– volume: 104
  start-page: 142
  issue: 1–2
  year: 2011
  ident: 2023092305170921000_kiad391-B14
  article-title: Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane
  publication-title: J Photochem Photobiol B
  doi: 10.1016/j.jphotobiol.2011.02.015
– volume: 7
  start-page: 10067
  issue: 1
  year: 2017
  ident: 2023092305170921000_kiad391-B1
  article-title: Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-10700-8
– volume: 289
  start-page: 20150
  issue: 29
  year: 2014
  ident: 2023092305170921000_kiad391-B29
  article-title: Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.574822
– volume: 18
  start-page: 309
  issue: 3
  year: 2011
  ident: 2023092305170921000_kiad391-B47
  article-title: Structural insights into energy regulation of light-harvesting complex CP29 from spinach
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2008
– volume: 56
  start-page: 175
  issue: 2
  year: 1998
  ident: 2023092305170921000_kiad391-B45
  article-title: Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae)
  publication-title: Photosynthesis Res
  doi: 10.1023/A:1006024827225
– volume: 17
  start-page: 312
  issue: 6
  year: 2019
  ident: 2023092305170921000_kiad391-B11
  article-title: Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review
  publication-title: Mar Drugs.
  doi: 10.3390/md17060312
– volume: 990
  start-page: 87
  issue: 1
  year: 1989
  ident: 2023092305170921000_kiad391-B23
  article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence
  publication-title: Biochim Biophys Acta
  doi: 10.1016/S0304-4165(89)80016-9
– volume: 292
  start-page: 18951
  issue: 46
  year: 2017
  ident: 2023092305170921000_kiad391-B31
  article-title: Fluorescence lifetime analyses reveal how the high light-responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.805192
– volume: 82
  start-page: 241
  issue: 3
  year: 2004
  ident: 2023092305170921000_kiad391-B43
  article-title: Structure, function and assembly of photosystem II and its light-harvesting proteins
  publication-title: Photosynth Res
  doi: 10.1007/s11120-004-2079-2
– volume: 18
  start-page: 2053
  issue: 10
  year: 2020
  ident: 2023092305170921000_kiad391-B49
  article-title: Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii
  publication-title: Plant Biotechnol J
  doi: 10.1111/pbi.13364
SSID ssj0001314
Score 2.4674392
Snippet Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic...
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1365
Title Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas
URI https://www.proquest.com/docview/2833648937
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: KQ8
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: DIK
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwoFLxVOUAloQEgfLNNm11_aRRlQNSCiIVurN2pcVQ7Cjxjkkv4qfyIzXdpzSisLFsuz1yt75dnZmPfMNIW_BRpChVjCRwjjxgxCrAWYm9mMkmwORZzaro3y_iNPz4NNFeDEY_OpFLa0q9V5vrs0r-R-pwjWQK2bJ_oNku07hApyDfOEIEobjrWQ8nZVV6biYvcnE-4kJCnVoPA5XUUhvPAXBLuZyvfSkB9PVBRPmhQdO_wIf1i1fQB1QPWsSXMYzwMnalNBhEzzUmK9Y4qhyuyGOuwns02NMGV4a2dtTGMvNRha527P9VtlMFuX2Z7_bhM2L77ID1RRrrJUud6iqbLlV2JflxtZVp7wTpL0A3Pb3KRjHoArW82qvz3_s62bOfAy6citTq46ZDy5svKOvXUnFBpisp30xZK-3ko-4KxL1xyrhGLQWcxwuOPmRS8NdzbAr3Ns3N75D7rJICKyZ8fnrlp9-xB2bfPstHU0oP3I9HDXP75hBO6mVrS1QGzhnD8h-45nQDw5mD8nAFo_IveMSvIf1Y2J7WKOTCe2wRhusUcQarbFGJQWsUcQazQt6FWu0wxre3cHaE3J-8vFsfOo3JTp8Db5m5cfSZFkUa6GUYdImQ2lCaVUcy2ikuDbCDmMTcBUpIZmOIrhvhnESiKGMAqEtf0r24C3sM0K5MhpXhMCChas5S5hUDJaHMDEjAW7NAfHbEUt1w1-PZVTmqYuj4Kkb4bQZ4QPyrmu_cMwtN7Z8AwL4a6PXrXxS0MD4W00WtlwtUzDQuUAOp-j5bTo6JPe30-MF2asuV_YlGLaVelVj6TdayKw_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosystem+II+monomeric+antenna+CP26+plays+a+key+role+in+nonphotochemical+quenching+in+Chlamydomonas&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Cazzaniga%2C+Stefano&rft.au=Kim%2C+Minjae&rft.au=Pivato%2C+Matteo&rft.au=Perozeni%2C+Federico&rft.date=2023-09-22&rft.pub=Oxford+University+Press&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=193&rft.issue=2&rft.spage=1365&rft.epage=1380&rft_id=info:doi/10.1093%2Fplphys%2Fkiad391&rft.externalDocID=10.1093%2Fplphys%2Fkiad391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon