Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm
Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides...
Saved in:
| Published in | Future generation computer systems Vol. 109; pp. 134 - 148 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-739X 1872-7115 |
| DOI | 10.1016/j.future.2020.03.051 |
Cover
| Abstract | Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides the implementation possibility of high-performance CPS. Task scheduling is a typical combination optimization problem and the task allocation problem on multi-processor distributed systems refers to how to use system resources most efficiently in a distributed computing environment to complete a limited set of tasks. Based on the behavior of ants searching for food in nature, ant colony algorithm is a kind of positive feedback algorithm with good robustness and easy parallel implementation and has certain advantages for dealing with constraint satisfaction. In order to introduce an adaptive mechanism and mutation strategy, shorten the calculation time of ant colony algorithm, speed up CPS algorithm convergences, and improve distributed CPS prediction accuracy, this paper analyzed the research status and significance of ant colony algorithm, expounded the development background, current situation, and future challenges of task optimization and scheduling of distributed CPS, elaborated the principles and methods of ant colony optimization algorithm model and mathematical description of CPS task scheduling, proposed a task management model of distributed CPS based on improved ant colony algorithm, explored the task optimization scheduling of distributed CPS based on improved ant colony algorithm, and finally conducted an numerical simulation to test the effect the proposed algorithm and model. The simulation results show that the proposed algorithm model enhances the local search ability and improves the quality of the task scheduling problem, and has good effectiveness, stability and adaptability. The study results of this paper provide a reference for the further research on the optimization and scheduling of distributed CPS tasks.
•This paper proposes a task optimization and scheduling algorithm model distributed CPS.•The algorithm model applies different heuristic functions and pheromone change methods.•The results provide a reference for the optimization and scheduling of distributed CPS tasks. |
|---|---|
| AbstractList | Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology. High-performance computing ability is the guarantee of CPS’s real-time and accuracy applications, and the emergence of distributed technology provides the implementation possibility of high-performance CPS. Task scheduling is a typical combination optimization problem and the task allocation problem on multi-processor distributed systems refers to how to use system resources most efficiently in a distributed computing environment to complete a limited set of tasks. Based on the behavior of ants searching for food in nature, ant colony algorithm is a kind of positive feedback algorithm with good robustness and easy parallel implementation and has certain advantages for dealing with constraint satisfaction. In order to introduce an adaptive mechanism and mutation strategy, shorten the calculation time of ant colony algorithm, speed up CPS algorithm convergences, and improve distributed CPS prediction accuracy, this paper analyzed the research status and significance of ant colony algorithm, expounded the development background, current situation, and future challenges of task optimization and scheduling of distributed CPS, elaborated the principles and methods of ant colony optimization algorithm model and mathematical description of CPS task scheduling, proposed a task management model of distributed CPS based on improved ant colony algorithm, explored the task optimization scheduling of distributed CPS based on improved ant colony algorithm, and finally conducted an numerical simulation to test the effect the proposed algorithm and model. The simulation results show that the proposed algorithm model enhances the local search ability and improves the quality of the task scheduling problem, and has good effectiveness, stability and adaptability. The study results of this paper provide a reference for the further research on the optimization and scheduling of distributed CPS tasks.
•This paper proposes a task optimization and scheduling algorithm model distributed CPS.•The algorithm model applies different heuristic functions and pheromone change methods.•The results provide a reference for the optimization and scheduling of distributed CPS tasks. |
| Author | Yi, Na Huang, Lin Xu, Jianjun Yan, Limei |
| Author_xml | – sequence: 1 givenname: Na surname: Yi fullname: Yi, Na – sequence: 2 givenname: Jianjun surname: Xu fullname: Xu, Jianjun email: xujj@nepu.edu.cn – sequence: 3 givenname: Limei surname: Yan fullname: Yan, Limei email: 13845902468@163.com – sequence: 4 givenname: Lin surname: Huang fullname: Huang, Lin |
| BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wIy5dJKOC0GKNyi4UXAXMkmmTZ1JhiQtjCvfwTf0SZxaVy50dQ6c8_3wfxMwct4ZAM4xyjHC7GKT19u0DSYniKAc0RwV-AiM8ZyTjGNcjMB4eOMZp-XLCZjEuEEIYU7xGLgnGV-h75Jt7ZtM1jsonYZRrY3eNtatoK-htjEFW22T0VD1lQmf7x_duo9WyQbGPibTwkrG4Trgtu2C3w27dAkq33jXQ9msfLBp3Z6C41o20Zz9zCl4vr15Wtxny8e7h8X1MlMUsZTNS8OJpgWqKJasrHRJGSkxU4pwVhYS10yqeuigOTO4YFQVkhsiSUUomlUVnYLLQ64KPsZgaqFs-q6XgrSNwEjszYmNOJgTe3MCUTGYG-DZL7gLtpWh_w-7OmBmKLazJoiorHHKaBuMSkJ7-3fAFw9nkKs |
| CitedBy_id | crossref_primary_10_4018_IJITSA_342613 crossref_primary_10_54097_ije_v2i1_5616 crossref_primary_10_1016_j_cobme_2023_100499 crossref_primary_10_1016_j_compeleceng_2021_107613 crossref_primary_10_1051_e3sconf_202235203030 crossref_primary_10_1051_e3sconf_202235203029 crossref_primary_10_1051_e3sconf_202235203028 crossref_primary_10_1051_e3sconf_202235201088 crossref_primary_10_1109_ACCESS_2023_3349319 crossref_primary_10_15407_geotech2020_32_086 crossref_primary_10_1051_e3sconf_202235203027 crossref_primary_10_1088_1402_4896_ad6f58 crossref_primary_10_1155_2021_7216795 crossref_primary_10_3390_app13116631 crossref_primary_10_1088_1755_1315_804_2_022043 crossref_primary_10_1109_ACCESS_2020_3010376 crossref_primary_10_1109_TSMC_2024_3506533 crossref_primary_10_1016_j_asoc_2022_108748 crossref_primary_10_1080_00207721_2024_2363546 crossref_primary_10_1016_j_nahs_2022_101241 crossref_primary_10_48084_etasr_8286 crossref_primary_10_1080_08839514_2023_2216060 crossref_primary_10_1016_j_eswa_2023_121327 crossref_primary_10_1016_j_sciaf_2023_e02031 crossref_primary_10_1051_e3sconf_202447801016 crossref_primary_10_1016_j_tsep_2024_102790 crossref_primary_10_1051_e3sconf_202447801018 crossref_primary_10_1051_e3sconf_202235201070 crossref_primary_10_1051_e3sconf_202447801019 crossref_primary_10_1051_e3sconf_202235201071 crossref_primary_10_1051_e3sconf_202447801020 crossref_primary_10_1051_e3sconf_202235201069 crossref_primary_10_1016_j_knosys_2023_110640 crossref_primary_10_3390_jmse11010144 crossref_primary_10_1051_e3sconf_202337501026 crossref_primary_10_1051_e3sconf_202337501027 crossref_primary_10_1016_j_epsr_2024_111007 crossref_primary_10_1051_e3sconf_202341601020 crossref_primary_10_54097_ije_v2i3_9342 crossref_primary_10_1051_e3sconf_202337501025 crossref_primary_10_1088_1755_1315_692_4_042096 crossref_primary_10_3390_biomimetics8020239 crossref_primary_10_1051_e3sconf_202235201086 crossref_primary_10_1016_j_asoc_2023_110193 crossref_primary_10_1088_1755_1315_692_4_042011 crossref_primary_10_1007_s42979_023_02517_2 crossref_primary_10_1007_s00500_020_05020_5 crossref_primary_10_1016_j_comnet_2023_110077 crossref_primary_10_1051_e3sconf_202341601019 crossref_primary_10_1051_e3sconf_202233801027 crossref_primary_10_1016_j_csite_2022_102500 crossref_primary_10_1145_3517747 crossref_primary_10_2139_ssrn_4165440 crossref_primary_10_1016_j_asoc_2023_110918 crossref_primary_10_1051_e3sconf_202337501039 crossref_primary_10_3233_JIFS_200527 crossref_primary_10_1007_s12652_021_03445_w crossref_primary_10_1111_exsy_12922 crossref_primary_10_1088_1742_6596_1952_4_042032 crossref_primary_10_3390_ijgi10080530 crossref_primary_10_1177_00375497231208481 crossref_primary_10_1016_j_segan_2021_100541 crossref_primary_10_1088_1755_1315_631_1_012043 crossref_primary_10_59782_sidr_v4i1_148 crossref_primary_10_1088_1755_1315_558_2_022035 crossref_primary_10_1007_s13369_022_06579_x crossref_primary_10_1088_1742_6596_1952_2_022039 crossref_primary_10_54097_fcis_v3i3_7985 crossref_primary_10_1016_j_cie_2022_107994 crossref_primary_10_1088_1755_1315_859_1_012002 crossref_primary_10_1007_s00521_024_10815_w crossref_primary_10_1016_j_dajour_2025_100551 crossref_primary_10_1088_1755_1315_781_2_022090 crossref_primary_10_1088_1755_1315_859_1_012003 crossref_primary_10_1051_e3sconf_202447801008 crossref_primary_10_54097_fcis_v3i3_7989 crossref_primary_10_1051_e3sconf_202447801009 crossref_primary_10_1088_1742_6596_2280_1_012040 crossref_primary_10_1051_e3sconf_202447801010 crossref_primary_10_1051_e3sconf_202447801011 crossref_primary_10_1051_e3sconf_202447801012 crossref_primary_10_1016_j_compeleceng_2023_108597 crossref_primary_10_1051_e3sconf_202337501052 crossref_primary_10_54097_ajst_v1i3_406 crossref_primary_10_1007_s10586_022_03822_w crossref_primary_10_4018_IJSIR_303573 crossref_primary_10_3389_fsufs_2024_1464918 crossref_primary_10_23919_CSMS_2022_0001 crossref_primary_10_1061_JAEEEZ_ASENG_4824 crossref_primary_10_1088_1742_6596_2138_1_012019 crossref_primary_10_1051_e3sconf_202233801052 crossref_primary_10_1007_s11265_023_01838_y crossref_primary_10_1088_1742_6596_1920_1_012108 crossref_primary_10_3390_pr11010065 crossref_primary_10_1038_s41598_024_53064_6 crossref_primary_10_1142_S1793962323410325 crossref_primary_10_1142_S1793962323410167 crossref_primary_10_1088_1755_1315_558_2_022052 crossref_primary_10_1109_ACCESS_2023_3241960 crossref_primary_10_1088_1755_1315_558_2_022054 crossref_primary_10_1088_1755_1315_804_2_022022 crossref_primary_10_1088_1755_1315_804_2_022021 crossref_primary_10_1007_s12652_022_04485_6 crossref_primary_10_4236_ojbm_2022_104106 crossref_primary_10_1155_2021_6559098 crossref_primary_10_1007_s10586_023_04136_1 crossref_primary_10_54691_fse_v2i6_964 crossref_primary_10_1016_j_ijleo_2022_168677 crossref_primary_10_1088_1742_6596_2277_1_012003 crossref_primary_10_3390_math12121851 crossref_primary_10_54691_fse_v2i6_968 crossref_primary_10_1051_e3sconf_202451801006 crossref_primary_10_1051_e3sconf_202451801007 crossref_primary_10_1007_s10489_021_02839_9 crossref_primary_10_1051_e3sconf_202451801005 |
| Cites_doi | 10.1109/TII.2017.2690939 10.1007/s00500-016-2161-7 10.1007/s00542-016-3192-9 10.1016/j.asoc.2017.05.017 10.1109/TVT.2017.2674302 10.1016/j.jmsy.2018.05.008 10.1109/TIE.2018.2850031 10.1016/j.jclepro.2018.03.149 10.1016/j.future.2017.02.034 10.1007/s10845-015-1144-3 10.1007/s10845-015-1091-z 10.1109/ACCESS.2018.2810115 10.1007/s12652-018-0881-5 10.1016/j.comcom.2017.07.009 10.1109/ACCESS.2017.2780321 10.1166/asl.2017.8758 10.1007/s00170-017-1543-z 10.1109/TII.2019.2905295 10.1109/ACCESS.2019.2897580 10.1109/TSUSC.2017.2723954 10.1016/j.jpdc.2016.10.011 10.1016/j.neucom.2017.10.009 10.1109/LCOMM.2017.2672959 10.1109/ACCESS.2017.2723892 10.1016/j.asoc.2018.08.002 10.1109/JAS.2017.7510349 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2020.03.051 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 148 |
| ExternalDocumentID | 10_1016_j_future_2020_03_051 S0167739X19327608 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-89e72d350b31a69bd9362916cc27695a1f6acf001d76e1563c5a7e2a2b2304bb3 |
| IEDL.DBID | .~1 |
| ISSN | 0167-739X |
| IngestDate | Thu Oct 02 04:25:59 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Fri Feb 23 02:47:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cyber–physical system (CPS) Task scheduling Distributed system Ant colony algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c306t-89e72d350b31a69bd9362916cc27695a1f6acf001d76e1563c5a7e2a2b2304bb3 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2020_03_051 crossref_primary_10_1016_j_future_2020_03_051 elsevier_sciencedirect_doi_10_1016_j_future_2020_03_051 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Leng, Zhang, Yan, Liu, Chen, Zhang (b24) 2019; 10 Gong, Li, An, Chen, Li (b27) 2017; 13 Gai, Qiu, Zhao, Sun (b16) 2017; 3 Riahi, Kazemi (b19) 2018; 18 Jiang, Jin, Mingcheng, Li (b25) 2017; 6 Chejerla, Madria (b1) 2017; 75 Liu, Peng, Wang, Yao, Liu (b2) 2017; 4 Engin, Güçlü (b7) 2018; 72 Titri, Larbes, Toumi, Benatchba (b8) 2017; 58 Mourtzis, Vlachou (b18) 2018; 47 Liu, Yang, Liu, Tian, Gao (b5) 2017; 21 Deng, Xu, Zhao (b11) 2019; 7 Ding, Han, Wang, Ge (b20) 2019; 15 Sun, Dong, Chen (b6) 2017; 21 Zhou, Zhang, Laili, Zhao, Xiao (b4) 2018; 96 Xie, Zeng, Li, Li, Li (b9) 2017; 66 Batmetan, Santoso (b13) 2017; 23 Yen, Cheng (b21) 2018; 24 Cui, Sun, Wang, Xue, Chen (b3) 2017; 103 Liang, Lu, Li, Wang (b12) 2018; 187 Ding, Han, Xiang, Ge, Zhang (b22) 2018; 275 Yang, Ma, Xiang, Gu, Zhao (b23) 2018; 6 Lv, Hu, Sangiovanni-Vincentelli, Li, Martinez, Cao (b10) 2018; 66 Qin, Zhang, Song (b17) 2018; 29 Zhang, Gong, Han, Zhao (b15) 2017; 5 Zhao, Gao, Chen, Guo (b26) 2018; 29 Mora, Colom, Gil, Jimeno-Morenilla (b14) 2017; 111 Liang (10.1016/j.future.2020.03.051_b12) 2018; 187 Mora (10.1016/j.future.2020.03.051_b14) 2017; 111 Cui (10.1016/j.future.2020.03.051_b3) 2017; 103 Ding (10.1016/j.future.2020.03.051_b20) 2019; 15 Zhao (10.1016/j.future.2020.03.051_b26) 2018; 29 Chejerla (10.1016/j.future.2020.03.051_b1) 2017; 75 Yang (10.1016/j.future.2020.03.051_b23) 2018; 6 Mourtzis (10.1016/j.future.2020.03.051_b18) 2018; 47 Leng (10.1016/j.future.2020.03.051_b24) 2019; 10 Liu (10.1016/j.future.2020.03.051_b5) 2017; 21 Sun (10.1016/j.future.2020.03.051_b6) 2017; 21 Batmetan (10.1016/j.future.2020.03.051_b13) 2017; 23 Qin (10.1016/j.future.2020.03.051_b17) 2018; 29 Lv (10.1016/j.future.2020.03.051_b10) 2018; 66 Titri (10.1016/j.future.2020.03.051_b8) 2017; 58 Liu (10.1016/j.future.2020.03.051_b2) 2017; 4 Yen (10.1016/j.future.2020.03.051_b21) 2018; 24 Riahi (10.1016/j.future.2020.03.051_b19) 2018; 18 Xie (10.1016/j.future.2020.03.051_b9) 2017; 66 Ding (10.1016/j.future.2020.03.051_b22) 2018; 275 Zhou (10.1016/j.future.2020.03.051_b4) 2018; 96 Gai (10.1016/j.future.2020.03.051_b16) 2017; 3 Engin (10.1016/j.future.2020.03.051_b7) 2018; 72 Zhang (10.1016/j.future.2020.03.051_b15) 2017; 5 Gong (10.1016/j.future.2020.03.051_b27) 2017; 13 Deng (10.1016/j.future.2020.03.051_b11) 2019; 7 Jiang (10.1016/j.future.2020.03.051_b25) 2017; 6 |
| References_xml | – volume: 187 start-page: 46 year: 2018 end-page: 62 ident: b12 article-title: Cyber physical system and big data enabled energy efficient machining optimization publication-title: J. Cleaner Prod. – volume: 29 start-page: 93 year: 2018 end-page: 108 ident: b26 article-title: Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines publication-title: J. Intell. Manuf. – volume: 21 start-page: 1317 year: 2017 end-page: 1320 ident: b6 article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks publication-title: IEEE Commun. Lett. – volume: 15 start-page: 2483 year: 2019 end-page: 2499 ident: b20 article-title: A survey on model-based distributed control and filtering for industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inf. – volume: 72 start-page: 166 year: 2018 end-page: 176 ident: b7 article-title: A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems publication-title: Appl. Soft Comput. – volume: 3 start-page: 60 year: 2017 end-page: 72 ident: b16 article-title: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing publication-title: IEEE Trans. Sustain. Comput. – volume: 66 start-page: 2965 year: 2018 end-page: 2975 ident: b10 article-title: Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach publication-title: IEEE Trans. Ind. Electron. – volume: 103 start-page: 42 year: 2017 end-page: 52 ident: b3 article-title: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems publication-title: J. Parallel Distrib. Comput. – volume: 58 start-page: 465 year: 2017 end-page: 479 ident: b8 article-title: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions publication-title: Appl. Soft Comput. – volume: 4 start-page: 27 year: 2017 end-page: 40 ident: b2 article-title: Review on cyber-physical systems publication-title: IEEE/CAA J. Autom. Sin. – volume: 47 start-page: 179 year: 2018 end-page: 198 ident: b18 article-title: A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance publication-title: J. Manuf. Syst. – volume: 75 start-page: 145 year: 2017 end-page: 157 ident: b1 article-title: QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system publication-title: Future Gener. Comput. Syst. – volume: 13 start-page: 1665 year: 2017 end-page: 1680 ident: b27 article-title: Scheduling algorithms of flat semi-dormant multicontrollers for a cyber-physical system publication-title: IEEE Trans. Ind. Inf. – volume: 96 start-page: 3003 year: 2018 end-page: 3017 ident: b4 article-title: Multi-task scheduling of distributed 3D printing services in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. – volume: 21 start-page: 5829 year: 2017 end-page: 5839 ident: b5 article-title: An improved ant colony algorithm for robot path planning publication-title: Soft Comput. – volume: 18 start-page: 55 year: 2018 end-page: 74 ident: b19 article-title: A new hybrid ant colony algorithm for scheduling of no-wait flowshop publication-title: Oper. Res. – volume: 10 start-page: 1155 year: 2019 end-page: 1166 ident: b24 article-title: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 6 start-page: 1855 year: 2017 end-page: 1869 ident: b25 article-title: Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system publication-title: IEEE Access – volume: 275 start-page: 1674 year: 2018 end-page: 1683 ident: b22 article-title: A survey on security control and attack detection for industrial cyber-physical systems publication-title: Neurocomputing – volume: 6 start-page: 15576 year: 2018 end-page: 15586 ident: b23 article-title: Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks publication-title: IEEE Access – volume: 111 start-page: 68 year: 2017 end-page: 83 ident: b14 article-title: Distributed computational model for shared processing on cyber-physical system environments publication-title: Comput. Commun. – volume: 29 start-page: 891 year: 2018 end-page: 904 ident: b17 article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time publication-title: J. Intell. Manuf. – volume: 7 start-page: 20281 year: 2019 end-page: 20292 ident: b11 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE Access – volume: 5 start-page: 13260 year: 2017 end-page: 13269 ident: b15 article-title: An improved ant colony algorithm for path planning in one scenic area with many spots publication-title: IEEE Access – volume: 23 start-page: 2344 year: 2017 end-page: 2347 ident: b13 article-title: A multiple-objective ant colony algorithm for optimizing disaster relief logistics publication-title: Adv. Sci. Lett. – volume: 66 start-page: 6676 year: 2017 end-page: 6692 ident: b9 article-title: Adaptive dynamic scheduling on multifunctional mixed-criticality automotive cyber-physical systems publication-title: IEEE Trans. Veh. Technol. – volume: 24 start-page: 125 year: 2018 end-page: 135 ident: b21 article-title: A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance publication-title: Microsyst. Technol. – volume: 13 start-page: 1665 issue: 4 year: 2017 ident: 10.1016/j.future.2020.03.051_b27 article-title: Scheduling algorithms of flat semi-dormant multicontrollers for a cyber-physical system publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2690939 – volume: 21 start-page: 5829 issue: 19 year: 2017 ident: 10.1016/j.future.2020.03.051_b5 article-title: An improved ant colony algorithm for robot path planning publication-title: Soft Comput. doi: 10.1007/s00500-016-2161-7 – volume: 24 start-page: 125 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.051_b21 article-title: A study of fuzzy control with ant colony algorithm used in mobile robot for shortest path planning and obstacle avoidance publication-title: Microsyst. Technol. doi: 10.1007/s00542-016-3192-9 – volume: 58 start-page: 465 year: 2017 ident: 10.1016/j.future.2020.03.051_b8 article-title: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.017 – volume: 66 start-page: 6676 issue: 8 year: 2017 ident: 10.1016/j.future.2020.03.051_b9 article-title: Adaptive dynamic scheduling on multifunctional mixed-criticality automotive cyber-physical systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2017.2674302 – volume: 47 start-page: 179 year: 2018 ident: 10.1016/j.future.2020.03.051_b18 article-title: A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based maintenance publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.05.008 – volume: 66 start-page: 2965 issue: 4 year: 2018 ident: 10.1016/j.future.2020.03.051_b10 article-title: Driving-style-based codesign optimization of an automated electric vehicle: a cyber-physical system approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2850031 – volume: 187 start-page: 46 year: 2018 ident: 10.1016/j.future.2020.03.051_b12 article-title: Cyber physical system and big data enabled energy efficient machining optimization publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.03.149 – volume: 18 start-page: 55 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.051_b19 article-title: A new hybrid ant colony algorithm for scheduling of no-wait flowshop publication-title: Oper. Res. – volume: 75 start-page: 145 year: 2017 ident: 10.1016/j.future.2020.03.051_b1 article-title: QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.034 – volume: 29 start-page: 891 issue: 4 year: 2018 ident: 10.1016/j.future.2020.03.051_b17 article-title: An improved ant colony algorithm for dynamic hybrid flow shop scheduling with uncertain processing time publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1144-3 – volume: 29 start-page: 93 issue: 1 year: 2018 ident: 10.1016/j.future.2020.03.051_b26 article-title: Two-generation pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1091-z – volume: 6 start-page: 15576 year: 2018 ident: 10.1016/j.future.2020.03.051_b23 article-title: Joint optimization of energy consumption and packet scheduling for mobile edge computing in cyber-physical networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2810115 – volume: 10 start-page: 1155 issue: 3 year: 2019 ident: 10.1016/j.future.2020.03.051_b24 article-title: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0881-5 – volume: 111 start-page: 68 year: 2017 ident: 10.1016/j.future.2020.03.051_b14 article-title: Distributed computational model for shared processing on cyber-physical system environments publication-title: Comput. Commun. doi: 10.1016/j.comcom.2017.07.009 – volume: 6 start-page: 1855 year: 2017 ident: 10.1016/j.future.2020.03.051_b25 article-title: Distributed dynamic scheduling for cyber-physical production systems based on a multi-agent system publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2780321 – volume: 23 start-page: 2344 issue: 3 year: 2017 ident: 10.1016/j.future.2020.03.051_b13 article-title: A multiple-objective ant colony algorithm for optimizing disaster relief logistics publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2017.8758 – volume: 96 start-page: 3003 issue: 9–12 year: 2018 ident: 10.1016/j.future.2020.03.051_b4 article-title: Multi-task scheduling of distributed 3D printing services in cloud manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1543-z – volume: 15 start-page: 2483 issue: 5 year: 2019 ident: 10.1016/j.future.2020.03.051_b20 article-title: A survey on model-based distributed control and filtering for industrial cyber-physical systems publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2905295 – volume: 7 start-page: 20281 year: 2019 ident: 10.1016/j.future.2020.03.051_b11 article-title: An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897580 – volume: 3 start-page: 60 issue: 2 year: 2017 ident: 10.1016/j.future.2020.03.051_b16 article-title: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2017.2723954 – volume: 103 start-page: 42 year: 2017 ident: 10.1016/j.future.2020.03.051_b3 article-title: A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber–physical systems publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2016.10.011 – volume: 275 start-page: 1674 year: 2018 ident: 10.1016/j.future.2020.03.051_b22 article-title: A survey on security control and attack detection for industrial cyber-physical systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.009 – volume: 21 start-page: 1317 issue: 6 year: 2017 ident: 10.1016/j.future.2020.03.051_b6 article-title: An improved routing algorithm based on ant colony optimization in wireless sensor networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2017.2672959 – volume: 5 start-page: 13260 year: 2017 ident: 10.1016/j.future.2020.03.051_b15 article-title: An improved ant colony algorithm for path planning in one scenic area with many spots publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2723892 – volume: 72 start-page: 166 year: 2018 ident: 10.1016/j.future.2020.03.051_b7 article-title: A new hybrid ant colony optimization algorithm for solving the no-wait flow shop scheduling problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.08.002 – volume: 4 start-page: 27 issue: 1 year: 2017 ident: 10.1016/j.future.2020.03.051_b2 article-title: Review on cyber-physical systems publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2017.7510349 |
| SSID | ssj0001731 |
| Score | 2.5983126 |
| Snippet | Cyber–physical system (CPS) is the product of technological development to a certain stage, and also is the future trends in information technology.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 134 |
| SubjectTerms | Ant colony algorithm Cyber–physical system (CPS) Distributed system Task scheduling |
| Title | Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm |
| URI | https://dx.doi.org/10.1016/j.future.2020.03.051 |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QPX0Kx2c6wqqgKiF1qpt8hbIdAmVSmHXhD_wB_yJcwkDouEQOKWRB4perbnja2ZN4ScMsElsDp3uCuNE0rJHAEs5EQaW1wZzaTAq4HrAeuPwstxNK6RblULg2mV1veXPr3w1vZLy6LZmqdp6wYT6HkQjzEE4awo-A1Djl0Mzp4_0zw8bnsS4v_A6Kp8rsjxKnU74JTou4XUaeT9TE9fKKe3RTZsrEg75e9sk5rJdshm1YeB2m25S7KheHygOWz-ma2qpCLTFM6twCNYbk7zCdWokIvNrYymaiXN4u3ldW4niZZ6zhQpTVMwT4urBngG3CnqWmcrKqa3-SJd3s32yKh3Puz2HdtHwVFwIFg67dhwXweRKwNPsFjqGFgLwkKlALc4Et6ECTUBqDRnBs5zgYoEN77wJd4YSxnsk3qWZ-aA0LbnGslChaI7Yay08HSkJbCcbIPTNHGDBBV8ibIi49jrYppU2WT3SQl6gqAnbpAA6A3ifFjNS5GNP8bzamaSb4slAR741fLw35ZHZB3fyty_Y1JfLp7MCcQjS9ksFlyTrHUurvqDd3rK43U |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHODCjiirD1xDs9rNESFQWdoLRerN8lYItElVyoEL4h_4Q76EmcRhkRBI3KLEI0XP9jyPNfOGkAMmuQJW5x73lfVipZgngYW8xGCLK2uYkng10Omy9nV83k_6M-S4roXBtErn-yufXnpr96bp0GyOs6x5hQn0PEr7eAThDAt-5-Ik5BiBHT5_5nkE3DUlxB-C4XX9XJnkVQl3QJgY-qXWaRL8zE9fOOd0mSy6wyI9qv5nhczYfJUs1Y0YqNuXayTvyYd7WsDuH7mySipzQyFwBSLBenNaDKhBiVzsbmUN1U_KTt5eXsdulmgl6EyR0wwF86y8a4BnAJ6isHX-ROXwpphk09vROrk-Pekdtz3XSMHTEBFMvVZqeWiixFdRIFmqTAq0BedCrQG4NJHBgEk9AKgMZxYCukgnkttQhgqvjJWKNshsXuR2k9BW4FvFYo2qO3GqjQxMYhTQnGqB17Rpg0Q1fEI7lXFsdjEUdTrZnahAFwi68CMBoDeI92E1rlQ2_hjP65kR31aLACL41XLr35b7ZL7d61yKy7PuxTZZwC9VIuAOmZ1OHu0uHE6maq9cfO_R4-UK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Task+optimization+and+scheduling+of+distributed+cyber%E2%80%93physical+system+based+on+improved+ant+colony+algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Yi%2C+Na&rft.au=Xu%2C+Jianjun&rft.au=Yan%2C+Limei&rft.au=Huang%2C+Lin&rft.date=2020-08-01&rft.issn=0167-739X&rft.volume=109&rft.spage=134&rft.epage=148&rft_id=info:doi/10.1016%2Fj.future.2020.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2020_03_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |