Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm

Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides...

Full description

Saved in:
Bibliographic Details
Published inFuture generation computer systems Vol. 109; pp. 134 - 148
Main Authors Yi, Na, Xu, Jianjun, Yan, Limei, Huang, Lin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text
ISSN0167-739X
1872-7115
DOI10.1016/j.future.2020.03.051

Cover

Abstract Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides the implementation possibility of high-performance CPS. Task scheduling is a typical combination optimization problem and the task allocation problem on multi-processor distributed systems refers to how to use system resources most efficiently in a distributed computing environment to complete a limited set of tasks. Based on the behavior of ants searching for food in nature, ant colony algorithm is a kind of positive feedback algorithm with good robustness and easy parallel implementation and has certain advantages for dealing with constraint satisfaction. In order to introduce an adaptive mechanism and mutation strategy, shorten the calculation time of ant colony algorithm, speed up CPS algorithm convergences, and improve distributed CPS prediction accuracy, this paper analyzed the research status and significance of ant colony algorithm, expounded the development background, current situation, and future challenges of task optimization and scheduling of distributed CPS, elaborated the principles and methods of ant colony optimization algorithm model and mathematical description of CPS task scheduling, proposed a task management model of distributed CPS based on improved ant colony algorithm, explored the task optimization scheduling of distributed CPS based on improved ant colony algorithm, and finally conducted an numerical simulation to test the effect the proposed algorithm and model. The simulation results show that the proposed algorithm model enhances the local search ability and improves the quality of the task scheduling problem, and has good effectiveness, stability and adaptability. The study results of this paper provide a reference for the further research on the optimization and scheduling of distributed CPS tasks. •This paper proposes a task optimization and scheduling algorithm model distributed CPS.•The algorithm model applies different heuristic functions and pheromone change methods.•The results provide a reference for the optimization and scheduling of distributed CPS tasks.
AbstractList Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides the implementation possibility of high-performance CPS. Task scheduling is a typical combination optimization problem and the task allocation problem on multi-processor distributed systems refers to how to use system resources most efficiently in a distributed computing environment to complete a limited set of tasks. Based on the behavior of ants searching for food in nature, ant colony algorithm is a kind of positive feedback algorithm with good robustness and easy parallel implementation and has certain advantages for dealing with constraint satisfaction. In order to introduce an adaptive mechanism and mutation strategy, shorten the calculation time of ant colony algorithm, speed up CPS algorithm convergences, and improve distributed CPS prediction accuracy, this paper analyzed the research status and significance of ant colony algorithm, expounded the development background, current situation, and future challenges of task optimization and scheduling of distributed CPS, elaborated the principles and methods of ant colony optimization algorithm model and mathematical description of CPS task scheduling, proposed a task management model of distributed CPS based on improved ant colony algorithm, explored the task optimization scheduling of distributed CPS based on improved ant colony algorithm, and finally conducted an numerical simulation to test the effect the proposed algorithm and model. The simulation results show that the proposed algorithm model enhances the local search ability and improves the quality of the task scheduling problem, and has good effectiveness, stability and adaptability. The study results of this paper provide a reference for the further research on the optimization and scheduling of distributed CPS tasks. •This paper proposes a task optimization and scheduling algorithm model distributed CPS.•The algorithm model applies different heuristic functions and pheromone change methods.•The results provide a reference for the optimization and scheduling of distributed CPS tasks.
Author Yi, Na
Huang, Lin
Xu, Jianjun
Yan, Limei
Author_xml – sequence: 1
  givenname: Na
  surname: Yi
  fullname: Yi, Na
– sequence: 2
  givenname: Jianjun
  surname: Xu
  fullname: Xu, Jianjun
  email: xujj@nepu.edu.cn
– sequence: 3
  givenname: Limei
  surname: Yan
  fullname: Yan, Limei
  email: 13845902468@163.com
– sequence: 4
  givenname: Lin
  surname: Huang
  fullname: Huang, Lin
BookMark eNqFkMtKAzEUhoNUsK2-gYu8wIy5dJKOC0GKNyi4UXAXMkmmTZ1JhiQtjCvfwTf0SZxaVy50dQ6c8_3wfxMwct4ZAM4xyjHC7GKT19u0DSYniKAc0RwV-AiM8ZyTjGNcjMB4eOMZp-XLCZjEuEEIYU7xGLgnGV-h75Jt7ZtM1jsonYZRrY3eNtatoK-htjEFW22T0VD1lQmf7x_duo9WyQbGPibTwkrG4Trgtu2C3w27dAkq33jXQ9msfLBp3Z6C41o20Zz9zCl4vr15Wtxny8e7h8X1MlMUsZTNS8OJpgWqKJasrHRJGSkxU4pwVhYS10yqeuigOTO4YFQVkhsiSUUomlUVnYLLQ64KPsZgaqFs-q6XgrSNwEjszYmNOJgTe3MCUTGYG-DZL7gLtpWh_w-7OmBmKLazJoiorHHKaBuMSkJ7-3fAFw9nkKs
CitedBy_id crossref_primary_10_4018_IJITSA_342613
crossref_primary_10_54097_ije_v2i1_5616
crossref_primary_10_1016_j_cobme_2023_100499
crossref_primary_10_1016_j_compeleceng_2021_107613
crossref_primary_10_1051_e3sconf_202235203030
crossref_primary_10_1051_e3sconf_202235203029
crossref_primary_10_1051_e3sconf_202235203028
crossref_primary_10_1051_e3sconf_202235201088
crossref_primary_10_1109_ACCESS_2023_3349319
crossref_primary_10_15407_geotech2020_32_086
crossref_primary_10_1051_e3sconf_202235203027
crossref_primary_10_1088_1402_4896_ad6f58
crossref_primary_10_1155_2021_7216795
crossref_primary_10_3390_app13116631
crossref_primary_10_1088_1755_1315_804_2_022043
crossref_primary_10_1109_ACCESS_2020_3010376
crossref_primary_10_1109_TSMC_2024_3506533
crossref_primary_10_1016_j_asoc_2022_108748
crossref_primary_10_1080_00207721_2024_2363546
crossref_primary_10_1016_j_nahs_2022_101241
crossref_primary_10_48084_etasr_8286
crossref_primary_10_1080_08839514_2023_2216060
crossref_primary_10_1016_j_eswa_2023_121327
crossref_primary_10_1016_j_sciaf_2023_e02031
crossref_primary_10_1051_e3sconf_202447801016
crossref_primary_10_1016_j_tsep_2024_102790
crossref_primary_10_1051_e3sconf_202447801018
crossref_primary_10_1051_e3sconf_202235201070
crossref_primary_10_1051_e3sconf_202447801019
crossref_primary_10_1051_e3sconf_202235201071
crossref_primary_10_1051_e3sconf_202447801020
crossref_primary_10_1051_e3sconf_202235201069
crossref_primary_10_1016_j_knosys_2023_110640
crossref_primary_10_3390_jmse11010144
crossref_primary_10_1051_e3sconf_202337501026
crossref_primary_10_1051_e3sconf_202337501027
crossref_primary_10_1016_j_epsr_2024_111007
crossref_primary_10_1051_e3sconf_202341601020
crossref_primary_10_54097_ije_v2i3_9342
crossref_primary_10_1051_e3sconf_202337501025
crossref_primary_10_1088_1755_1315_692_4_042096
crossref_primary_10_3390_biomimetics8020239
crossref_primary_10_1051_e3sconf_202235201086
crossref_primary_10_1016_j_asoc_2023_110193
crossref_primary_10_1088_1755_1315_692_4_042011
crossref_primary_10_1007_s42979_023_02517_2
crossref_primary_10_1007_s00500_020_05020_5
crossref_primary_10_1016_j_comnet_2023_110077
crossref_primary_10_1051_e3sconf_202341601019
crossref_primary_10_1051_e3sconf_202233801027
crossref_primary_10_1016_j_csite_2022_102500
crossref_primary_10_1145_3517747
crossref_primary_10_2139_ssrn_4165440
crossref_primary_10_1016_j_asoc_2023_110918
crossref_primary_10_1051_e3sconf_202337501039
crossref_primary_10_3233_JIFS_200527
crossref_primary_10_1007_s12652_021_03445_w
crossref_primary_10_1111_exsy_12922
crossref_primary_10_1088_1742_6596_1952_4_042032
crossref_primary_10_3390_ijgi10080530
crossref_primary_10_1177_00375497231208481
crossref_primary_10_1016_j_segan_2021_100541
crossref_primary_10_1088_1755_1315_631_1_012043
crossref_primary_10_59782_sidr_v4i1_148
crossref_primary_10_1088_1755_1315_558_2_022035
crossref_primary_10_1007_s13369_022_06579_x
crossref_primary_10_1088_1742_6596_1952_2_022039
crossref_primary_10_54097_fcis_v3i3_7985
crossref_primary_10_1016_j_cie_2022_107994
crossref_primary_10_1088_1755_1315_859_1_012002
crossref_primary_10_1007_s00521_024_10815_w
crossref_primary_10_1016_j_dajour_2025_100551
crossref_primary_10_1088_1755_1315_781_2_022090
crossref_primary_10_1088_1755_1315_859_1_012003
crossref_primary_10_1051_e3sconf_202447801008
crossref_primary_10_54097_fcis_v3i3_7989
crossref_primary_10_1051_e3sconf_202447801009
crossref_primary_10_1088_1742_6596_2280_1_012040
crossref_primary_10_1051_e3sconf_202447801010
crossref_primary_10_1051_e3sconf_202447801011
crossref_primary_10_1051_e3sconf_202447801012
crossref_primary_10_1016_j_compeleceng_2023_108597
crossref_primary_10_1051_e3sconf_202337501052
crossref_primary_10_54097_ajst_v1i3_406
crossref_primary_10_1007_s10586_022_03822_w
crossref_primary_10_4018_IJSIR_303573
crossref_primary_10_3389_fsufs_2024_1464918
crossref_primary_10_23919_CSMS_2022_0001
crossref_primary_10_1061_JAEEEZ_ASENG_4824
crossref_primary_10_1088_1742_6596_2138_1_012019
crossref_primary_10_1051_e3sconf_202233801052
crossref_primary_10_1007_s11265_023_01838_y
crossref_primary_10_1088_1742_6596_1920_1_012108
crossref_primary_10_3390_pr11010065
crossref_primary_10_1038_s41598_024_53064_6
crossref_primary_10_1142_S1793962323410325
crossref_primary_10_1142_S1793962323410167
crossref_primary_10_1088_1755_1315_558_2_022052
crossref_primary_10_1109_ACCESS_2023_3241960
crossref_primary_10_1088_1755_1315_558_2_022054
crossref_primary_10_1088_1755_1315_804_2_022022
crossref_primary_10_1088_1755_1315_804_2_022021
crossref_primary_10_1007_s12652_022_04485_6
crossref_primary_10_4236_ojbm_2022_104106
crossref_primary_10_1155_2021_6559098
crossref_primary_10_1007_s10586_023_04136_1
crossref_primary_10_54691_fse_v2i6_964
crossref_primary_10_1016_j_ijleo_2022_168677
crossref_primary_10_1088_1742_6596_2277_1_012003
crossref_primary_10_3390_math12121851
crossref_primary_10_54691_fse_v2i6_968
crossref_primary_10_1051_e3sconf_202451801006
crossref_primary_10_1051_e3sconf_202451801007
crossref_primary_10_1007_s10489_021_02839_9
crossref_primary_10_1051_e3sconf_202451801005
Cites_doi 10.1109/TII.2017.2690939
10.1007/s00500-016-2161-7
10.1007/s00542-016-3192-9
10.1016/j.asoc.2017.05.017
10.1109/TVT.2017.2674302
10.1016/j.jmsy.2018.05.008
10.1109/TIE.2018.2850031
10.1016/j.jclepro.2018.03.149
10.1016/j.future.2017.02.034
10.1007/s10845-015-1144-3
10.1007/s10845-015-1091-z
10.1109/ACCESS.2018.2810115
10.1007/s12652-018-0881-5
10.1016/j.comcom.2017.07.009
10.1109/ACCESS.2017.2780321
10.1166/asl.2017.8758
10.1007/s00170-017-1543-z
10.1109/TII.2019.2905295
10.1109/ACCESS.2019.2897580
10.1109/TSUSC.2017.2723954
10.1016/j.jpdc.2016.10.011
10.1016/j.neucom.2017.10.009
10.1109/LCOMM.2017.2672959
10.1109/ACCESS.2017.2723892
10.1016/j.asoc.2018.08.002
10.1109/JAS.2017.7510349
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.03.051
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 148
ExternalDocumentID 10_1016_j_future_2020_03_051
S0167739X19327608
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-89e72d350b31a69bd9362916cc27695a1f6acf001d76e1563c5a7e2a2b2304bb3
IEDL.DBID .~1
ISSN 0167-739X
IngestDate Thu Oct 02 04:25:59 EDT 2025
Thu Apr 24 22:59:34 EDT 2025
Fri Feb 23 02:47:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cyber–physical system (CPS)
Task scheduling
Distributed system
Ant colony algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-89e72d350b31a69bd9362916cc27695a1f6acf001d76e1563c5a7e2a2b2304bb3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_future_2020_03_051
crossref_primary_10_1016_j_future_2020_03_051
elsevier_sciencedirect_doi_10_1016_j_future_2020_03_051
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leng, Zhang, Yan, Liu, Chen, Zhang (b24) 2019; 10
Gong, Li, An, Chen, Li (b27) 2017; 13
Gai, Qiu, Zhao, Sun (b16) 2017; 3
Riahi, Kazemi (b19) 2018; 18
Jiang, Jin, Mingcheng, Li (b25) 2017; 6
Chejerla, Madria (b1) 2017; 75
Liu, Peng, Wang, Yao, Liu (b2) 2017; 4
Engin, Güçlü (b7) 2018; 72
Titri, Larbes, Toumi, Benatchba (b8) 2017; 58
Mourtzis, Vlachou (b18) 2018; 47
Liu, Yang, Liu, Tian, Gao (b5) 2017; 21
Deng, Xu, Zhao (b11) 2019; 7
Ding, Han, Wang, Ge (b20) 2019; 15
Sun, Dong, Chen (b6) 2017; 21
Zhou, Zhang, Laili, Zhao, Xiao (b4) 2018; 96
Xie, Zeng, Li, Li, Li (b9) 2017; 66
Batmetan, Santoso (b13) 2017; 23
Yen, Cheng (b21) 2018; 24
Cui, Sun, Wang, Xue, Chen (b3) 2017; 103
Liang, Lu, Li, Wang (b12) 2018; 187
Ding, Han, Xiang, Ge, Zhang (b22) 2018; 275
Yang, Ma, Xiang, Gu, Zhao (b23) 2018; 6
Lv, Hu, Sangiovanni-Vincentelli, Li, Martinez, Cao (b10) 2018; 66
Qin, Zhang, Song (b17) 2018; 29
Zhang, Gong, Han, Zhao (b15) 2017; 5
Zhao, Gao, Chen, Guo (b26) 2018; 29
Mora, Colom, Gil, Jimeno-Morenilla (b14) 2017; 111
Liang (10.1016/j.future.2020.03.051_b12) 2018; 187
Mora (10.1016/j.future.2020.03.051_b14) 2017; 111
Cui (10.1016/j.future.2020.03.051_b3) 2017; 103
Ding (10.1016/j.future.2020.03.051_b20) 2019; 15
Zhao (10.1016/j.future.2020.03.051_b26) 2018; 29
Chejerla (10.1016/j.future.2020.03.051_b1) 2017; 75
Yang (10.1016/j.future.2020.03.051_b23) 2018; 6
Mourtzis (10.1016/j.future.2020.03.051_b18) 2018; 47
Leng (10.1016/j.future.2020.03.051_b24) 2019; 10
Liu (10.1016/j.future.2020.03.051_b5) 2017; 21
Sun (10.1016/j.future.2020.03.051_b6) 2017; 21
Batmetan (10.1016/j.future.2020.03.051_b13) 2017; 23
Qin (10.1016/j.future.2020.03.051_b17) 2018; 29
Lv (10.1016/j.future.2020.03.051_b10) 2018; 66
Titri (10.1016/j.future.2020.03.051_b8) 2017; 58
Liu (10.1016/j.future.2020.03.051_b2) 2017; 4
Yen (10.1016/j.future.2020.03.051_b21) 2018; 24
Riahi (10.1016/j.future.2020.03.051_b19) 2018; 18
Xie (10.1016/j.future.2020.03.051_b9) 2017; 66
Ding (10.1016/j.future.2020.03.051_b22) 2018; 275
Zhou (10.1016/j.future.2020.03.051_b4) 2018; 96
Gai (10.1016/j.future.2020.03.051_b16) 2017; 3
Engin (10.1016/j.future.2020.03.051_b7) 2018; 72
Zhang (10.1016/j.future.2020.03.051_b15) 2017; 5
Gong (10.1016/j.future.2020.03.051_b27) 2017; 13
Deng (10.1016/j.future.2020.03.051_b11) 2019; 7
Jiang (10.1016/j.future.2020.03.051_b25) 2017; 6
References_xml – volume: 187
  start-page: 46
  year: 2018
  end-page: 62
  ident: b12
  article-title: Cyber physical system and big data enabled energy efficient machining optimization
  publication-title: J. Cleaner Prod.
– volume: 29
  start-page: 93
  year: 2018
  end-page: 108
  ident: b26
  article-title: Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines
  publication-title: J. Intell. Manuf.
– volume: 21
  start-page: 1317
  year: 2017
  end-page: 1320
  ident: b6
  article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks
  publication-title: IEEE Commun. Lett.
– volume: 15
  start-page: 2483
  year: 2019
  end-page: 2499
  ident: b20
  article-title: A survey on model-based distributed control and filtering for industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 72
  start-page: 166
  year: 2018
  end-page: 176
  ident: b7
  article-title: A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems
  publication-title: Appl. Soft Comput.
– volume: 3
  start-page: 60
  year: 2017
  end-page: 72
  ident: b16
  article-title: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing
  publication-title: IEEE Trans. Sustain. Comput.
– volume: 66
  start-page: 2965
  year: 2018
  end-page: 2975
  ident: b10
  article-title: Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach
  publication-title: IEEE Trans. Ind. Electron.
– volume: 103
  start-page: 42
  year: 2017
  end-page: 52
  ident: b3
  article-title: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems
  publication-title: J. Parallel Distrib. Comput.
– volume: 58
  start-page: 465
  year: 2017
  end-page: 479
  ident: b8
  article-title: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 27
  year: 2017
  end-page: 40
  ident: b2
  article-title: Review on cyber-physical systems
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 47
  start-page: 179
  year: 2018
  end-page: 198
  ident: b18
  article-title: A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance
  publication-title: J. Manuf. Syst.
– volume: 75
  start-page: 145
  year: 2017
  end-page: 157
  ident: b1
  article-title: QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system
  publication-title: Future Gener. Comput. Syst.
– volume: 13
  start-page: 1665
  year: 2017
  end-page: 1680
  ident: b27
  article-title: Scheduling algorithms of flat semi-dormant multicontrollers for a cyber-physical system
  publication-title: IEEE Trans. Ind. Inf.
– volume: 96
  start-page: 3003
  year: 2018
  end-page: 3017
  ident: b4
  article-title: Multi-task scheduling of distributed 3D printing services in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 21
  start-page: 5829
  year: 2017
  end-page: 5839
  ident: b5
  article-title: An improved ant colony algorithm for robot path planning
  publication-title: Soft Comput.
– volume: 18
  start-page: 55
  year: 2018
  end-page: 74
  ident: b19
  article-title: A new hybrid ant colony algorithm for scheduling of no-wait flowshop
  publication-title: Oper. Res.
– volume: 10
  start-page: 1155
  year: 2019
  end-page: 1166
  ident: b24
  article-title: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 6
  start-page: 1855
  year: 2017
  end-page: 1869
  ident: b25
  article-title: Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system
  publication-title: IEEE Access
– volume: 275
  start-page: 1674
  year: 2018
  end-page: 1683
  ident: b22
  article-title: A survey on security control and attack detection for industrial cyber-physical systems
  publication-title: Neurocomputing
– volume: 6
  start-page: 15576
  year: 2018
  end-page: 15586
  ident: b23
  article-title: Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks
  publication-title: IEEE Access
– volume: 111
  start-page: 68
  year: 2017
  end-page: 83
  ident: b14
  article-title: Distributed computational model for shared processing on cyber-physical system environments
  publication-title: Comput. Commun.
– volume: 29
  start-page: 891
  year: 2018
  end-page: 904
  ident: b17
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: J. Intell. Manuf.
– volume: 7
  start-page: 20281
  year: 2019
  end-page: 20292
  ident: b11
  article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem
  publication-title: IEEE Access
– volume: 5
  start-page: 13260
  year: 2017
  end-page: 13269
  ident: b15
  article-title: An improved ant colony algorithm for path planning in one scenic area with many spots
  publication-title: IEEE Access
– volume: 23
  start-page: 2344
  year: 2017
  end-page: 2347
  ident: b13
  article-title: A multiple-objective ant colony algorithm for optimizing disaster relief logistics
  publication-title: Adv. Sci. Lett.
– volume: 66
  start-page: 6676
  year: 2017
  end-page: 6692
  ident: b9
  article-title: Adaptive dynamic scheduling on multifunctional mixed-criticality automotive cyber-physical systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 24
  start-page: 125
  year: 2018
  end-page: 135
  ident: b21
  article-title: A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance
  publication-title: Microsyst. Technol.
– volume: 13
  start-page: 1665
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b27
  article-title: Scheduling algorithms of flat semi-dormant multicontrollers for a cyber-physical system
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2690939
– volume: 21
  start-page: 5829
  issue: 19
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b5
  article-title: An improved ant colony algorithm for robot path planning
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2161-7
– volume: 24
  start-page: 125
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b21
  article-title: A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-016-3192-9
– volume: 58
  start-page: 465
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b8
  article-title: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.017
– volume: 66
  start-page: 6676
  issue: 8
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b9
  article-title: Adaptive dynamic scheduling on multifunctional mixed-criticality automotive cyber-physical systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2674302
– volume: 47
  start-page: 179
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b18
  article-title: A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.05.008
– volume: 66
  start-page: 2965
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b10
  article-title: Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2850031
– volume: 187
  start-page: 46
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b12
  article-title: Cyber physical system and big data enabled energy efficient machining optimization
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.03.149
– volume: 18
  start-page: 55
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b19
  article-title: A new hybrid ant colony algorithm for scheduling of no-wait flowshop
  publication-title: Oper. Res.
– volume: 75
  start-page: 145
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b1
  article-title: QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.02.034
– volume: 29
  start-page: 891
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b17
  article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1144-3
– volume: 29
  start-page: 93
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b26
  article-title: Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-015-1091-z
– volume: 6
  start-page: 15576
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b23
  article-title: Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2810115
– volume: 10
  start-page: 1155
  issue: 3
  year: 2019
  ident: 10.1016/j.future.2020.03.051_b24
  article-title: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0881-5
– volume: 111
  start-page: 68
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b14
  article-title: Distributed computational model for shared processing on cyber-physical system environments
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.07.009
– volume: 6
  start-page: 1855
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b25
  article-title: Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2780321
– volume: 23
  start-page: 2344
  issue: 3
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b13
  article-title: A multiple-objective ant colony algorithm for optimizing disaster relief logistics
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2017.8758
– volume: 96
  start-page: 3003
  issue: 9–12
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b4
  article-title: Multi-task scheduling of distributed 3D printing services in cloud manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1543-z
– volume: 15
  start-page: 2483
  issue: 5
  year: 2019
  ident: 10.1016/j.future.2020.03.051_b20
  article-title: A survey on model-based distributed control and filtering for industrial cyber-physical systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2905295
– volume: 7
  start-page: 20281
  year: 2019
  ident: 10.1016/j.future.2020.03.051_b11
  article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897580
– volume: 3
  start-page: 60
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b16
  article-title: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2017.2723954
– volume: 103
  start-page: 42
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b3
  article-title: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2016.10.011
– volume: 275
  start-page: 1674
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b22
  article-title: A survey on security control and attack detection for industrial cyber-physical systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.009
– volume: 21
  start-page: 1317
  issue: 6
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b6
  article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2017.2672959
– volume: 5
  start-page: 13260
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b15
  article-title: An improved ant colony algorithm for path planning in one scenic area with many spots
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2723892
– volume: 72
  start-page: 166
  year: 2018
  ident: 10.1016/j.future.2020.03.051_b7
  article-title: A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.08.002
– volume: 4
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2020.03.051_b2
  article-title: Review on cyber-physical systems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510349
SSID ssj0001731
Score 2.5983126
Snippet Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Ant colony algorithm
Cyber–physical system (CPS)
Distributed system
Task scheduling
Title Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm
URI https://dx.doi.org/10.1016/j.future.2020.03.051
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QPX0Kx2c6wqqgKiF1qpt8hbIdAmVSmHXhD_wB_yJcwkDouEQOKWRB4perbnja2ZN4ScMsElsDp3uCuNE0rJHAEs5EQaW1wZzaTAq4HrAeuPwstxNK6RblULg2mV1veXPr3w1vZLy6LZmqdp6wYT6HkQjzEE4awo-A1Djl0Mzp4_0zw8bnsS4v_A6Kp8rsjxKnU74JTou4XUaeT9TE9fKKe3RTZsrEg75e9sk5rJdshm1YeB2m25S7KheHygOWz-ma2qpCLTFM6twCNYbk7zCdWokIvNrYymaiXN4u3ldW4niZZ6zhQpTVMwT4urBngG3CnqWmcrKqa3-SJd3s32yKh3Puz2HdtHwVFwIFg67dhwXweRKwNPsFjqGFgLwkKlALc4Et6ECTUBqDRnBs5zgYoEN77wJd4YSxnsk3qWZ-aA0LbnGslChaI7Yay08HSkJbCcbIPTNHGDBBV8ibIi49jrYppU2WT3SQl6gqAnbpAA6A3ifFjNS5GNP8bzamaSb4slAR741fLw35ZHZB3fyty_Y1JfLp7MCcQjS9ksFlyTrHUurvqDd3rK43U
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHODCjiirD1xDs9rNESFQWdoLRerN8lYItElVyoEL4h_4Q76EmcRhkRBI3KLEI0XP9jyPNfOGkAMmuQJW5x73lfVipZgngYW8xGCLK2uYkng10Omy9nV83k_6M-S4roXBtErn-yufXnpr96bp0GyOs6x5hQn0PEr7eAThDAt-5-Ik5BiBHT5_5nkE3DUlxB-C4XX9XJnkVQl3QJgY-qXWaRL8zE9fOOd0mSy6wyI9qv5nhczYfJUs1Y0YqNuXayTvyYd7WsDuH7mySipzQyFwBSLBenNaDKhBiVzsbmUN1U_KTt5eXsdulmgl6EyR0wwF86y8a4BnAJ6isHX-ROXwpphk09vROrk-Pekdtz3XSMHTEBFMvVZqeWiixFdRIFmqTAq0BedCrQG4NJHBgEk9AKgMZxYCukgnkttQhgqvjJWKNshsXuR2k9BW4FvFYo2qO3GqjQxMYhTQnGqB17Rpg0Q1fEI7lXFsdjEUdTrZnahAFwi68CMBoDeI92E1rlQ2_hjP65kR31aLACL41XLr35b7ZL7d61yKy7PuxTZZwC9VIuAOmZ1OHu0uHE6maq9cfO_R4-UK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+optimization+and+scheduling+of+distributed+cyber%E2%80%93physical+system+based+on+improved+ant+colony+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Yi%2C+Na&rft.au=Xu%2C+Jianjun&rft.au=Yan%2C+Limei&rft.au=Huang%2C+Lin&rft.date=2020-08-01&rft.issn=0167-739X&rft.volume=109&rft.spage=134&rft.epage=148&rft_id=info:doi/10.1016%2Fj.future.2020.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_03_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon