Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas
Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and l...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 193; no. 2; pp. 1365 - 1380 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
22.09.2023
|
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1093/plphys/kiad391 |
Cover
Abstract | Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.
Targeted mutagenesis and complementation in Chlamydomonas reveal the functions of CP26, a monomeric antenna of photosystem II, demonstrating its key role in regulating photoprotection. |
---|---|
AbstractList | Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes.Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes. Abstract Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes. Targeted mutagenesis and complementation in Chlamydomonas reveal the functions of CP26, a monomeric antenna of photosystem II, demonstrating its key role in regulating photoprotection. Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic photosynthetic organisms. Here, we investigated the function of the monomeric photosystem II (PSII) antenna protein CP26 in photoprotection and light harvesting in Chlamydomonas reinhardtii, a model organism for green algae. We used CRISPR/Cas9 genome editing and complementation to generate cp26 knockout mutants (named k6#) that did not negatively affect CP29 accumulation, which differed from previous cp26 mutants, allowing us to compare mutants specifically deprived of CP26, CP29, or both. The absence of CP26 partially affected PSII activity, causing reduced growth at low or medium light but not at high irradiances. However, the main phenotype observed in k6# mutants was a more than 70% reduction of NPQ compared to the wild type (Wt). This phenotype was fully rescued by genetic complementation and complemented strains accumulating different levels of CP26, demonstrating that ∼50% of CP26 content, compared to the Wt, was sufficient to restore the NPQ capacity. Our findings demonstrate a pivotal role for CP26 in NPQ induction, while CP29 is crucial for PSII activity. The genetic engineering of these 2 proteins could be a promising strategy to regulate the photosynthetic efficiency of microalgae under different light regimes. |
Author | Kim, Minjae D’Andrea, Cosimo Pivato, Matteo Perozeni, Federico Jin, EonSeon Cazzaniga, Stefano Sardar, Samim Ballottari, Matteo |
Author_xml | – sequence: 1 givenname: Stefano orcidid: 0000-0002-2824-7916 surname: Cazzaniga fullname: Cazzaniga, Stefano – sequence: 2 givenname: Minjae orcidid: 0000-0002-2356-1295 surname: Kim fullname: Kim, Minjae – sequence: 3 givenname: Matteo orcidid: 0000-0002-1168-6357 surname: Pivato fullname: Pivato, Matteo – sequence: 4 givenname: Federico surname: Perozeni fullname: Perozeni, Federico – sequence: 5 givenname: Samim orcidid: 0000-0003-1783-6974 surname: Sardar fullname: Sardar, Samim – sequence: 6 givenname: Cosimo surname: D’Andrea fullname: D’Andrea, Cosimo – sequence: 7 givenname: EonSeon orcidid: 0000-0001-5691-0124 surname: Jin fullname: Jin, EonSeon email: esjin@hanyang.ac.kr – sequence: 8 givenname: Matteo orcidid: 0000-0001-8410-3397 surname: Ballottari fullname: Ballottari, Matteo email: matteo.ballottari@univr.it |
BookMark | eNqFkL1PwzAQxS1UJNrCyuwRhrZ2nCbOiCI-KlWiA8zRxbkQU8cOsTvkvydVmJAQ05303u_d6S3IzDqLhNxytuYsE5vOdM3gN0cNlcj4BZnzrYhW0TaWMzJnbNyZlNkVWXj_yRjjgsdzgofGBecHH7Clux1tnXUt9lpRsAGtBZofooR2BgZPgR5xoL0zSLWl4_nuDKsGW63A0K8TWtVo-3FW88ZAO1RuDAR_TS5rMB5vfuaSvD89vuUvq_3r8y5_2K-UYElYSajqOpUqKcsqAswYVFvAUkpIeSlUlSCTVSzKtEwgUmk66hWTWZwwSONEoViSuym36934jQ9Fq71CY8CiO_kikkIkscxEOlrjyap6532PdaF0gKCdDT1oU3BWnFstplaLn1ZHbP0L63rdQj_8DdxPgDt1_3m_AWmEkL4 |
CitedBy_id | crossref_primary_10_3390_plants13101393 crossref_primary_10_1080_07388551_2024_2357368 crossref_primary_10_1186_s13068_024_02483_8 crossref_primary_10_3390_plants13152103 |
Cites_doi | 10.1111/pce.13680 10.1038/s41467-018-03231-x 10.1146/annurev.pp.45.060194.003221 10.1016/j.febslet.2007.08.066 10.1073/pnas.1912462116 10.1016/j.bbabio.2017.02.015 10.7554/eLife.60383 10.1021/ar50066a001 10.1105/tpc.112.108274 10.1016/0003-2697(87)90587-2 10.1104/pp.67.3.570 10.1073/pnas.89.4.1408 10.1038/nature02373 10.1074/jbc.M115.704601 10.1016/j.fshw.2019.03.001 10.1155/2015/519513 10.1016/j.bbabio.2013.07.012 10.1016/S1046-2023(05)80203-8 10.1016/0005-2728(86)90076-9 10.1016/j.sbi.2020.03.007 10.1105/tpc.107.055749 10.1111/j.1365-313X.2011.04537.x 10.1073/pnas.1817796116 10.1016/0005-2728(93)90134-2 10.1073/pnas.1222606110 10.3389/fpls.2020.00306 10.1038/srep30620 10.1111/tpj.12825 10.1146/annurev.arplant.59.032607.092759 10.1007/BF00033156 10.1126/science.aai8878 10.1074/jbc.M708291200 10.3390/molecules26041142 10.1038/nature13991 10.1128/AEM.66.1.64-72.2000 10.1016/j.bbabio.2019.06.007 10.1074/jbc.M111.331991 10.1038/s41467-022-28807-6 10.1038/nature08587 10.1073/pnas.1605380113 10.1074/jbc.RA120.014198 10.1038/nplants.2016.225 10.1105/tpc.002154 10.1007/978-1-4613-0409-8_8 10.1038/146061a0 10.1038/s41598-017-12923-1 10.1371/journal.pone.0119211 10.1016/j.pbi.2013.03.011 10.1105/tpc.111.087320 10.1021/ja4107463 10.1016/j.biotechadv.2019.107419 10.1016/j.jphotobiol.2011.02.015 10.1038/s41598-017-10700-8 10.1074/jbc.M114.574822 10.1038/nsmb.2008 10.1023/A:1006024827225 10.3390/md17060312 10.1016/S0304-4165(89)80016-9 10.1074/jbc.M117.805192 10.1007/s11120-004-2079-2 10.1111/pbi.13364 |
ContentType | Journal Article |
Copyright | American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 – notice: American Society of Plant Biologists 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1093/plphys/kiad391 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1380 |
ExternalDocumentID | 10_1093_plphys_kiad391 10.1093/plphys/kiad391 |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AASNB AAUAY AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABMNT ABPLY ABPPZ ABPTD ABTLG ABUWG ABXSQ ABXVV ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ACZBC ADACV ADBBV ADIPN ADIYS ADQBN ADULT ADVEK ADYHW AEEJZ AENEX AEUPB AFAZZ AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGMDO AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALIPV ALMA_UNASSIGNED_HOLDINGS ANFBD AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DOOOF DU5 DWQXO E3Z EBS ECGQY EJD F20 F5P FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM AAYXX ABDFA ABEJV ABGNP ABVGC ABXZS ADGKP AHGBF AJBYB AJNCP ALXQX CITATION JXSIZ 7X8 |
ID | FETCH-LOGICAL-c306t-8adff78c6bbd2ae90ad5aeb88a71b3cd6e08d43b7b6a2c770add089460a746ce3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Sun Sep 28 02:43:06 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Wed Oct 01 03:04:52 EDT 2025 Wed Aug 28 03:17:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c306t-8adff78c6bbd2ae90ad5aeb88a71b3cd6e08d43b7b6a2c770add089460a746ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2824-7916 0000-0001-5691-0124 0000-0002-2356-1295 0000-0002-1168-6357 0000-0003-1783-6974 0000-0001-8410-3397 |
PQID | 2833648937 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2833648937 crossref_citationtrail_10_1093_plphys_kiad391 crossref_primary_10_1093_plphys_kiad391 oup_primary_10_1093_plphys_kiad391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-22 |
PublicationDateYYYYMMDD | 2023-09-22 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US |
PublicationTitle | Plant physiology (Bethesda) |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Garnier (2023092305170921000_kiad391-B22) 1986; 851 Camacho (2023092305170921000_kiad391-B11) 2019; 17 Baker (2023092305170921000_kiad391-B5) 2008; 59 Natali (2023092305170921000_kiad391-B44) 2015; 10 Kromdijk (2023092305170921000_kiad391-B35) 2016; 354 Medipally (2023092305170921000_kiad391-B42) 2015; 2015 Tian (2023092305170921000_kiad391-B57) 2019; 116 Joo (2023092305170921000_kiad391-B30) 2022; 13 Graham (2023092305170921000_kiad391-B26) 2017; 7 Perozeni (2023092305170921000_kiad391-B49) 2020; 18 Głowacka (2023092305170921000_kiad391-B25) 2018; 9 Drop (2023092305170921000_kiad391-B19) 2014; 1837 Liu (2023092305170921000_kiad391-B39) 2004; 428 Baek (2023092305170921000_kiad391-B4) 2016; 6 Long (2023092305170921000_kiad391-B40) 1994; 45 Rani (2023092305170921000_kiad391-B51) 2021; 26 Kim (2023092305170921000_kiad391-B32) 2020; 11 Peter (2023092305170921000_kiad391-B50) 1991; 3 Ido (2023092305170921000_kiad391-B29) 2014; 289 Lagarde (2023092305170921000_kiad391-B37) 2000; 66 de Bianchi (2023092305170921000_kiad391-B17) 2008; 20 Vass (2023092305170921000_kiad391-B62) 1992; 89 Bonente (2023092305170921000_kiad391-B8) 2008; 283 Troiano (2023092305170921000_kiad391-B60) 2021; 10 Niyogi (2023092305170921000_kiad391-B46) 2013; 16 Elrad (2023092305170921000_kiad391-B20) 2002; 14 Neidhardt (2023092305170921000_kiad391-B45) 1998; 56 Butler (2023092305170921000_kiad391-B9) 1973; 6 Kropat (2023092305170921000_kiad391-B36) 2011; 66 Cazzaniga (2023092305170921000_kiad391-B13) 2020; 43 Shen (2023092305170921000_kiad391-B55) 2019; 116 Bernaerts (2023092305170921000_kiad391-B7) 2019; 37 Albanese (2023092305170921000_kiad391-B1) 2017; 7 de Bianchi (2023092305170921000_kiad391-B16) 2011; 23 Dall'Osto (2023092305170921000_kiad391-B15) 2020; 1861 Horton (2023092305170921000_kiad391-B28) 1996 Tokutsu (2023092305170921000_kiad391-B59) 2013; 110 Ballottari (2023092305170921000_kiad391-B6) 2016; 291 Croce (2023092305170921000_kiad391-B14) 2011; 104 Genty (2023092305170921000_kiad391-B23) 1989; 990 Cao (2023092305170921000_kiad391-B12) 2020; 63 Girolomoni (2023092305170921000_kiad391-B24) 2017; 68 Minagawa (2023092305170921000_kiad391-B43) 2004; 82 Erickson (2023092305170921000_kiad391-B21) 2015; 82 Suga (2023092305170921000_kiad391-B56) 2015; 517 Tokutsu (2023092305170921000_kiad391-B58) 2012; 287 Pan (2023092305170921000_kiad391-B47) 2011; 18 Sacharz (2023092305170921000_kiad391-B52) 2017; 3 Semchonok (2023092305170921000_kiad391-B54) 2017; 1858 Peers (2023092305170921000_kiad391-B48) 2009; 462 Schägger (2023092305170921000_kiad391-B53) 1987; 166 Liguori (2023092305170921000_kiad391-B38) 2013; 135 Van Kooten (2023092305170921000_kiad391-B61) 1990; 25 Hill (2023092305170921000_kiad391-B27) 1940; 146 Allorent (2023092305170921000_kiad391-B2) 2013; 25 Malkin (2023092305170921000_kiad391-B41) 1981; 67 Dinc (2023092305170921000_kiad391-B18) 2016; 113 Kim (2023092305170921000_kiad391-B33) 2020; 295 Aro (2023092305170921000_kiad391-B3) 1993; 1143 Caffarri (2023092305170921000_kiad391-B10) 2007; 581 Kim (2023092305170921000_kiad391-B31) 2017; 292 Koyande (2023092305170921000_kiad391-B34) 2019; 8 |
References_xml | – volume: 43 start-page: 496 issue: 2 year: 2020 ident: 2023092305170921000_kiad391-B13 article-title: Photosystem II antenna complexes CP26 and CP29 are essential for nonphotochemical quenching in Chlamydomonas reinhardtii publication-title: Plant Cell Environ doi: 10.1111/pce.13680 – volume: 9 start-page: 868 issue: 1 year: 2018 ident: 2023092305170921000_kiad391-B25 article-title: Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop publication-title: Nat Commun doi: 10.1038/s41467-018-03231-x – volume: 45 start-page: 633 issue: 1 year: 1994 ident: 2023092305170921000_kiad391-B40 article-title: Photoinhibition of photosynthesis in nature publication-title: Ann Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.45.060194.003221 – volume: 581 start-page: 4704 issue: 24 year: 2007 ident: 2023092305170921000_kiad391-B10 article-title: A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of photosystem II publication-title: FEBS Lett doi: 10.1016/j.febslet.2007.08.066 – volume: 116 start-page: 21246 issue: 42 year: 2019 ident: 2023092305170921000_kiad391-B55 article-title: Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii publication-title: Proc Natl Acad of Sci U S A doi: 10.1073/pnas.1912462116 – volume: 1858 start-page: 379 issue: 5 year: 2017 ident: 2023092305170921000_kiad391-B54 article-title: Interaction between the photoprotective protein LHCSR3 and C2S2 photosystem II supercomplex in Chlamydomonas reinhardtii publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2017.02.015 – volume: 10 start-page: e60383 year: 2021 ident: 2023092305170921000_kiad391-B60 article-title: Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii publication-title: Elife doi: 10.7554/eLife.60383 – volume: 6 start-page: 177 issue: 6 year: 1973 ident: 2023092305170921000_kiad391-B9 article-title: Primary photochemistry of photosystem II in photosynthesis publication-title: Acc Chem Res doi: 10.1021/ar50066a001 – volume: 25 start-page: 545 issue: 2 year: 2013 ident: 2023092305170921000_kiad391-B2 article-title: A dual strategy to cope with high light in Chlamydomonas reinhardtii publication-title: Plant Cell doi: 10.1105/tpc.112.108274 – volume: 166 start-page: 368 issue: 2 year: 1987 ident: 2023092305170921000_kiad391-B53 article-title: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa publication-title: Anal Biochem doi: 10.1016/0003-2697(87)90587-2 – volume: 67 start-page: 570 issue: 3 year: 1981 ident: 2023092305170921000_kiad391-B41 article-title: Photosystem II photosynthetic unit sizes from fluorescence induction in leaves: correlation to photosynthetic capacity publication-title: Plant Physiol doi: 10.1104/pp.67.3.570 – volume: 89 start-page: 1408 issue: 4 year: 1992 ident: 2023092305170921000_kiad391-B62 article-title: Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.4.1408 – volume: 428 start-page: 287 issue: 6980 year: 2004 ident: 2023092305170921000_kiad391-B39 article-title: Crystal structure of spinach major light-harvesting complex at 2.72 A resolution publication-title: Nature doi: 10.1038/nature02373 – volume: 291 start-page: 7334 issue: 14 year: 2016 ident: 2023092305170921000_kiad391-B6 article-title: Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii publication-title: J Biol Chem doi: 10.1074/jbc.M115.704601 – volume: 8 start-page: 16 issue: 1 year: 2019 ident: 2023092305170921000_kiad391-B34 article-title: Microalgae: a potential alternative to health supplementation for humans publication-title: Food Sci Hum Wellness doi: 10.1016/j.fshw.2019.03.001 – volume: 2015 start-page: 519513 year: 2015 ident: 2023092305170921000_kiad391-B42 article-title: Microalgae as sustainable renewable energy feedstock for biofuel production publication-title: Biomed Res Int doi: 10.1155/2015/519513 – volume: 1837 start-page: 63 issue: 1 year: 2014 ident: 2023092305170921000_kiad391-B19 article-title: Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2013.07.012 – volume: 3 start-page: 115 issue: 2 year: 1991 ident: 2023092305170921000_kiad391-B50 article-title: Solubilization and two-dimensional electrophoretic procedures for studying the organization and composition of photosynthetic membrane polypeptides publication-title: Methods: Companion Methods Enzymol doi: 10.1016/S1046-2023(05)80203-8 – volume: 851 start-page: 395 issue: 3 year: 1986 ident: 2023092305170921000_kiad391-B22 article-title: Low-temperature fluorescence emission spectra and chlorophyll-protein complexes in mutants of Chlamydomonas reinhardtii: evidence for a new chlorophyll-a-protein complex related to photosystem I publication-title: Biochim Biophys Acta doi: 10.1016/0005-2728(86)90076-9 – volume: 63 start-page: 49 year: 2020 ident: 2023092305170921000_kiad391-B12 article-title: Assembly of eukaryotic photosystem II with diverse light-harvesting antennas publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2020.03.007 – volume: 20 start-page: 1012 issue: 4 year: 2008 ident: 2023092305170921000_kiad391-B17 article-title: Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.055749 – volume: 66 start-page: 770 issue: 5 year: 2011 ident: 2023092305170921000_kiad391-B36 article-title: A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04537.x – volume: 116 start-page: 8320 issue: 17 year: 2019 ident: 2023092305170921000_kiad391-B57 article-title: pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1817796116 – volume: 1143 start-page: 113 issue: 2 year: 1993 ident: 2023092305170921000_kiad391-B3 article-title: Photoinhibition of photosystem II—inactivation, protein damage and turnover publication-title: Biochim Biophys Acta doi: 10.1016/0005-2728(93)90134-2 – volume: 110 start-page: 10016 issue: 24 year: 2013 ident: 2023092305170921000_kiad391-B59 article-title: Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1222606110 – volume: 11 start-page: 306 year: 2020 ident: 2023092305170921000_kiad391-B32 article-title: Site-specific gene knock-out and on-site heterologous gene overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-mediated knock-in method publication-title: Front Plant Sci doi: 10.3389/fpls.2020.00306 – volume: 6 start-page: 30620 year: 2016 ident: 2023092305170921000_kiad391-B4 article-title: DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins publication-title: Sci Rep doi: 10.1038/srep30620 – volume: 82 start-page: 449 issue: 3 year: 2015 ident: 2023092305170921000_kiad391-B21 article-title: Light stress and photoprotection in Chlamydomonas reinhardtii publication-title: Plant J doi: 10.1111/tpj.12825 – volume: 59 start-page: 89 issue: 1 year: 2008 ident: 2023092305170921000_kiad391-B5 article-title: Chlorophyll fluorescence: a probe of photosynthesis in vivo publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092759 – volume: 25 start-page: 147 issue: 3 year: 1990 ident: 2023092305170921000_kiad391-B61 article-title: The use of chlorophyll fluorescence nomenclature in plant stress physiology publication-title: Photosynt Res doi: 10.1007/BF00033156 – volume: 354 start-page: 857 issue: 6314 year: 2016 ident: 2023092305170921000_kiad391-B35 article-title: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection publication-title: Science doi: 10.1126/science.aai8878 – volume: 283 start-page: 8434 issue: 13 year: 2008 ident: 2023092305170921000_kiad391-B8 article-title: Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro publication-title: J Biol Chem doi: 10.1074/jbc.M708291200 – volume: 26 start-page: 1142 issue: 4 year: 2021 ident: 2023092305170921000_kiad391-B51 article-title: Microorganisms: a potential source of bioactive molecules for antioxidant applications publication-title: Molecules doi: 10.3390/molecules26041142 – volume: 517 start-page: 99 issue: 7532 year: 2015 ident: 2023092305170921000_kiad391-B56 article-title: Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses publication-title: Nature doi: 10.1038/nature13991 – volume: 66 start-page: 64 issue: 1 year: 2000 ident: 2023092305170921000_kiad391-B37 article-title: Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.66.1.64-72.2000 – volume: 1861 start-page: 148035 issue: 4 year: 2020 ident: 2023092305170921000_kiad391-B15 article-title: Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids publication-title: Biochim Biophys Acta Bioenerg doi: 10.1016/j.bbabio.2019.06.007 – volume: 287 start-page: 31574 issue: 37 year: 2012 ident: 2023092305170921000_kiad391-B58 article-title: Revisiting the supramolecular organization of photosystem II in Chlamydomonas reinhardtii publication-title: J Biol Chem doi: 10.1074/jbc.M111.331991 – volume: 13 start-page: 1133 issue: 1 year: 2022 ident: 2023092305170921000_kiad391-B30 article-title: Sex-linked deubiquitinase establishes uniparental transmission of chloroplast DNA publication-title: Nat Commun doi: 10.1038/s41467-022-28807-6 – volume: 462 start-page: 518 issue: 7272 year: 2009 ident: 2023092305170921000_kiad391-B48 article-title: An ancient light-harvesting protein is critical for the regulation of algal photosynthesis publication-title: Nature doi: 10.1038/nature08587 – volume: 113 start-page: 7673 issue: 27 year: 2016 ident: 2023092305170921000_kiad391-B18 article-title: LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1605380113 – volume: 68 start-page: 627 issue: 3 year: 2017 ident: 2023092305170921000_kiad391-B24 article-title: The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii publication-title: J Exp Bot – volume: 295 start-page: 14537 issue: 43 year: 2020 ident: 2023092305170921000_kiad391-B33 article-title: Multimeric and monomeric photosystem II supercomplexes represent structural adaptations to low- and high-light conditions publication-title: J Biol Chem doi: 10.1074/jbc.RA120.014198 – volume: 3 start-page: 16225 year: 2017 ident: 2023092305170921000_kiad391-B52 article-title: The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching publication-title: Nat Plants doi: 10.1038/nplants.2016.225 – volume: 14 start-page: 1801 issue: 8 year: 2002 ident: 2023092305170921000_kiad391-B20 article-title: A major light-harvesting polypeptide of photosystem II functions in thermal dissipation publication-title: Plant Cell doi: 10.1105/tpc.002154 – start-page: 99 volume-title: Light as an energy source and information carrier in plant physiology year: 1996 ident: 2023092305170921000_kiad391-B28 doi: 10.1007/978-1-4613-0409-8_8 – volume: 146 start-page: 61 issue: 3689 year: 1940 ident: 2023092305170921000_kiad391-B27 article-title: Production of oxygen by illuminated chloroplasts publication-title: Nature doi: 10.1038/146061a0 – volume: 7 start-page: 12513 issue: 1 year: 2017 ident: 2023092305170921000_kiad391-B26 article-title: A penalty on photosynthetic growth in fluctuating light publication-title: Sci Rep doi: 10.1038/s41598-017-12923-1 – volume: 10 start-page: e0119211 issue: 2 year: 2015 ident: 2023092305170921000_kiad391-B44 article-title: Characterization of the major light-harvesting complexes (LHCBM) of the green alga Chlamydomonas reinhardtii publication-title: PLoS One doi: 10.1371/journal.pone.0119211 – volume: 16 start-page: 307 issue: 3 year: 2013 ident: 2023092305170921000_kiad391-B46 article-title: Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.03.011 – volume: 23 start-page: 2659 issue: 7 year: 2011 ident: 2023092305170921000_kiad391-B16 article-title: Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted photosystem II macrostructure and are defective in photoprotection publication-title: Plant Cell doi: 10.1105/tpc.111.087320 – volume: 135 start-page: 18339 issue: 49 year: 2013 ident: 2023092305170921000_kiad391-B38 article-title: Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch publication-title: J Am Chem Soc doi: 10.1021/ja4107463 – volume: 37 start-page: 107419 issue: 8 year: 2019 ident: 2023092305170921000_kiad391-B7 article-title: The potential of microalgae and their biopolymers as structuring ingredients in food: a review publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2019.107419 – volume: 104 start-page: 142 issue: 1–2 year: 2011 ident: 2023092305170921000_kiad391-B14 article-title: Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane publication-title: J Photochem Photobiol B doi: 10.1016/j.jphotobiol.2011.02.015 – volume: 7 start-page: 10067 issue: 1 year: 2017 ident: 2023092305170921000_kiad391-B1 article-title: Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap publication-title: Sci Rep. doi: 10.1038/s41598-017-10700-8 – volume: 289 start-page: 20150 issue: 29 year: 2014 ident: 2023092305170921000_kiad391-B29 article-title: Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex publication-title: J Biol Chem doi: 10.1074/jbc.M114.574822 – volume: 18 start-page: 309 issue: 3 year: 2011 ident: 2023092305170921000_kiad391-B47 article-title: Structural insights into energy regulation of light-harvesting complex CP29 from spinach publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2008 – volume: 56 start-page: 175 issue: 2 year: 1998 ident: 2023092305170921000_kiad391-B45 article-title: Photosystem-II repair and chloroplast recovery from irradiance stress: relationship between chronic photoinhibition, light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliella salina (green algae) publication-title: Photosynthesis Res doi: 10.1023/A:1006024827225 – volume: 17 start-page: 312 issue: 6 year: 2019 ident: 2023092305170921000_kiad391-B11 article-title: Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review publication-title: Mar Drugs. doi: 10.3390/md17060312 – volume: 990 start-page: 87 issue: 1 year: 1989 ident: 2023092305170921000_kiad391-B23 article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence publication-title: Biochim Biophys Acta doi: 10.1016/S0304-4165(89)80016-9 – volume: 292 start-page: 18951 issue: 46 year: 2017 ident: 2023092305170921000_kiad391-B31 article-title: Fluorescence lifetime analyses reveal how the high light-responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state publication-title: J Biol Chem doi: 10.1074/jbc.M117.805192 – volume: 82 start-page: 241 issue: 3 year: 2004 ident: 2023092305170921000_kiad391-B43 article-title: Structure, function and assembly of photosystem II and its light-harvesting proteins publication-title: Photosynth Res doi: 10.1007/s11120-004-2079-2 – volume: 18 start-page: 2053 issue: 10 year: 2020 ident: 2023092305170921000_kiad391-B49 article-title: Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii publication-title: Plant Biotechnol J doi: 10.1111/pbi.13364 |
SSID | ssj0001314 |
Score | 2.4674392 |
Snippet | Abstract
Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic... Thermal dissipation of excess excitation energy, called nonphotochemical quenching (NPQ), is 1 of the main photoprotective mechanisms in oxygenic... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1365 |
Title | Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas |
URI | https://www.proquest.com/docview/2833648937 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-2548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: KQ8 dateStart: 19260101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-2548 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: DIK dateStart: 19260101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwoFLxVOUAloQEgfLNNm11_aRRlQNSCiIVurN2pcVQ7Cjxjkkv4qfyIzXdpzSisLFsuz1yt75dnZmPfMNIW_BRpChVjCRwjjxgxCrAWYm9mMkmwORZzaro3y_iNPz4NNFeDEY_OpFLa0q9V5vrs0r-R-pwjWQK2bJ_oNku07hApyDfOEIEobjrWQ8nZVV6biYvcnE-4kJCnVoPA5XUUhvPAXBLuZyvfSkB9PVBRPmhQdO_wIf1i1fQB1QPWsSXMYzwMnalNBhEzzUmK9Y4qhyuyGOuwns02NMGV4a2dtTGMvNRha527P9VtlMFuX2Z7_bhM2L77ID1RRrrJUud6iqbLlV2JflxtZVp7wTpL0A3Pb3KRjHoArW82qvz3_s62bOfAy6citTq46ZDy5svKOvXUnFBpisp30xZK-3ko-4KxL1xyrhGLQWcxwuOPmRS8NdzbAr3Ns3N75D7rJICKyZ8fnrlp9-xB2bfPstHU0oP3I9HDXP75hBO6mVrS1QGzhnD8h-45nQDw5mD8nAFo_IveMSvIf1Y2J7WKOTCe2wRhusUcQarbFGJQWsUcQazQt6FWu0wxre3cHaE3J-8vFsfOo3JTp8Db5m5cfSZFkUa6GUYdImQ2lCaVUcy2ikuDbCDmMTcBUpIZmOIrhvhnESiKGMAqEtf0r24C3sM0K5MhpXhMCChas5S5hUDJaHMDEjAW7NAfHbEUt1w1-PZVTmqYuj4Kkb4bQZ4QPyrmu_cMwtN7Z8AwL4a6PXrXxS0MD4W00WtlwtUzDQuUAOp-j5bTo6JPe30-MF2asuV_YlGLaVelVj6TdayKw_ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photosystem+II+monomeric+antenna+CP26+plays+a+key+role+in+nonphotochemical+quenching+in+Chlamydomonas&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Cazzaniga%2C+Stefano&rft.au=Kim%2C+Minjae&rft.au=Pivato%2C+Matteo&rft.au=Perozeni%2C+Federico&rft.date=2023-09-22&rft.pub=Oxford+University+Press&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=193&rft.issue=2&rft.spage=1365&rft.epage=1380&rft_id=info:doi/10.1093%2Fplphys%2Fkiad391&rft.externalDocID=10.1093%2Fplphys%2Fkiad391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |